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Inequalities as above in which ß is an algebraic integer are more difficult.

Here one has to deal with polynomials xd + qd-t xd~x + + qtx + q0,

and hence one has to deal with an inhomogeneous approximation problem.
One might conjecture that if d ^ 2 and if a is not an algebraic integer of
degree d and is not algebraic of degree ^ d - 1, then for every e > 0 there

are infinitely many real algebraic integers ß of degree ä d with

(6.11) \oc - ß \ <H(ß)-(d~£).

This conjecture is true if (a, a2, ad_1) is not very well approximate.
Davenport and Schmidt (1969) showed a result with (6.11) replaced by

\a - ß \ S c9H(ßyl(d+1)/2\

6.7. We have discussed approximation properties of general /-tuples

oq, oq and of /-tuples a, a2, od. Interesting questions arise if one
asks about approximation properties of special /-tuples. For example,
(e, e2, el) is not very well approximate (Popken (1929); see Schneider

(1957), Kap. 4). A more general result (which is analogous to Theorem 7A
below) concerning the /-tuple oq e1, oq el with distinct non-zero
rationals ru ri was proved by Baker (1965). For the behavior of /-tuples
log oq, log oq where al5 oq are algebraic, see Baker (1966, 1967b,

1967c, 1968a) and Feldman (1968a, 1968b). In the next section we shall turn
to /-tuples of real algebraic numbers.

7. Simultaneous approximation to algebraic numbers by rationals

7.1. We have already seen (Theorem 6F) that (oq, oq) is badly
approximate if 1, oq, oq is a basis of a real algebraic number field.
In the same way one can show that if 1, oq, oq 'are linearly independent
over the field of rationals and if they generate a field of degree d, then

I a1q1+ + alql& cx | q |*"'+1

for every non-zero integer point q (q...,qbp). Here c, c, (a1; a,)
> 0 is easily computable. The case / 1 of this inequality yields
Liouville's Theorem 2A.

Cassels and Swinnerton-Dyer (1955) have shown that Littlewood's
conjecture is true for /-tuples (oq,a,) such that oq,a, is a basis of a
real number field. (This conjecture applies only if /> 1.) Peck (1961) showed
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for such /-tuples with / > 1 that there are infinitely many rational /-tuples

2) with
\q qj

OCi —
Pi

< c2q
-1 - (i//)

Pi
a, < c2q

1 (1/l)(logq) 1/(1 1} (i =2,

Schmidt (1966) derived an asymptotic formula for the number v (N) of
Pi

solutions with q ^ N of
q

< \j/ (q) (i 1, /) for such /-tuples

and for certain functions xj/ (q). Earlier Lang (1965b, 1965c, 1966a) had done
this for / 1 and for a wider class of numbers a1. Adams (1967) replaced
our special /-tuples by badly approximate /-tuples and proved (1969a,

1969b, to appear) other results of this type.

7.2. As in §6.3, || £ || will denote the distance from a real number £

to the nearest integer.

Theorem 7A. Suppose a1? cct are real algebraic numbers such that
1, a1? ctt are linearly independent over the rationals, and suppose ô > 0.

There are only finitely many positive integers q with

(7.1)

The inequalities

Jl+Ô II %iq II ••• II II < I-

(7.2)
Pi

Cti <q-i-(i,l)-ö (i l, 0

imply that || atq || <q (1/i) 0 (i=l, ...,/) and hence they imply (7.1).
Therefore (7.2) has only finitely many solutions, and we obtain

Corollary 7B. Suppose a1? at and ô are as in Theorem 1A. Then

Pi Pi\
there are only finitely many rational l-tuples with (7.2).

\q q)

Theorem 7C. Again assume that al9 az and <5 are as in Theorem 7A.

Then there are only finitely many l-tuples of non-zero integers qu qt with
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(7.3) ki<Î2 ii l1+*ll ai<?i + - +Wi II < !•

By applying Theorem 7C to all the non-empty subsets of a1? aL one

deduces

Corollary 7D. If again al5 (5 are as in Theorem 7A, then there

are only finitely many (/+ \)-tuples of integers ...,#/,£ with q

max (1^1, |#z|) > 0 a/2J w///z

(7.4) I ot1q1 + + CLlql + p \ < q
1 0

By Corollaries 6B and 6D the exponents in Corollaries 7B and 7D are

best possible. In view of Khintchine's Transference Principle (Theorem 6E),

the Corollaries 7B and 7D say the same, namely that au az is not very
well approximate. The case / 1 of these corollaries is Roth's Theorem.

Theorems 7A and 7C and their corollaries were proved by Schmidt (1970).

