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q*logq
has infinitely many solutions for almost all .

Given a number like \/ 2_, e, T or \?/ Z it is of interest to know whether
it behaves like almost every number. Quadratic irrationals are badly approx-
imable and hence behave like almost every number with respect to (1.8)
but not with respect to (1.9). From the known continued fraction expansion
of e it is easy to deduce that neither of the inequalities (1.8), (1.9) has

p
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q
< ¢~** has only finitely many solutions, and Wirsing (unpublished) could

infinitely many solutions if o« = e. Mahler (1953) showed that

reduce 42 to 21. The behavior of \3/ 2 and of real algebraic numbers in
general will be discussed in the next section.

2. APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS.
ROTH’S THEOREM

2.1. TueoreM 2A (Liouville 1844). Suppose o is a real algebraic
number of degree d. Then there is a constant ¢ («) ) > 0 such that
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for every rational — distinct from o.

This theorem was used by Liouville to construct transcendental numbers.

e} k
For example, put o = » 27", g (k) = 2%, p(k) = 2*' ¥ 27%'. Then
v=1 v=1

p (k) <
o — — 2—0! <2,2—(k+1)! — 2 k -—k—l.
] g (k) v=;+1 (2(9)
Hence for any d and any constant ¢ > 0 one has
q (k) q (k))*

) The constants ¢, ¢;, ¢,, ... of different subsections are independent,
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if k 1s large. By Liouville’s Theorem, o cannot be algebraic of any degree d,
and hence o is transcendental.

For the sake of later refinements we shall break the extremely simple
proof of Liouville’s Theorem into three parts (a), (b) and (c).

(a) Let P (x) be the defining polynomial of o, i.e. the polynomial of
degree d with root « which has coprime integer coefficients and a positive
leading coefficient.

(b) Taylor’s formula yields

d N 1
P(B) =| ¥ (B——cx> —PW ()| < — L
q i=1 \4 P! c(®)|q
if
P_ al £ 1
q
p p 1 . .
(c) P(=) #0, whence | P(~)| = —, and combining this with (b) we
q q q
obtain Liouville’s Theorem if L o | < 1. The Theorem is obvious if
q
LA | >1.
q

2.2. Now suppose that o is a real algebraic number of degree d and
consider the inequality

(2.1)

where z is rational with a positive denominator g. By Liouville’s Theorem
q
this inequality has only finitely many solutions if 4 > d. Thue (1908, 1909)

made the important discovery that this is still true under the weaker assump-
tion that 1 > (d/2) + 1. Then Siegel (1921a) showed that it suffices to have

u>2 \/E (Actually his result was slightly better, with a more complicated

function in place of 2\/2) These results of Thue and of Siegel will be
referred to as Thue’s Theorem and as Siegel’s Theorem. Dyson (1947)

improved pu > 2./d to u > /2d. (See also Gelfond (1952), ch. 1.) Finally
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Roth (1955a) showed that (2.1) with ¢ > 2 has only finitely many solutions.
His result may be formulated as follows. |

THEOREM 2B.  Suppose « is a real algebraic number. Then for every 6 > 0

. . . P . .
there are only finitely many distinct rationals — with q > 0 and with

(2.2)

In view of Dirichlet’s Theorem, the exponent 2 is best possible here.
But it is conceivable that the factor ¢° could be replaced by a smaller factor.
But nothing is known in this direction. The metrical result (Theorem 1D)
suggests that

1

o — —| <
q* (logg)'*°

q

has only finitely many solutions for every positive 6. The first written account
of this conjecture appears to be in Lang (1965a).
¢ (o)

o ——| > —5 by Liouville’s
q q

Theorem (or by the fact that « is badly approximable, as was shown below
Theorem 1C). Hence for such numbers «, Liouville’s Theorem is stronger
than Roth’s Theorem. It 1s not known whether there exists an algebraic
number of degree d = 3 whose partial quotients are bounded, or whether
there exists such a number whose partial quotients are unbounded. In view
of Theorem 1D it is likely that every algebraic number of degree d = 3 has
unbounded partial quotients. Some numerical evidence for this was given by

von Neumann and Tuckerman (1955), Richtmyer et al. (1962), and Bruyno
(1964).

