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Inequalities as above in which B is an algebraic integer are more difficult.
Here one has to deal with polynomials x? 4+ ¢,_; x*™' + ... + ¢1X + qo,
and hence one has to deal with an inhomogeneous approximation problem.
One might conjecture that if d = 2 and if « is not an algebraic integer of
degree d and is not algebraic of degree < d — 1, then for every ¢ > 0 there
are infinitely many real algebraic integers  of degree < d with

(6.11) | — Bl < H(B)™“"®.

This conjecture is true if («, o, ..., «*~1) is not very well approximable.
Davenport and Schmidt (1969) showed a result with (6.11) replaced by

o= B S coH (B Hr /2,

6.7. We have discussed approximation properties of general /-tuples
oy, ..., o, and of [-tuples o, o?, ..., a’. Interesting questions arise if one
asks about approximation properties of special /-tuples. For example,
(e, e, ..., e') is not very well approximable (Popken (1929); see Schneider
(1957), Kap. 4). A more general result (which 1s analogous to Theorem 7A
below) concerning the I-tuple o; = €'}, ..., a; = ¢! with distinct non-zero
rationals rq, ..., r; was proved by Baker (1965). For the behavior of /-tuples
log oy, ..., log «;, where oy, ..., a; are algebraic, see Baker (1966, 1967b,
1967¢c, 1968a) and Feldman (1968a, 1968b). In the next section we shall turn

to [-tuples of real algebraic numbers.

7.  SIMULTANEOUS APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS

7.1. We have already seen (Theorem 6F) that (v, ..., a;) is badly
approximable if 1, ay, ..., ; is a basis of a real algebraic number field.
In the same way one can show that if 1, o, ..., «; are linearly independent
over the field of rationals and if they generate a field of degree d, then

loygy + ..o +oaq +pl = |q]!

for every non-zero integer point q = (g, ..., ¢,, p). Here ¢; = ¢, (oy, ..., o))
> 0 is easily computable. The case / = 1 of this inequality yields
Liouville’s Theorem 2A.

Cassels and Swinnerton-Dyer (1955) have shown that Littlewood’s
conjecture is true for /-tuples (ay, ..., o;) such that 1, oy, ..., o, is a basis of a
real number field. (This conjecture applies only if /> 1.) Peck (1961) showed
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for such /-tuples with / > 1 that there are infinitely many rational /-tuples

<£’i,...,ﬁ> -
g’y

P1

‘ o0y ——| <cyg tTUD
q

a; - £ < c,q A (log )1/ D (i=2,...,0).

Schmidt (1966) derived an asymptotic formula for the number v(N) of

D;
O(i -

solutions with ¢ < N of <y (q)(i=1,...,1) for such 'l-tuples

and for certain functions ¥ (g). Earlier Lang (1965b, 1965¢c, 1966a) had done
this for / = 1 and for a wider class of numbers «;. Adams (1967) replaced
our special /-tuples by badly approximable /-tuples and proved (1969a,
1969b, to appear) other results of this type.

7.2. As in §6.3,
to the nearest integer.

¢ || will denote the distance from a real number ¢

THEOREM 7A. Suppose oy, ..., o, are real algebraic numbers such that
1, ¢4, ..., o, are linearly independent over the rationals, and suppose 6 > O.
There are only finitely many positive integers q with

(7.1) " logg | feog Il < 1.

The inequalities

Di
OCi - -

q

(7.2) < g 1Tam=s (=1, ]

imply that || o || < q'"(l”)_‘S (i=1,..,1) and hence they imply (7.1).
Therefore (7.2) has only finitely many solutions, and we obtain f

COROLLARY 7B. Suppose oy, ..., o, and 6 are as in Theorem TA. Then

there are only finitely many rational [-tuples <I—)—1 y e &) with (7.2).

q q

THEOREM 7C. Again assume that o4, ..., o, and & are as in Theorem TA.
Then there are only finitely many I-tuples of non-zero integers q, ..., q, With
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(7.3) 119, - 4, T agy . F gl <1

By applying Theorem 7C to all the non-empty subsets of oy, ..., a, one
deduces |

COROLLARY 7D. If again oy, ..., o,; & are as in Theorem TA, then there
are only finitely many (I+1)-tuples of integers qi,...,q,p Wwith ¢
= max (|q,|, ..., |q,]) > 0 and with

(7.4) |o1qy + oo g, +pl<q0.

By Corollaries 6B and 6D the exponents in Corollaries 7B and 7D are
best possible. In view of Khintchine’s Transference Principle (Theorem 6E),
the Corollaries 7B and 7D say the same, namely that oy, ..., ; 1s not very
well approximable. The case / = 1 of these corollaries is Roth’s Theorem.
Theorems 7A and 7C and their corollaries were proved by Schmidt (1970).
They had been anticipated by a weaker version of the case / = 2 and by the
case [ = 2 itself (Schmidt 1965 and 1967a, respectively).