They had been anticipated by a weaker version of the case 1=2 and by the

case / 2 itself (Schmidt 1965 and 1967a, respectively).
Before Roth's Theorem was known Hasse (1939) used Siegel's method to

derive estimates for simultaneous approximation. Baker (1967a), Feldman
(1970a) and Osgood (1970) proved weaker but effective versions of Corollary
7D for special algebraic numbers a1? az.

7.3. Corollary 7B shows that the exponent in Corollary 6B is best

possible for algebraic numbers a1? och and Corollary 7D does the same
for Corollary 6D. We shall now examine Corollaries 6J and 6K in the special
case when the coefficients of the linear forms involved are algebraic. Suppose
1 m < n and Lfix), Lm(x) are linear forms with real algebraic coefficients.

We shall call £1? ...,£m a Roth System if for every Ô > 0 the
inequalities

(7.5) I L} (x) I < I l?_?m)
have only finitely many solutions in integer points x # 0. Roth's Theorem
says that for n 2, m 1, the linear form L (x) ouq — x2 with a real
algebraic irrational a is a Roth System.

Theorem 7E (Schmidt (1971a)). Linear forms Lx (x),Lm(x) with
real algebraic coefficients and with m < n are a Roth System if and only
if their restrictions to every rational subspace Sd of dimension d with
1 S d S^ n have rank r satisfying
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(7.6) r ^ dm/n

This theorem contains Corollaries 7B and 7D. For suppose m 1,

n I + 1 andL(x) Lx (x) a1x1 + + aixl + xn where the numbers

a1? ah 1 are algebraic and linearly independent over the rationals. Then

L (x) ^ 0 for every integer point x A 0, and hence L has rank r — 1 on

every rational subspace Sd ^ 0. Since dm/n d/n ^ 1, the inequality (7.6)
is always satisfied, and L (x) is a Roth System. Hence there are only finitely
many integer points x =£ 0 with | L (x) | < | x | x \~l~ô, and

Corollary 7D follows. Corollary 7B can be similarly derived.
The necessity of the condition (7.6) in Theorem 7E is easy to see: A

rational subspace Sd is a <i-dimensional Euclidean space, and the integer
points in such a space form a lattice A. By applying a result analogous to
Corollary 6J to the restrictions of Lu to Sd and to the lattice A,
we obtain infinitely many integer points x A 0 in Sd with

and we don't have a Roth System. j]

Suppose L1 (x), Ln (x) are linear forms with real algebraic coefficients jj

and suppose yu yn are reals with y± + + yn 0. In view of Corollary j]

6K the following definition is natural. We shall call {Lu Ln; yu yn) a jj

General Roth System if for every ô > 0 there is a Q0 Q0 (Lu ||

yx, yn; ö) such that for Q > Q0 there is no integer point x ^ 0 with j:

Roth's Theorem says that for n 2 and an algebraic irrational a, the

system (Lx (x) aXi — x2,L2 (x) x1;y1 — 1, y2 1) is a General

Roth System. Schmidt (1971a) derives necessary and sufficient conditions

for General Roth Systems which contain Theorem 7E as a special case.

7.4. We shall briefly discuss an inhomogeneous approximation problem.
Suppose / > 1 and suppose 1, a1? are algebraic and linearly
independent over the rational field Q. The special case q t

1 of Theorem 7C

shows that there are only finitely many integer /-tuples qu qt-u p with

q max (\q±\, |#/-i|) > 0 and with

|L;(x)| <Q>i~ô

I a1q1+ + aj_! ql_1+ p+ otj | < -u 15
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One can easily show that more generally this is still true if cc l is not of the

type at + + ocl_lxl_i + x0 with rational integers xÙ7 x%, xt^x.
Changing the notation we obtain

Corollary 7F. Suppose al5 az, ß are real algebraic numbers such

that ß is not a linear combination ofal5 cct with rational integer coefficients.
Then for every ô > 0 there are only finitely many integer l-tuples qu qt
with q max (j#^, \qi\) > 0 and with

I cc1ql + + alql + ß \ < q
(l 1} 5

This holds also when / 1, but is trivial in this case. The case when

/ 2 and aja2 is quadratic was proved by Mahler (1963). Combining
Corollary 7D with certain transference theorems (see, e.g., Cassels (1957),
ch. V) one obtains

Corollary 7G. Suppose al5 ax are real, algebraic and linearly in-

dependent over Q. Then for every real ß and every s > 0 there are infinitely
many integer l-tuples (ql9 qt) with q max (l^j, |#/|) > 0 and

I cc1q1 + + atq,+ ß _

7.5. Suppose a is a real algebraic number. Assume at first that it
is not algebraic of degree ^ d where d is a given positive integer. Then
1, a, otd are linearly independent over the rationals, and by Corollary 7D
there are only finitely many integer solutions of