For real quadratic irrationals o we have

2.3. Let us see how much Roth’s Theorem tells us about the partial
quotients. In view of (1.5) it shows that

)
an+ 1 < QM

for every 6 > 0 and for n > ng («, 5). Now it is well known that ¢, = 1,
91 = a;qo + 1 and that ¢, = @,9,_; + g,-, for n = 2, hence that g,
< (a;+1)..(a,+1), and we obtain
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2.3 apry < ((a;+1)...(a,+ 1)

for every 6 > 0 and for n > n, («, §). On the other hand one has
Gn > (@,a,-1 +1) gy = (@, + 1) (@,- 1 +1))2 g, 5 > ...
> ((a,+1) ... (ag + D)/,

and this shows that the truth of (2.3) for every § > 0 and sufficiently large n
is equivalent to Roth’s Theorem. Davenport and Roth (1955) proved that
for real algebraic irrationals o one has

c(o) n

\/ logn

Further results on the continued fraction expansion of algebraic numbers
were given by Baker (1962).

logloggq, <

. .p(1) p(2) :
2.4.  Cugiani (1959) could show that if ——, ——, ... are solutions of
q(1) q(2)
o — E < q—2—20 (log log log q)—l/2
q.
with 0 < ¢ (1) < g (2) < ..., then
lo k+1
(2.4) lim sup £4q( ) =
log q (k)

Before Roth’s Theorem was known, Schneider (1936) had shown that if

1 2
B(—z , ]i(—z, ... with 0 < ¢q(1) < g(2) < ... are solutions of (2.2), then
q(1) q(2)
(2.4) holds. Schneider’s Theorem in turn is a sharpening of a similar result
of Siegel (1921b). Roth’s Theorem enables one to prove the transcendency

v

“of a wider class of numbers than Liouville’s Theorem, e.g. of &« = > 27%,

v=1
but actually this can also be done with the earlier theorem of Schneider just
mentioned.

2.5. Davenport and Roth (1955) have determined an explicit upper
bound B = B(a, §) for the number of solutions of (2.2). However, at
present one cannot give an upper bound B* = B* (a, ) for the denom-
inators g of the solutions p/q of (2.2). Hence Roth’s Theorem is “ non-
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effective ”. It is easy to see that Liouville’s Theorem is effective, but the
theorems of Thue, Siegel and Dyson are also non-effective. Some further
remarks on this question will be made in §3.6.

But effective bounds for weaker inequalities than (2.2) were given by
Baker and will be discussed in §5.

2.6. Now suppose that F(x, y) is a not identically vanishing binary
form of degree d = 3 with rational coefficients which has no multiple
factors of positive degree. Such a binary form can be factored as

F(xay) = Ll (x,y)...Ld(x,y)

where L; (x,y) = y,x + 6,y (i=1, ..., d) are linear forms whose coefficients
are real or complex algebraic numbers. Since F has no multiple factors,
any two linear forms L;, L; with i # j are linearly independent.

Let (x,y) be an integer point with F(x, y) # 0. By rearranging the
factors L, ..., L, we may assume that

O0<[Li(x, )| = ... 2[Li(x, 1.

Now if y; = 0 or if 6,/y, is rational, then it is clear that | L, (x, ») | = ¢,
with a positive ¢, independent of (x,y). If y, #0 and y = 0, then
| Ly (x,»)| = |y, | (x| +|y). Finally if y; #0, §,/y, is irrational and

X
y #0,then L, (x,y) = v,y <——oc) with « = — 6,/y,, and for every 6 > 0
y

one has | Ly (x,») | 2 c,(8)]|y|' 727 = ¢, (9) (|x[+|yp™*7° by Roth’s

Theorem. (Roth’s Theorem is trivially true if « is complex.) Therefore it is
true in general that |L, (x,»)|Z ¢, (8) (|x|+[y)™*7% with ¢, (5) > 0.