Before Roth’s Theorem was known Hasse (1939) used Siegel’s method to
derive estimates for simultaneous approximation. Baker (1967a), Feldman
(1970a) and Osgood (1970) proved weaker but effective versions of Corollary
7D for special algebraic numbers «;, ..., «;.

7.3. Corollary 7B shows that the exponent in Corollary 6B is best
possible for algebraic numbers ¢y, ..., «;, and Corollary 7D does the same
for Corollary 6D. We shall now examine Corollaries 6J and 6K in the special
case when the coeflicients of the linear forms involved are algebraic. Suppose
1 £m < nand L{(x), ..., L,(x) are linear forms with real algebraic coeffi-
cients. We shall call Ly, ..., L, a Roth System if for every 6 > 0 the in-
equalities

(7.5) | L;(x) | < |x |~ (@rmm)/m)=o (i=1,...,m)

have only finitely many solutions in integer points x # 0. Roth’s Theorem
says that for n = 2, m = 1, the linear form L (x) = ax, — x, with a real
algebraic irrational « is a Roth System.

Tueorem 7E (Schmidt (1971a)). Linear forms L, (X), ..., L, (x) with
real algebraic coefficients and with m < n are a Roth System if and only
if their restrictions to every rational subspace S of dimension d with
1 < d =< n have rank r satisfying
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(7.6) ' r=dmjn.

This theorem contains Corollaries 7B and 7D. For suppose m = 1,
n=1+1landL (x) =L, (X) = oyx; + ... + a,;x; + x, where the numbers
oy, ..., %, 1 are algebraic and linearly independent over the rationals. Then
L (x) # 0 for every integer point x # 0, and hence L has rank » = 1 on
every rational subspace S¢ # 0. Since dm/n = d/n < 1, the inequality (7.6)
is always satisfied, and L (x) is a Roth System. Hence there are only finitely
many integer points x # 0 with |L(x)| < |x|7“""7% = |x |77, and
Corollary 7D follows. Corollary 7B can be similarly derived. ’

The necessity of the condition (7.6) in Theorem 7E is easy to see: A
rational subspace S? is a d-dimensional Euclidean space, and the integer
points in such a space form a lattice 4. By applying a result analogous to
Corollary 6J to the restrictions of Ly, ..., L, to S¢ and to the lattice 4,
we obtain infinitely many integer points x # 0 in S¢ with

|Li(x)| S ¢y |x |79 = ¢ |x|P 7@MD (i=1,...,m).
Now if r < dm/n, say if r = dmn™}(14+6)"!, then
| Li(x)| S ¢ [x['TOMUTD <o [x [TOmmIMT0 (=1, ..., m),

and we don’t have a Roth System.

Suppose L, (X), ..., L, (x) are linear forms with real algebraic coefficients
and suppose v, ..., 7, are reals with y; + ... + 7, = 0. In view of Corollary
6K the following definition is natural. We shall call (L, ..., L,; }1, ..., ) &
General Roth System if for every 0 > 0 there is a Qq = Qo (L, ..., L,;
V1is ooy Vus 0) such that for O > Q, there is no integer point x # @ with

ILI.(X)I <Q}’i"5 (l=1,,n)

Roth’s Theorem says that for » = 2 and an algebraic irrational «, the
system (L, (X) = ax; — X, L, (X) = x{;7; = — 1,9, = 1) is a General
Roth System. Schmidt (1971a) derives necessary and sufficient conditions
for General Roth Systems which contain Theorem 7E as a special case.

7.4. We shall briefly discuss an inhomogeneous approximation problem.
Suppose [ > 1 and suppose 1,ay, ..., o, are algebraic and linearly
independent over the rational field Q. The special case ¢; = 1 of Theorem 7C
shows that there are only finitely many integer /-tuples ¢, ..., q¢;_, p With
g = max (|g,], -, |¢:=1]) > 0 and with

loygy + oo + 41 gy +p + oyl < g =D~




1%

|
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One can easily show that more generally this is still true if «; is not of the
type oo, = o;x; + ... + &;_1X,_; + X, withrational integers x¢, Xy, ..., X;—1-
Changing the notation we obtain

CoROLLARY 7F. Suppose oy, ..., a,, B are real algebraic numbers such
that B is not a linear combination of &y, ..., o, with rational integer coefficients.
Then for every & > 0 there are only finitely many integer I-tuples q, ..., q,
with ¢ = max (|q1|, ey q,l) > 0 and with

longy + o +aq + B <g TP

This holds also when / = 1, but is trivial in this case. The case when
[ = 2 and a,/a, is quadratic was proved by Mahler (1963). Combining
Corollary 7D with certain transference theorems (see, e.g., Cassels (1957),
ch. V) one obtains

CorOLLARY 7G. Suppose o, ..., o, are real, algebraic and linearly in-
dependent over Q. Then for every real  and every ¢ > 0 there are infinitely
many integer I-tuples (g4, ..., q;) with ¢ = max (lqll, - [q,l) > 0 and

loayqy + ... +og + | <qg 1T

7.5. Suppose « is a real algebraic number. Assume at first that it
is not algebraic of degree < d where d is a given positive integer. Then
1, o, ..., a? are linearly independent over the rationals, and by Corollary 7D
there are only finitely many integer solutions of

| qeo + ... 4+ g0 + g0 <q7?° (q =max (|g], ..., [q4]) > 0)

for any given 6 > 0. Thus there are only finitely many polynomials P (x)
of degree at most d with rational integer coeflicients and with

| P()] < H(P)™"7°.

