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0. INTRODUCTION

Our subject is part of the more general field of diophantine approxima-
tion, i.e. the study of rational approximation to real numbers. Books on
diophantine approximation in general are due to Minkowski (1907)1),
Koksma (1936), Cassels (1957), Niven (1963) and Lang (1966b), and a
p-adic version is treated by Lutz (1955).

In the present survey we shall be concerned with the more special
problem of rational approximation to real algebraic numbers. Contribu-
tions to this problem were first made by Liouville (1844), and deep theorems
were proved among others by Thue (1908), Siegel (1921a), Roth (1955a)
and Baker (1968b). We shall also discuss the more general questions of
approximation to an algebraic number by algebraic numbers in a fixed
number field or by algebraic numbers of fixed degree, and the question of
simultaneous approximation to real algebraic numbers by rationals. As is
well known, many results on approximation to algebraic numbers have
applications to diophantine equations.

Of the books listed above, the one by Cassels (1957) has a chapter
(ch. VI) on approximation to algebraic numbers. This subject also is the
main topic in the book by Mabhler (1961) and is the topic of chapter 6 of
Le Veque (1955), of Kapitel 1 of Schneider (1957) and of chapter 6 of
Lang (1962). Also see Lang (1971) and chapter 1 of Feldman and Shidlovskii
(1967).

Until recently all the deep theorems on approximation to algebraic
numbers were obtained by the method of Thue, Siegel and Roth, and
accordingly most of the present survey is devoted to this method. In view of
Baker’s (1968b) results it is possible that the method of Gelfond and Baker
will play an increasing role in the future. Rather than attempting to give a
complete account of the literature, I tried to explain the main ideas in the
proofs of the principal theorems.

1. APPROXIMATION TO REAL NUMBERS BY RATIONALS

1.1. This section is intended for the benefit of a reader who is not
familiar with diophantine approximation, to provide a background for the

1) References are listed at the end. They are listed alphabetically by the name of the
author, by the year, and finally by a, b, ... if there are several works by the same author
in the same year.
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more special problem of approximation to real algebraic numbers which
will be discussed later.

TueoreM 1A (Dirichlet 1842). Suppose « is a real number and Q is
a real number greater than 1. Then there are integers p, q with

(1.1) 1<qg<Q and |ag—p| =0 ".

Let us recall the well known proof. Every real number £ may be written as

&=L+ (¢},

where [¢] is a rational integer, the integer part of &, and where { ¢}, the
fractional part of £, satisfies 0 < { £} < 1. Assume now that Q is an integer.
The O + 1 numbers

0,1,{a},{20},...{(Q—1)a}

lie in the unit-interval 0 < ¢ < 1; hence there are two of these numbers
whose difference has absolute value at most Q1. Thus there are integers
Fi, gy 81, S, With 0 =7, £ Q — 1 (i=1,2) and r, # r, such that

| (rie—s1) — (rp0—s,) | = Q_1 .

If, say, r{ > r,, then p = s, — s, and ¢ = r; — r, satisfy (1.1). This
proves Dirichlet’s Theorem when Q is an integer.

Now suppose that Q is not an integer. Since Q" = [Q] + 1 is an integer,
there are integers p, ¢ with 1 < ¢ < Q' and |ag — p| < Q'™*, whence
withl1 <g< Qand|ag —p| < Q™%

1.2. The greatest common factor of integers p, ¢ will be denoted by

(p, g)- It is clear that in Dirichlet’s Theorem one could stipulate that (p, q)
= 1. The inequalities (1.1) in Dirichlet’s Theorem yield

(1.2)

COROLLARY 1B. Suppose that o is irrational. Then there exist infinitely
many rationals p/q with (p, q) = 1 and with (1.2).

For since o is irrational, the inequality l og — p ] < Q07 'in (1.1) can
for fixed integers p, ¢ with ¢ # 0 hold only for bounded values of 0, say
for 0 = Qo (p, ). Hence as Q — oo, there will be infinitely many distinct
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pairs of coprime integers p, ¢ in Dirichlet’s Theorem, giving rise to infinitely
many rationals p/q with (1.2).

One should remark that this corollary does not hold for rationals a.
Forif o = a/band if p/q # a/b, then

p L, 1
a——| = |bq| >q—21f|q|>lbl.

Corollary 1B can be strengthened:

THeoreMm 1C (Hurwitz 1891).

(i) For every irrational o there are infinitely many rationals plq with
(p, q) = 1 and with

1
VAl

(11) This would no longer be true if \/ 5 were replaced by a larger constant.