I qdad+ + qta + q0 \ < q~d~ö (q=max |, 0)

for any given ô>0.Thus there are only finitely many polynomials P (x)
of degree at most d with rational integer coefficients and with

I P (a) I < H

Now if ß is a root of P (x) and if, say, P (x) (x-ß) (x-ß2)... (x-ße),
then I P (a) I \ a - ß \\ a (a-ß2) (a-ße) \ ^ |a - (|a| +
by the well known inequality | a \ (1 + |jS|) (1 + \ß2\)... (1 + \ße\) g (P)
where c, c, (e). (See e.g. LeVeque (1955), vol. 2, Theorem 4.2.) Thus
I a- ßI < H (P)-à-x-àwouic|impiy that | P (a) | < H (P) ~d~ô, which
has only finitely many solutions. Thus we see that the inequality

(7.7) I a - ß I < H
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has for every <5 > 0 only finitely many solutions in algebraic numbers ß
of degree ^ d. It can be shown that the assumption on the degree of a
can be removed, and we obtain

Theorem 7H. Suppose a is a real algebraic number, d a positive integer,
Ô > 0. There are only finitely many (real or complex) algebraic numbers ß

of degree at most d with (7.7).
This supersedes Wirsing's Theorem 4B. Suppose a is real and algebraic

but not algebraic of degree ^ d. Then by Corollary 7D the J-tuple
(a, a2, ad) is not very well approximate. Using a result of Wirsing
(1961) mentioned in §6.6, we obtain a theorem which complements Theorem

7H.

Theorem 71. Suppose a is algebraic of some degree greater than d. \

Then for every s > 0 there are infinitely many real algebraic numbers ß

of degree ^ d with (6.10), i.e. with j

I a - ß \ < H(ßyd~1 + e. j

i
In order to obtain results about approximation by algebraic integers ß,

one has to apply Corollary 7F with / d and at 1, a2 a, ocd_1 [

cxd~2, ad ad_1, ß ad. j

I

I
Theorem 7J. Suppose a, d, <5 are as in Theorem 7H. There are only |

finitely many (real or complex) algebraic integers ß of degree at most d with |

|a -0| <H(ß)-d~s.

Using certain transference principles (see Davenport and Schmidt

(1969)) together with the results of this section one can prove

Theorem 7K. Suppose d ^ 2 and a is a real algebraic number of some

degree ^ d but is not an algebraic integer of degree d. Then for every e > 0

there are infinitely many real algebraic integers ß of degree ^ d with

\a~ß \ <H(ßyd+\

1.6. In the course of his classification of algebraic and transcendental
real numbers, Mahler (1932) defines cod cod (a) as the supremum of the
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numbers œ such that there are infinitely many polynomials P with rational

integer coefficients of degree ^ d and with

0 < | P (a) | < H(P)~C0.

By Corollary 6D it is clear that cod ^ d unless a is algebraic of degree % d.

Furthermore if a is algebraic of degree n, then one can show using the norm
of P (a) that œâ ^ n — 1 (d= 1, 2, ...)• Thus Mahler could characterize the

algebraic numbers a by the property that cod (a) (d=l, 2, remains

bounded.
Koksma (1939) defines œ*d œ*d (a) as the supremum of the numbers co*

such that there are infinitely many algebraic numbers ß of degree d with

1 a ~ ß \ KHißy1-«*.

It is easy to see that œ*d ^ ood and Wirsing (1961) showed that cod ^ \ (cod + 1)

if a is transcendental. Hence the algebraic numbers can also be characterized

by the property that œ*d (a) (d= 1, 2, is bounded. We have cod ^ cod

^ n — 1 if a is algebraic of degree n, and the results of the last section
show that oid d if d ^ n — 1. Since cod and cod increase with d, we have

for algebraic a of degree n,

à if d S n — 1

n — 1 if d ^ n

Thus the exponent in Theorem 7H is best possible precisely if d < n.

Another characterization of algebraic numbers by approximation
properties was given by Gelfond (1952, §111.4, Lemma VII) and refined by
Lang (1965a) and Tijdeman (1971, Lemma 6). This lemma was slightly
improved by D. Brownawell (unpublished).

8. Tools from the Geometry of Numbers

8.1. To prove the theorems enunciated in the last section one needs
certain results from the Geometry of Numbers. This field was first investigated

under this name by Minkowski (1896). Other books on the Geometry
of Numbers are Cassels (1959) and Lekkerkerker (1969).

Let K be a symmetric 1) convex set in Euclidean En. For convenience
let us assume that K is compact and has a non-empty interior. For X > 0
let )X be the set consisting of the points 2x with xeK. Minkowski defines

b I.e. if xe K, then also — x e K.


	7. SIMULTANEOUS APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS

