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N'(m) = ¢, (F) m*/

if either d = 3 and the discriminant of F is not of some rather special type,
or if F(x,y) = x* + »? for some d = 3. To generalize these results to
arbitrary forms F (x, y) appears to be extremely difficult.

The methods of Thue, Siegel and Roth do not enable one to find bounds
for the size lx[ + [ yl of solutions of Thue’s equation, and hence they
provide no method to find all the solutions of such an equation. Therefore
these methods are called “ non-effective . Effective results will be discussed
in §3.

3. AN OUTLINE OF THE PROOF OF ROTH’S THEOREM

3.1. We shall follow Cassel’s rearrangement (Cassels (1957), ch. VI)
of Roth’s proof. It is easy to see that we may restrict ourselves to the case
when « is an algebraic integer of degree d > 1.

Suppose we tried to modify the proof of Liouville’s Theorem as follows.
In step (a) we pick a polynomial P (x) with rational integer coefficients which
has a root at « of order i and which has degree r. Next, in step (b) we suppose
that

(3.1)

and Taylor’s expansion

p p J1 .
P(2) = S — pW
Q=L -0 P @

r{) > g

q

yields

PO

q

< cq~*. Finally (c) we have P (E) # 0 whence
q

for all but finitely many rationals 8 Hence if (3.1) has infinitely many
- q

0

i
Hence one should try to make - as large as possible. But it is clear that
r

solutions, then ui < r or

A
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i1 i 1
always - < 7 and that - = 7 if P (x) is a power of the defining polynomial
r r

of o. Hence this method only gives u < d, i.e. nothing better than Liouville’s

result.

3.2. In order to improve on this estimate, Thue and Siegel use a poly-
nomial P (x,, x,) in two variables, and Schneider (1936) and Roth use a
polynomial P (x,, ..., x,,) in many variables. It is necessary to define the
order of vanishing of P (x4, ..., X,,) at a given point (¢, ..., £,,). The simplest
definition would be to take the smallest value of 7, + ... + i, for which the
mixed partial derivative

(3.2) PULeim) (g E Y £ ().

But it is necessary to study polynomials P (x,, ..., x,,) which have rather
different degrees in x4, ..., x,,, and hence it will be better to attach different
weights to the integers iy, ..., i,, in (3.2). Thus Roth defines the index of
Pat(&y, ..., £,) with respect to a given m-tuple of positive integers (ry, ..., ¥',)
as the least value of

Il
e

for which (3.2) holds, if P % 0, and as + oo if P

3.3. The steps (a), (b), (c) in the proof of Liouville’s Theorem are now
replaced by new steps (a), (b), (¢).

(a) LemMA 3A. Suppose o is an algebraic integer of degree d > 1.

Suppose ¢ > 0 and m is an integer with
(3.3) m > 8d* &7 2.

Letry, ..., 1, be positive integers. Then there is a polynomial P (x4, ..., x,,) £ 0
with rational integer coefficients such that

(1) P has degree at most ry, in x, (h=1, ..., m).
‘ m
(ii) P has index at least 5 (1—c¢) at (o, ..., o) with respect to (ry, ..., I'y)-
(iii) H(P) < B "™ where B = B ().

Here H (P) is the height of P, i.e. the maximum of the absolute values
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Iy
of its coefficients. By virtue of (ii) the average of r—l(hzl, ..., m) when
h

1 C
PlLesim) (q o) # 0 is at least :—2(1—8), which is rather better than

1

Lo ¥ we had in the proof of Liouville’s Theorem.
r )

To prove the lemma we put

Fm

rl i B
P(xgy o Xp) = O e 3 Cgs comsJ) X1 eee X
j1=0  Jjm=0
The N = (r{+1) ... (r,,+1) coeflicients C (ji, ..., /,,) are unknown integers
we have to determine such that (i) and (iii) hold. The condition (ii) means
that

(3.4) PULesim) (y o) = 0
whenever
I i, m
(3.5) Ty o+l < (1),
ry F o 2

Since (3.4) is always true if i, > r, for some A, the number of non-trivial
& . . il im . ®
equations (3.4) is the number of points { —, ...,— ] in the unit cube (0=¢;,
Fq Fin

<1, ..,0Z¢,<1) with (3.5). One can show that

The number of points in the cube with (3.5)
._)

(3.6) 0

N = the total number of points in the cube

as m — oo, independently of ry, ..., ,,. This is just the law of large numbers
in probability theory, since the “independent variables” i /ry, ..., 1,/ry,

1
cach have expectation value 5 In fact an appeal to probability theory is not

necessary and a simple combinatorial argument shows that the left hand
side of (3.6) is at most 2*/2m~1/2¢71 and hence by (3.3) is at most 1/(2d).
Thus the number of non-trivial conditions (3.4) is at most N/(2d). Each
condition (3.4) is a homogeneous linear equation in the unknowns
C(jyy s Jy) With coefficients in the field Q (). (L.e. the field obtained by
adjoining o to the field Q of rationals). Hence each condition follows
from d linear homogeneous equations whose coefficients are rational
integers. Hence altogether our unknown integers C(j4, ..., j,,) have to satisfy
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at most N/2 linear homogeneous equations with rational integer coefficients.
But it is known that any system of linear homogeneous equations with

: : : . ]
rational integer coefficients where the number of equations is at most 5

times the number of unknowns has a non-trivial solution in rational integers
which are bounded in terms of the size of the coefficients. Carrying out all
the estimates one sees that (iii) can be satisfied in addition to (i1).

3.4. We now turn to step

(b) It can be shown that if &, ey P are solutions of

ql pm

p
a-—-.__
q

2

and if some further conditions are satisfied, then P (ﬁ, .. Bﬂ) = (. Infact
ql dm

a little more 1s true:

g — T8 g 2% (h=1,2,...,m)  where

qn

LemMA 3B. Suppose

1
0<d< b Suppose 0 < & < 0/20 and suppose that ¢q, = c, («, 0)
(h=1,..,m)and

(3.7 rylogg, =rlogg, =(1+erylogg, (h=1,....,m).

Now if all the conditions of Lemma 3A are satisfied and if P is the polynomial
of that lemma, then the index of P at <&, o &3) with respect to (ry, ..., 1)
q4 dm

is = em.

To prove this lemma we shall use Taylor’s formula:

. . ' rm i1 . im pliyemim) ... 0
P2t - 3B (B o(fma)
qi dm i1=0  ip=0\{q1 dm Ly P Im !

B l. ] I
By (ii) of Lemma 3A only terms with S+
ry r

non-zero. For these terms we have




— 203 —
<g—1— —O()I1 ...(—piﬂ—OC)Im é ql_(2+5)” an(2+6)1m
ql qm

— (qlrl(il/H) q rm(im/rm))_z"‘s
M m

§ ql—r1(2+5)((11/r1)+...+(im/rmn _~<_ ql—rl(2+5)%m(1—s)

- ~&)/(1 m\— (14 (3/4))
< (q;il .. q;‘lm) 2(2+5)(1 8)/( +8) < (q'il .. q:nm) ( (

by (3.7) and since 0 < & < §/20. Using this estimate as well as part (iii) of
Lemma 3A it is not hard to show that

)P(ﬂ,...,f-T)
ql qm

if g, = co (o, 8) (h=1, ..., m), hence that

P<&,...,&> ~0.
ql qm

P1 pm

ql qm
the argument shows that the index with respect to (r, ..., r,,) is at least em.

<(qf ...qmn)~"

Thus the index of P at( )is positive, and a slight extension of

3.5. Finally we turn to step

(c) ‘If one could show that P(gl—, .. pm> # 0, then this would contradict
d1 dm
Lemma 3B, and this contradiction would show that the inequality (2.2) has

pl pm

QI qm
easy for m = 1 and it is rather difficult when m > 1. To get a contradiction

only finitely many solutions. But to show that P( ># 0 was very

to Lemma 3B it will suffice to show that the index of P at (pl BE) with
q4 dm
respect to (ry, ..., r,) is less than em. When m = 2 the situation is a little

simpler than in the general case. Siegel (1921a) devised an algebraic argu-
ment to deal with this case, and Schneider (1936) devised a more general
arithmetical argument. The latter argument was considerably sharpened by
Roth. The following lemma of Roth is called Roth’s Lemma.

LemMMA 3C. Suppose 0 < e < 1/12 and let m be a positive integer.
Put = 24-27" (8/12)2m—1. Let rq, ..., r, be positive integers with

L’Enseignement mathém,. t. XVII, fasc. 3-4. 15
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(3.8) ' WF, = i (h=1,...,m—1).
Let —, ...,— be rationals in their lowest terms with positive denominators
d1 qm

and with q% =z 2°™ and qj* > qi}. Further let P (x4, ..., x,)) be apolynomial
with rational integer coefficients, not identically zero, of degree < r, in
x,(h=1, .., m) and with H(P) < g{"'. Then the index of P at

p p . .
(—1, ,—'11-) with respect to (ry, ..., 1,) is < e.
ql Qm

The proof of this lemma is ingenious and complicated and will not be
given here. It uses “ generalized Wronskians ”, i.e. determinants whose
entries are mixed partial derivatives of certain polynomials. Some condition
like (3.8) is necessary, for otherwise if m = 2, say, the polynomial
P(xy, x;) = (x{—x,)" would have an index as large as 1 at every point
(¢, O.

The lemma 1s proved by induction on m. Only the case m = 1 is simple
and will be proved here. Suppose P (x) has a zero of order / at p/q. Then

P(x) = (gx—p)'R(x)
where R (x) has rational integer coeflicients by Gauss’ Lemma. We have

ql é H(P) § qmr1 — qarl

(since w=¢ when m=1), whence //r; < &. But [/r; is the index of P at £

q
with respect to (7).

Now if there are infinitely many rationals L with (2.2), then both Lemma
q

3B and Lemma 3C can be satisfied. (One picks 0 < 6 < 1/12, then 0 < ¢

< 6/20, then m with (3.3), then rationals 2%, ..., £ with (2.2) and with

d1 dm
rapidly increasing denominators, and finally one picks ry, ..., r,). These

two lemmas together give the desired contradiction, and Roth’s Theorem
follows.

3.6. The reason why this proof is non-effective is that one needs m
very good approximations to o rather than just one, in order to get the
desired contradiction. For Thue’s and Siegel’s Theorems one needs two
such approximations. In fact Davenport (1968) found a function x, (d)
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defined for d = 3,4, ... with o (3) = 1 + /3and with | x, (d) — d | < ¢
such that for an algebraic number « of degree d and for k > k (d) there is a

. . p .
computable constant ¢, = ¢, (o, k) such that the inequality | « — = | < ¢

has at most one solution p/q with (p, g) = 1 and g > c,. Iﬂearlier Schinzel
(1967) had pointed out that this is true with x > 3.,/d/2 in place of x

> Ko (d). If dis large, then i, (d) > 3\/7/?, and hence in this case Schinzel’s
result is better than Davenport’s. Earlier Siegel (1937) and Hyyro (1964)

had shown results of this kind for numbers « of the type o = {’/ (a/b), or
rather for the corresponding Thue’s equation ax? — by? = m.

4., SOME GENERALIZATIONS OF ROTH’S THEOREM

4.1. In this section we shall discuss several generalizations of Roth’s
Theorem, but not the generalization to simultaneous approximation, which
will be taken up in §7.

The height H (f) of an algebraic number f is defined by H () = H (P),
where P is the defining polynomial of f. Roth (1955b) enunciated and
LeVeque ((1955), vol. 2, ch. 4) proved

THEOREM 4A. Let o be algebraic, K an algebraic number field and
0 > 0. There are only finitely many elements B of K with

(4.1) oo =Bl <H@B)*7°.

Neither « nor K need to be real here. When K is the field Q of rationals,
then Theorem 4A reduces to Roth’s Theorem. Since every number field
contains Q as a subfield, it follows from Dirichlet’s Theorem that the
number 2 in the exponent in (4.1) is best possible if o is real.

In fact if o and K are real, then the exponent is best possible in a some-
what less trivial sense: Suppose K is a real or complex number field of
degree 7 and f in K has degree d. Then d is a divisor of ¢. Define the field
height Hy (B) of B by Hy (f) = H(P"%), where P is the defining poly-
nomial of B. One can show (LeVeque (1955), vol. 2, ch. 4.2) that

¢; (K) H(B)'* < Hg (B) < ¢, (K) H(B)"% and hence Theorem 4A remains
true a fortiori if (4.1) is replaced by

(4.2) | =Bl <Hg(B)™27°.
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