(1.3)

o ——| <

q

The second statement can easily be proved: Suppose « is a real quadratic
irrational and suppose there are infinitely many rationals p/q with

(1.4)

Let P (x) = ax® + bx + c¢ be a polynomial with rational integer coefficients
and with root «; then P(x) = a(x—a) (x—a') where o’ 1s the conjugate
of o. For every p/q with (1.4) we have

1 p p p 1 p
—<|PE) =la—=||a(a =) | < — |a(a —a+a——
<\/5+ 4]

Aq2 A2q4’

where D = b? — dac = a* (a—a')? is the discriminant of P. It follows that

— 5 ]
A =< \/D. In the special case when o = v S P(x) =x*+x—1,

we have D = 5 whence 4 < /5.

Note that —= is a quadratic irrationality. It can be shown that the

J5
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numbers o for which this constant is best possible are certain numbers in

the quadratic number field generated by \/ 5. .
One calls an irrational number o badly approximable if there 1s a ¢

= ¢ (2) > 0 such that

p
a—__

q

¢ (o)
>

2

q

for every rational p/g. We have just seen that the quadratic irrationals are
badly approximable.

1.3. Certain results on diophantine approximation are closely related
to continued fractions. Continued fractions are discussed in the books
mentioned at the beginning, and a fuller account of them is given in Perron
(1954). The rational function

1
4+ —

a,

will be denoted by [ag, a;, ..., a,] and will be called a continued fraction.
Every rational number r may be written r = [ay, a4, ..., a,] where n = 0
and where a, is an integer and a, ..., a, are positive integers. For every
irrational o there exist unique rational integers ag, a,, d,, ... such that
a,, a,, ... are positive and lim [a,, a4, ..., a,] = o. The integers a,, a,, a,, ...

n- o0
are called the partial quotients of the continued fraction expansion of «.
Define coprime integers p,, q, with g, > 0 by p,/q, = la,, ay, ..., a,]. The
rationals p,/g, converge to o, and they are called the convergents to o.
These convergents are important for diophantine approximation because
it can easily be shown that

1

2
an +1 Qn

(1.5)

1 \ Py
@ —— <

<
(an+ 1 + 2) qi21 dn
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Dn
a..__.__.

dn

for every n = 0, which implies in particular that

because it was shown by Legendre that if

then 4 is necessarily a convergent to o. It follows that « is badly approx-
q

imable precisely if the partial quotients of the continued fraction expansion
of a are bounded. In particular, the real quadratic irrationals have bounded
partial quotients. (In fact it is well known that these numbers have a * perio-
dic ” continued fraction expansion.)

1
1.4. We have seen that for certain irrationals « the number 7z in

v

(1.3) cannot be replaced by a smaller factor. But for most irrationals « the
inequality (1.3) can be improved:

THeoreM 1D (Khintchine 1926b). Suppose ¥ (q) is a positive, non-

increasing function defined for q = 1, 2, ... . Consider the inequality
(1.6) l r| V@
q q

and the sum
(1.7) Y.

If the sum is convergent, then (1.6) has only finitely many solutions in rationals
plg with ¢ > 0 for almost all a (in the sense of Lebesgue measure). If the
sum is divergent, then (1.6) has infinitely many solutions for almost all a.

In particular, for every é > 0, the inequality

|

2+

q

<

a.___.

(1.8)
q

has only finitely many solutions for almost all «, but




<

(1.9)

a___

q*logq
has infinitely many solutions for almost all .

Given a number like \/ 2_, e, T or \?/ Z it is of interest to know whether
it behaves like almost every number. Quadratic irrationals are badly approx-
imable and hence behave like almost every number with respect to (1.8)
but not with respect to (1.9). From the known continued fraction expansion
of e it is easy to deduce that neither of the inequalities (1.8), (1.9) has

p
’/-L' —_—
q
< ¢~** has only finitely many solutions, and Wirsing (unpublished) could

infinitely many solutions if o« = e. Mahler (1953) showed that

reduce 42 to 21. The behavior of \3/ 2 and of real algebraic numbers in
general will be discussed in the next section.

2. APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS.
ROTH’S THEOREM

2.1. TueoreM 2A (Liouville 1844). Suppose o is a real algebraic
number of degree d. Then there is a constant ¢ («) ) > 0 such that

¢ (o)

d

q

b
d—._

4

>

: r . .
for every rational — distinct from o.

This theorem was used by Liouville to construct transcendental numbers.

e} k
For example, put o = » 27", g (k) = 2%, p(k) = 2*' ¥ 27%'. Then
v=1 v=1

p (k) <
o — — 2—0! <2,2—(k+1)! — 2 k -—k—l.
] g (k) v=;+1 (2(9)
Hence for any d and any constant ¢ > 0 one has
q (k) q (k))*

) The constants ¢, ¢;, ¢,, ... of different subsections are independent,




194 —

if k 1s large. By Liouville’s Theorem, o cannot be algebraic of any degree d,
and hence o is transcendental.

For the sake of later refinements we shall break the extremely simple
proof of Liouville’s Theorem into three parts (a), (b) and (c).

(a) Let P (x) be the defining polynomial of o, i.e. the polynomial of
degree d with root « which has coprime integer coefficients and a positive
leading coefficient.

(b) Taylor’s formula yields

d N 1
P(B) =| ¥ (B——cx> —PW ()| < — L
q i=1 \4 P! c(®)|q
if
P_ al £ 1
q
p p 1 . .
(c) P(=) #0, whence | P(~)| = —, and combining this with (b) we
q q q
obtain Liouville’s Theorem if L o | < 1. The Theorem is obvious if
q
LA | >1.
q

2.2. Now suppose that o is a real algebraic number of degree d and
consider the inequality

(2.1)

where z is rational with a positive denominator g. By Liouville’s Theorem
q
this inequality has only finitely many solutions if 4 > d. Thue (1908, 1909)

made the important discovery that this is still true under the weaker assump-
tion that 1 > (d/2) + 1. Then Siegel (1921a) showed that it suffices to have

u>2 \/E (Actually his result was slightly better, with a more complicated

function in place of 2\/2) These results of Thue and of Siegel will be
referred to as Thue’s Theorem and as Siegel’s Theorem. Dyson (1947)

improved pu > 2./d to u > /2d. (See also Gelfond (1952), ch. 1.) Finally
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Roth (1955a) showed that (2.1) with ¢ > 2 has only finitely many solutions.
His result may be formulated as follows. |

THEOREM 2B.  Suppose « is a real algebraic number. Then for every 6 > 0

. . . P . .
there are only finitely many distinct rationals — with q > 0 and with

(2.2)

In view of Dirichlet’s Theorem, the exponent 2 is best possible here.
But it is conceivable that the factor ¢° could be replaced by a smaller factor.
But nothing is known in this direction. The metrical result (Theorem 1D)
suggests that

1

o — —| <
q* (logg)'*°

q

has only finitely many solutions for every positive 6. The first written account
of this conjecture appears to be in Lang (1965a).
¢ (o)

o ——| > —5 by Liouville’s
q q

Theorem (or by the fact that « is badly approximable, as was shown below
Theorem 1C). Hence for such numbers «, Liouville’s Theorem is stronger
than Roth’s Theorem. It 1s not known whether there exists an algebraic
number of degree d = 3 whose partial quotients are bounded, or whether
there exists such a number whose partial quotients are unbounded. In view
of Theorem 1D it is likely that every algebraic number of degree d = 3 has
unbounded partial quotients. Some numerical evidence for this was given by

von Neumann and Tuckerman (1955), Richtmyer et al. (1962), and Bruyno
(1964).

For real quadratic irrationals o we have

2.3. Let us see how much Roth’s Theorem tells us about the partial
quotients. In view of (1.5) it shows that

)
an+ 1 < QM

for every 6 > 0 and for n > ng («, 5). Now it is well known that ¢, = 1,
91 = a;qo + 1 and that ¢, = @,9,_; + g,-, for n = 2, hence that g,
< (a;+1)..(a,+1), and we obtain
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2.3 apry < ((a;+1)...(a,+ 1)

for every 6 > 0 and for n > n, («, §). On the other hand one has
Gn > (@,a,-1 +1) gy = (@, + 1) (@,- 1 +1))2 g, 5 > ...
> ((a,+1) ... (ag + D)/,

and this shows that the truth of (2.3) for every § > 0 and sufficiently large n
is equivalent to Roth’s Theorem. Davenport and Roth (1955) proved that
for real algebraic irrationals o one has

c(o) n

\/ logn

Further results on the continued fraction expansion of algebraic numbers
were given by Baker (1962).

logloggq, <

. .p(1) p(2) :
2.4.  Cugiani (1959) could show that if ——, ——, ... are solutions of
q(1) q(2)
o — E < q—2—20 (log log log q)—l/2
q.
with 0 < ¢ (1) < g (2) < ..., then
lo k+1
(2.4) lim sup £4q( ) =
log q (k)

Before Roth’s Theorem was known, Schneider (1936) had shown that if

1 2
B(—z , ]i(—z, ... with 0 < ¢q(1) < g(2) < ... are solutions of (2.2), then
q(1) q(2)
(2.4) holds. Schneider’s Theorem in turn is a sharpening of a similar result
of Siegel (1921b). Roth’s Theorem enables one to prove the transcendency

v

“of a wider class of numbers than Liouville’s Theorem, e.g. of &« = > 27%,

v=1
but actually this can also be done with the earlier theorem of Schneider just
mentioned.

2.5. Davenport and Roth (1955) have determined an explicit upper
bound B = B(a, §) for the number of solutions of (2.2). However, at
present one cannot give an upper bound B* = B* (a, ) for the denom-
inators g of the solutions p/q of (2.2). Hence Roth’s Theorem is “ non-
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effective ”. It is easy to see that Liouville’s Theorem is effective, but the
theorems of Thue, Siegel and Dyson are also non-effective. Some further
remarks on this question will be made in §3.6.

But effective bounds for weaker inequalities than (2.2) were given by
Baker and will be discussed in §5.

2.6. Now suppose that F(x, y) is a not identically vanishing binary
form of degree d = 3 with rational coefficients which has no multiple
factors of positive degree. Such a binary form can be factored as

F(xay) = Ll (x,y)...Ld(x,y)

where L; (x,y) = y,x + 6,y (i=1, ..., d) are linear forms whose coefficients
are real or complex algebraic numbers. Since F has no multiple factors,
any two linear forms L;, L; with i # j are linearly independent.

Let (x,y) be an integer point with F(x, y) # 0. By rearranging the
factors L, ..., L, we may assume that

O0<[Li(x, )| = ... 2[Li(x, 1.

Now if y; = 0 or if 6,/y, is rational, then it is clear that | L, (x, ») | = ¢,
with a positive ¢, independent of (x,y). If y, #0 and y = 0, then
| Ly (x,»)| = |y, | (x| +|y). Finally if y; #0, §,/y, is irrational and

X
y #0,then L, (x,y) = v,y <——oc) with « = — 6,/y,, and for every 6 > 0
y

one has | Ly (x,») | 2 c,(8)]|y|' 727 = ¢, (9) (|x[+|yp™*7° by Roth’s

Theorem. (Roth’s Theorem is trivially true if « is complex.) Therefore it is
true in general that |L, (x,»)|Z ¢, (8) (|x|+[y)™*7% with ¢, (5) > 0.

On the other hand since L,, L, are linearly independent, we have

[ Ly, 1z 2 L6 0) | 2 5L (x5 9) |+ | Ly (x, p)])
2 ¢y (Ix[+[y]),
whence
| F (e, ) 1 2 es(0)eq™ (x| + 1y 297D = ¢ (8) (x| + [y 272,
Thus the following holds.

THEOREM 2C. Suppose F (x,y) is a binary form of degree d = 3 with
rational coefficients and without multiple factors. Then for any v < d — 2
there are only finitely many integer points (x, y) with

O <[F,») [ <(x[+][yD".
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CoRrROLLARY 2D. Syppose F(x, y) is a binary form as in Theorem 2C
and suppose F (x, y) has no rational linear factor. Let G (x, y) be a polynomial
of total degree v < d — 2. Then there are only finitely many integer points
(x, y) with

(2.5) Fx,y) = G(x,).

Namely, such a form F has 0 < [F (x, y)] for any non-zero integer
point (x, ¥). We deduced Theorem 2C and its corollary from Roth’s Theo-
rem. If instead we would have used Thue’s or Siegel’s Theorem, then we
would have had to replace the condition v < d — 2 by the stronger condi-
tion v<(d2)—1or v<d-— 2\/;, respectively. In particular, Thue’s
Theorem suffices to deal with the equation

(2.6) F(x,y) =m

where m is a constant, which is often called “ Thue’s equation .

Using his (1921a) result, Siegel (1929) could classify all algebraic curves
defined over the rationals on which there are infinitely many integer points.
In particular these curves must be of genus zero.

Schinzel (1968) used this result of Siegel to prove a theorem which
implies that in Corollary 2D the assumption that v < d — 2 may be replaced
by the weaker assumption that v < d. Roth’s Theorem is not required to
obtain this sharper version of Corollary 2D.

2.7. Mabhler (1933b), (1933c) gave upper bounds for the number of
solutions of Thue’s equation (2.6). Davenport and Roth (1955) derived upper
bounds for the number of solutions of the equation (2.5) of Corollary 2D.
Siegel (1970) showed that there is an explicit such bound for Thue’s equa-
tion (2.6) which depends only on m and the degree d if F(x, y) = (ax+ By)*
+ (yx+6y)* with ad — By # 0. (In particular, every form F(x,y) of
degree d = 3 may be written in this way.) Perhaps Siegel’s conclusion is
true for arbitrary forms F'(x, y).

Mahler (1933c) gave an asymptotic formula

N (m) = ¢, (F) m*/*

for the number N (m) of solutions of l F(x,y) [ < m in coprime integers
x,y. Now let N’ (m) be the number of integers n with | n| < m which
may be represented at least once as n = F (x, y) with coprime x, y. Hooley
(see (1967) and the references given there) developed powerful analytic
methods to show that
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N'(m) = ¢, (F) m*/

if either d = 3 and the discriminant of F is not of some rather special type,
or if F(x,y) = x* + »? for some d = 3. To generalize these results to
arbitrary forms F (x, y) appears to be extremely difficult.

The methods of Thue, Siegel and Roth do not enable one to find bounds
for the size lx[ + [ yl of solutions of Thue’s equation, and hence they
provide no method to find all the solutions of such an equation. Therefore
these methods are called “ non-effective . Effective results will be discussed
in §3.

3. AN OUTLINE OF THE PROOF OF ROTH’S THEOREM

3.1. We shall follow Cassel’s rearrangement (Cassels (1957), ch. VI)
of Roth’s proof. It is easy to see that we may restrict ourselves to the case
when « is an algebraic integer of degree d > 1.

Suppose we tried to modify the proof of Liouville’s Theorem as follows.
In step (a) we pick a polynomial P (x) with rational integer coefficients which
has a root at « of order i and which has degree r. Next, in step (b) we suppose
that

(3.1)

and Taylor’s expansion

p p J1 .
P(2) = S — pW
Q=L -0 P @

r{) > g

q

yields

PO

q

< cq~*. Finally (c) we have P (E) # 0 whence
q

for all but finitely many rationals 8 Hence if (3.1) has infinitely many
- q

0

i
Hence one should try to make - as large as possible. But it is clear that
r

solutions, then ui < r or

A

U
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i1 i 1
always - < 7 and that - = 7 if P (x) is a power of the defining polynomial
r r

of o. Hence this method only gives u < d, i.e. nothing better than Liouville’s

result.

3.2. In order to improve on this estimate, Thue and Siegel use a poly-
nomial P (x,, x,) in two variables, and Schneider (1936) and Roth use a
polynomial P (x,, ..., x,,) in many variables. It is necessary to define the
order of vanishing of P (x4, ..., X,,) at a given point (¢, ..., £,,). The simplest
definition would be to take the smallest value of 7, + ... + i, for which the
mixed partial derivative

(3.2) PULeim) (g E Y £ ().

But it is necessary to study polynomials P (x,, ..., x,,) which have rather
different degrees in x4, ..., x,,, and hence it will be better to attach different
weights to the integers iy, ..., i,, in (3.2). Thus Roth defines the index of
Pat(&y, ..., £,) with respect to a given m-tuple of positive integers (ry, ..., ¥',)
as the least value of

Il
e

for which (3.2) holds, if P % 0, and as + oo if P

3.3. The steps (a), (b), (c) in the proof of Liouville’s Theorem are now
replaced by new steps (a), (b), (¢).

(a) LemMA 3A. Suppose o is an algebraic integer of degree d > 1.

Suppose ¢ > 0 and m is an integer with
(3.3) m > 8d* &7 2.

Letry, ..., 1, be positive integers. Then there is a polynomial P (x4, ..., x,,) £ 0
with rational integer coefficients such that

(1) P has degree at most ry, in x, (h=1, ..., m).
‘ m
(ii) P has index at least 5 (1—c¢) at (o, ..., o) with respect to (ry, ..., I'y)-
(iii) H(P) < B "™ where B = B ().

Here H (P) is the height of P, i.e. the maximum of the absolute values

oA AT

I

e e
5 S "

el
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Iy
of its coefficients. By virtue of (ii) the average of r—l(hzl, ..., m) when
h

1 C
PlLesim) (q o) # 0 is at least :—2(1—8), which is rather better than

1

Lo ¥ we had in the proof of Liouville’s Theorem.
r )

To prove the lemma we put

Fm

rl i B
P(xgy o Xp) = O e 3 Cgs comsJ) X1 eee X
j1=0  Jjm=0
The N = (r{+1) ... (r,,+1) coeflicients C (ji, ..., /,,) are unknown integers
we have to determine such that (i) and (iii) hold. The condition (ii) means
that

(3.4) PULesim) (y o) = 0
whenever
I i, m
(3.5) Ty o+l < (1),
ry F o 2

Since (3.4) is always true if i, > r, for some A, the number of non-trivial
& . . il im . ®
equations (3.4) is the number of points { —, ...,— ] in the unit cube (0=¢;,
Fq Fin

<1, ..,0Z¢,<1) with (3.5). One can show that

The number of points in the cube with (3.5)
._)

(3.6) 0

N = the total number of points in the cube

as m — oo, independently of ry, ..., ,,. This is just the law of large numbers
in probability theory, since the “independent variables” i /ry, ..., 1,/ry,

1
cach have expectation value 5 In fact an appeal to probability theory is not

necessary and a simple combinatorial argument shows that the left hand
side of (3.6) is at most 2*/2m~1/2¢71 and hence by (3.3) is at most 1/(2d).
Thus the number of non-trivial conditions (3.4) is at most N/(2d). Each
condition (3.4) is a homogeneous linear equation in the unknowns
C(jyy s Jy) With coefficients in the field Q (). (L.e. the field obtained by
adjoining o to the field Q of rationals). Hence each condition follows
from d linear homogeneous equations whose coefficients are rational
integers. Hence altogether our unknown integers C(j4, ..., j,,) have to satisfy
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at most N/2 linear homogeneous equations with rational integer coefficients.
But it is known that any system of linear homogeneous equations with

: : : . ]
rational integer coefficients where the number of equations is at most 5

times the number of unknowns has a non-trivial solution in rational integers
which are bounded in terms of the size of the coefficients. Carrying out all
the estimates one sees that (iii) can be satisfied in addition to (i1).

3.4. We now turn to step

(b) It can be shown that if &, ey P are solutions of

ql pm

p
a-—-.__
q

2

and if some further conditions are satisfied, then P (ﬁ, .. Bﬂ) = (. Infact
ql dm

a little more 1s true:

g — T8 g 2% (h=1,2,...,m)  where

qn

LemMA 3B. Suppose

1
0<d< b Suppose 0 < & < 0/20 and suppose that ¢q, = c, («, 0)
(h=1,..,m)and

(3.7 rylogg, =rlogg, =(1+erylogg, (h=1,....,m).

Now if all the conditions of Lemma 3A are satisfied and if P is the polynomial
of that lemma, then the index of P at <&, o &3) with respect to (ry, ..., 1)
q4 dm

is = em.

To prove this lemma we shall use Taylor’s formula:

. . ' rm i1 . im pliyemim) ... 0
P2t - 3B (B o(fma)
qi dm i1=0  ip=0\{q1 dm Ly P Im !

B l. ] I
By (ii) of Lemma 3A only terms with S+
ry r

non-zero. For these terms we have
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<g—1— —O()I1 ...(—piﬂ—OC)Im é ql_(2+5)” an(2+6)1m
ql qm

— (qlrl(il/H) q rm(im/rm))_z"‘s
M m

§ ql—r1(2+5)((11/r1)+...+(im/rmn _~<_ ql—rl(2+5)%m(1—s)

- ~&)/(1 m\— (14 (3/4))
< (q;il .. q;‘lm) 2(2+5)(1 8)/( +8) < (q'il .. q:nm) ( (

by (3.7) and since 0 < & < §/20. Using this estimate as well as part (iii) of
Lemma 3A it is not hard to show that

)P(ﬂ,...,f-T)
ql qm

if g, = co (o, 8) (h=1, ..., m), hence that

P<&,...,&> ~0.
ql qm

P1 pm

ql qm
the argument shows that the index with respect to (r, ..., r,,) is at least em.

<(qf ...qmn)~"

Thus the index of P at( )is positive, and a slight extension of

3.5. Finally we turn to step

(c) ‘If one could show that P(gl—, .. pm> # 0, then this would contradict
d1 dm
Lemma 3B, and this contradiction would show that the inequality (2.2) has

pl pm

QI qm
easy for m = 1 and it is rather difficult when m > 1. To get a contradiction

only finitely many solutions. But to show that P( ># 0 was very

to Lemma 3B it will suffice to show that the index of P at (pl BE) with
q4 dm
respect to (ry, ..., r,) is less than em. When m = 2 the situation is a little

simpler than in the general case. Siegel (1921a) devised an algebraic argu-
ment to deal with this case, and Schneider (1936) devised a more general
arithmetical argument. The latter argument was considerably sharpened by
Roth. The following lemma of Roth is called Roth’s Lemma.

LemMMA 3C. Suppose 0 < e < 1/12 and let m be a positive integer.
Put = 24-27" (8/12)2m—1. Let rq, ..., r, be positive integers with

L’Enseignement mathém,. t. XVII, fasc. 3-4. 15
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(3.8) ' WF, = i (h=1,...,m—1).
Let —, ...,— be rationals in their lowest terms with positive denominators
d1 qm

and with q% =z 2°™ and qj* > qi}. Further let P (x4, ..., x,)) be apolynomial
with rational integer coefficients, not identically zero, of degree < r, in
x,(h=1, .., m) and with H(P) < g{"'. Then the index of P at

p p . .
(—1, ,—'11-) with respect to (ry, ..., 1,) is < e.
ql Qm

The proof of this lemma is ingenious and complicated and will not be
given here. It uses “ generalized Wronskians ”, i.e. determinants whose
entries are mixed partial derivatives of certain polynomials. Some condition
like (3.8) is necessary, for otherwise if m = 2, say, the polynomial
P(xy, x;) = (x{—x,)" would have an index as large as 1 at every point
(¢, O.

The lemma 1s proved by induction on m. Only the case m = 1 is simple
and will be proved here. Suppose P (x) has a zero of order / at p/q. Then

P(x) = (gx—p)'R(x)
where R (x) has rational integer coeflicients by Gauss’ Lemma. We have

ql é H(P) § qmr1 — qarl

(since w=¢ when m=1), whence //r; < &. But [/r; is the index of P at £

q
with respect to (7).

Now if there are infinitely many rationals L with (2.2), then both Lemma
q

3B and Lemma 3C can be satisfied. (One picks 0 < 6 < 1/12, then 0 < ¢

< 6/20, then m with (3.3), then rationals 2%, ..., £ with (2.2) and with

d1 dm
rapidly increasing denominators, and finally one picks ry, ..., r,). These

two lemmas together give the desired contradiction, and Roth’s Theorem
follows.

3.6. The reason why this proof is non-effective is that one needs m
very good approximations to o rather than just one, in order to get the
desired contradiction. For Thue’s and Siegel’s Theorems one needs two
such approximations. In fact Davenport (1968) found a function x, (d)
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defined for d = 3,4, ... with o (3) = 1 + /3and with | x, (d) — d | < ¢
such that for an algebraic number « of degree d and for k > k (d) there is a

. . p .
computable constant ¢, = ¢, (o, k) such that the inequality | « — = | < ¢

has at most one solution p/q with (p, g) = 1 and g > c,. Iﬂearlier Schinzel
(1967) had pointed out that this is true with x > 3.,/d/2 in place of x

> Ko (d). If dis large, then i, (d) > 3\/7/?, and hence in this case Schinzel’s
result is better than Davenport’s. Earlier Siegel (1937) and Hyyro (1964)

had shown results of this kind for numbers « of the type o = {’/ (a/b), or
rather for the corresponding Thue’s equation ax? — by? = m.

4., SOME GENERALIZATIONS OF ROTH’S THEOREM

4.1. In this section we shall discuss several generalizations of Roth’s
Theorem, but not the generalization to simultaneous approximation, which
will be taken up in §7.

The height H (f) of an algebraic number f is defined by H () = H (P),
where P is the defining polynomial of f. Roth (1955b) enunciated and
LeVeque ((1955), vol. 2, ch. 4) proved

THEOREM 4A. Let o be algebraic, K an algebraic number field and
0 > 0. There are only finitely many elements B of K with

(4.1) oo =Bl <H@B)*7°.

Neither « nor K need to be real here. When K is the field Q of rationals,
then Theorem 4A reduces to Roth’s Theorem. Since every number field
contains Q as a subfield, it follows from Dirichlet’s Theorem that the
number 2 in the exponent in (4.1) is best possible if o is real.

In fact if o and K are real, then the exponent is best possible in a some-
what less trivial sense: Suppose K is a real or complex number field of
degree 7 and f in K has degree d. Then d is a divisor of ¢. Define the field
height Hy (B) of B by Hy (f) = H(P"%), where P is the defining poly-
nomial of B. One can show (LeVeque (1955), vol. 2, ch. 4.2) that

¢; (K) H(B)'* < Hg (B) < ¢, (K) H(B)"% and hence Theorem 4A remains
true a fortiori if (4.1) is replaced by

(4.2) | =Bl <Hg(B)™27°.
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One can show that if both o and K are real and if o ¢ K, then there are
infinitely many f in K with

(4.3) la — Bl <es(K)Hg(B)?.

Thus the exponent on the right hand side of (4.2) is best possible. Now if o
is algebraic, then by Theorem 4A and since Hy (f) = ¢, (K) H (B)"/, the
inequality (4.3) can hold for only finitely many elements p of K of degree
d < t. Hence if « is a real algebraic number and if the field X is real, then
there are infinitely many priniitive elements f of K (i.e. elements of K
of degree t) with (4.3), i.e. with [oc — ﬁl < ¢3(K) H(B) % Hence Theo-
rem 4A remains best possible if one restricts oneself to primitive elements
p of K.

If o is a real or complex number which does not lie in a complex number
field K, then there are infinitely many f in K with

(4.4) oo = Bl <ca (K)Hg(B)™" .