Now if § is a root of P (x) and if, say, P (x) = a (x—f) (x—B,) ... (x—=B.),
then | P (@) | =|a—f||a(@—p,) ... (x—B) | < |u — Bl (Je|+1)¢~ 1 ¢, H(P)
by the well known inequality ] a | (1 +|/3l) (1+ |ﬁ2|) o (I 1B.) < ¢y H (P)
where ¢; = ¢; (¢). (See e.g. LeVeque (1955), vol. 2, Theorem 4.2.) Thus
| o — B| < H(P)™*"'7° would imply that | P (x) | < ¢, H(P) ¢, which
has only finitely many solutions. Thus we see that the inequality

(7.7) o — B | < H(B)~ 4172
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has for every 6 > O only finitely many solutions in algebraic numbers f
of degree < d. It can be shown that the assumption on the degree of «
can be removed, and we obtain

THEOREM TH. Suppose o is a real algebraic number, d a positive integer,

6 > 0. There are only finitely many (real or complex) algebraic numbers f

of degree at most d with (7.7).

This supersedes Wirsing’s Theorem 4B. Suppose « is real and algebraic

but not algebraic of degree < d. Then by Corollary 7D the d-tuple
(a, a?, ..., a%) is not very well approximable. Using a result of Wirsing

(1961) mentioned in §6.6, we obtain a theorem which complements Theo-
rem 7H.

THEOREM 7I.  Suppose o is algebraic of some degree greater than d.

Then for every ¢ > O there are infinitely many real algebraic numbers f
of degree < d with (6.10), i.e. with

la =Bl <H(B™ 717,

In order to obtain results about approximation by algebraic integers B,
one has to apply Corollary 7F with / = d and oy = 1, 0, = o, ..., 0y

— ad—Z’ oy = O(d—l, B — O(d.

THEOREM 7). Suppose o, d, 0 are as in Theorem TH. There are only

finitely many (real or complex) algebraic integers B of degree at most d with

o =Bl <H(B™°.

Using certain transference principles (see Davenport and Schmidt

(1969)) together with the results of this section one can prove

THEOREM 7K. Suppose d = 2 and o is a real algebraic number of some
degree = d but is not an algebraic integer of degree d. Then for every ¢ > 0 §

there are infinitely many real algebraic integers f of degree < d with

la =Bl <H@E™ .

7.6. In the course of his classification of algebraic and transcendental §

real numbers, Mahler (1932) defines w, = w, () as the supremum of the
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numbers o such that there are infinitely many polynomials P with rational
integer coefficients of degree < d and with

0<|P()|<HP) .

By Corollary 6D it is clear that w, = d unless « is algebraic of degree < d.
Furthermore if « is algebraic of degree n, then one can show using the norm
of P(«) that w; £ n — 1(d=1, 2, ...). Thus Mahler could characterize the
algebraic numbers o by the property that w, (x) (d=1, 2, ...) remains
bounded.

Koksma (1939) defines w; = wy () as the supremum of the numbers @
such that there are infinitely many algebraic numbers f of degree < d with

o~ BI<HEB) ™.

It is easy to see that w, < w, and Wirsing (1961) showed that w,; = 1 (w,;+1)
if « is transcendental. Hence the algebraic numbers can also be characterized
by the property that o, (x) (d=1, 2,...) is bounded. We have w, < w,
< n — 1 if « is algebraic of degree n, and the results of the last section
show that w; = dif d < n — 1. Since w; and w, increase with d, we have
for algebraic « of degree n,

o — o — d if d<n-—-1
@ T T n—11if d=n.

Thus the exponent in Theorem 7H is best possible precisely if d < n.

Another characterization of algebraic numbers by approximation
properties was given by Gelfond (1952, §III.4, Lemma VII) and refined by
Lang (1965a) and Tijdeman (1971, Lemma 6). This lemma was slightly
improved by D. Brownawell (unpublished).

8. TooLs FROM THE GEOMETRY OF NUMBERS

8.1. To prove the theorems enunciated in the last section one needs
certain results from the Geometry of Numbers. This field was first investi-
gated under this name by Minkowski (1896). Other books on the Geometry
of Numbers are Cassels (1959) and Lekkerkerker (1969).

Let K be a symmetric ') convex set in Euclidean E”. For convenience
let us assume that K is compact and has a non-empty interior. For A > 0
let 2K be the set consisting of the points Ax with x € K. Minkowski defines

1y le. if x €K, then also — x € K.
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