On the other hand since L,, L, are linearly independent, we have

[ Ly, 1z 2 L6 0) | 2 5L (x5 9) |+ | Ly (x, p)])
2 ¢y (Ix[+[y]),
whence
| F (e, ) 1 2 es(0)eq™ (x| + 1y 297D = ¢ (8) (x| + [y 272,
Thus the following holds.

THEOREM 2C. Suppose F (x,y) is a binary form of degree d = 3 with
rational coefficients and without multiple factors. Then for any v < d — 2
there are only finitely many integer points (x, y) with

O <[F,») [ <(x[+][yD".
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CoRrROLLARY 2D. Syppose F(x, y) is a binary form as in Theorem 2C
and suppose F (x, y) has no rational linear factor. Let G (x, y) be a polynomial
of total degree v < d — 2. Then there are only finitely many integer points
(x, y) with

(2.5) Fx,y) = G(x,).

Namely, such a form F has 0 < [F (x, y)] for any non-zero integer
point (x, ¥). We deduced Theorem 2C and its corollary from Roth’s Theo-
rem. If instead we would have used Thue’s or Siegel’s Theorem, then we
would have had to replace the condition v < d — 2 by the stronger condi-
tion v<(d2)—1or v<d-— 2\/;, respectively. In particular, Thue’s
Theorem suffices to deal with the equation

(2.6) F(x,y) =m

where m is a constant, which is often called “ Thue’s equation .

Using his (1921a) result, Siegel (1929) could classify all algebraic curves
defined over the rationals on which there are infinitely many integer points.
In particular these curves must be of genus zero.

Schinzel (1968) used this result of Siegel to prove a theorem which
implies that in Corollary 2D the assumption that v < d — 2 may be replaced
by the weaker assumption that v < d. Roth’s Theorem is not required to
obtain this sharper version of Corollary 2D.

2.7. Mabhler (1933b), (1933c) gave upper bounds for the number of
solutions of Thue’s equation (2.6). Davenport and Roth (1955) derived upper
bounds for the number of solutions of the equation (2.5) of Corollary 2D.
Siegel (1970) showed that there is an explicit such bound for Thue’s equa-
tion (2.6) which depends only on m and the degree d if F(x, y) = (ax+ By)*
+ (yx+6y)* with ad — By # 0. (In particular, every form F(x,y) of
degree d = 3 may be written in this way.) Perhaps Siegel’s conclusion is
true for arbitrary forms F'(x, y).

Mahler (1933c) gave an asymptotic formula

N (m) = ¢, (F) m*/*

for the number N (m) of solutions of l F(x,y) [ < m in coprime integers
x,y. Now let N’ (m) be the number of integers n with | n| < m which
may be represented at least once as n = F (x, y) with coprime x, y. Hooley
(see (1967) and the references given there) developed powerful analytic
methods to show that
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N'(m) = ¢, (F) m*/

if either d = 3 and the discriminant of F is not of some rather special type,
or if F(x,y) = x* + »? for some d = 3. To generalize these results to
arbitrary forms F (x, y) appears to be extremely difficult.

The methods of Thue, Siegel and Roth do not enable one to find bounds
for the size lx[ + [ yl of solutions of Thue’s equation, and hence they
provide no method to find all the solutions of such an equation. Therefore
these methods are called “ non-effective . Effective results will be discussed
in §3.

3. AN OUTLINE OF THE PROOF OF ROTH’S THEOREM

3.1. We shall follow Cassel’s rearrangement (Cassels (1957), ch. VI)
of Roth’s proof. It is easy to see that we may restrict ourselves to the case
when « is an algebraic integer of degree d > 1.

Suppose we tried to modify the proof of Liouville’s Theorem as follows.
In step (a) we pick a polynomial P (x) with rational integer coefficients which
has a root at « of order i and which has degree r. Next, in step (b) we suppose
that

(3.1)

and Taylor’s expansion

p p J1 .
P(2) = S — pW
Q=L -0 P @

r{) > g

q

yields

PO

q

< cq~*. Finally (c) we have P (E) # 0 whence
q

for all but finitely many rationals 8 Hence if (3.1) has infinitely many
- q

0

i
Hence one should try to make - as large as possible. But it is clear that
r

solutions, then ui < r or

A

U
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