We shall see in §4.4 that the exponent in (4.2) may be improvedto — 1 — §
in this case.

4.2. The field K of Theorem 4A can be enlarged to contain «, and
hence there is no loss of generality in this theorem if one assumes that
o € K. One could try to give a lower bound for [ o —f [ where both «, f
vary in K. In fact I can show (unpublished) that there is a number ¢, (d, o)
defined for d = 1, 2, ... and for 6 > 0 such that in every number field K
of degree d there are only finitely many pairs of elements «, f with

HP) >H(@" and |a—p]<HEPE *°.

For example, if 0 < § < 1, one may put ¢; = e withe, = d'°%7>, This
implies the existence of a (non-effective) constant ¢; = c3 (K, 6) such that
|l = B| > (H () H(B))">7° if either H(B) > H(@)? or if H(a)
> H (). It is conceivable that there is a ¢, = ¢4 (K, 6) > 0 such that

lo = Bl > co (H(e) H(B)*7°

for any two distinct elements o, f of K.
S. Schanuel (oral communication) also has a version of Theorem 4A

in which both « and p are allowed to vary. It should be remarked that the
inequalities of this subsection, when both « and f lie in K, would become
quite trivial if we had substituted field heights for heights. In fact it is easy
to see that
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oo — B ] > cs (K)(HK((X) Hx(ﬁ))_l

if ¢, B are distinct elements of K.

4.3. A rather different question is that of approximation to an algebraic
number o by algebraic numbers f of fixed degree d. Siegel (1921a) already
had given some estimates, and using the method of Roth, Ramachandra
(1966) had improved these estimates. Wirsing was the first to prove (but
published only in (1971)) a result in which the exponent depends on d only,
namely the following.

THEOREM 4B. Suppose o is a real or complex algebraic number and
suppose d = 1, 6 > 0. There are only finitely many (real or complex)
algebraic numbers B of degree d with

(4.5) o =Bl <H(B™*°

Wirsing’s Theorem becomes Roth’s Theorem when d = 1. As we
shall see in §7.5, the exponent — 24 — § in (4.5) may be replaced by — d
— 1 — 4. Nevertheless we shall now discuss the interesting idea underlying
Wirsing’s proof.

If one attempts to generalize Roth’s method to prove Theorem 4B,
a difficulty arises in part (b). One has to show that

Py Bn) =0

where P is a polynomial with rational integer coefficients constructed in
part (a), and where B, ..., B, are certain algebraic numbers of degree
satisfying (4.5). In general the degree of the field

Q(ﬁh "'7ﬁm)

generated by f, ..., f,, may be as large as d™.
Suppose now that this is the case. The number

(4.6) by o0, )d" 7 N (P By s )

where by, ..., b,, are the leading coefficients of the defining polynomials of
Bys -s B and where A" denotes the norm of Q (B, ..., B, over Q,isrational.
The conjugates of P (fy, ..., B,,) are P(B{Y, ..., Bim)) where 1 <i, <d
(h=1, ..., m) and where §, = B;", B>, ..., Bi"™ are the distinct conjugates
of f;. Since each number f, and each of its conjugates occurs at most to the
power d""', and since b8y ... B{® is an algebraic integer if [y, ..., I, are
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distinct (see Schneider (1957), Hilfssatz 17 or LeVeque (1955), vol. 2, p. 64),
thenumber (4.6)is arationalinteger. One canestimatea factor P (B{V, ..., piim))
of (4.6) well only if many of the superscripts i, ..., i,, equal 1. Wirsing in his

m
proof used the fact that for most of the d™ factors, about ] of these super-

scripts equal 1. This enabled him to show that under suitable conditions the
number (4.6) has absolute value less than 1, and hence is zero.

4.4. Let K be a number field of degree # and let a4, ..., «, be arbitrary
real or complex algebraic numbers. For f € K, Mahler puts

) =TI min(1, 10—,

where B, ..., B are the conjugates of B corresponding to the conjugates
oV = w, ..., o of a fixed generator (i.e. primitive element) w of K.

THEOREM 4C (Mahler 1963).1) Suppose K, o, ..., &, f (p) are as above,
and suppose that 0 > 0. There are only finitely many f in K with

f(B) < Hg(B)™*°.

Since f(f) < |oc1 - ], it is easy to see that Theorem 4C sharpens
Theorem 4A. Suppose now that K is complex and that for every B of K, f®
is the complex conjugate B of B. Also suppose that «, = &;. By Theorém 4C
there are only finitely many f in K with

|y — ﬁ(l) | [ oy — ,5(2) | < HK(ﬁ)_Z_a 5
1.e. with

loy — B < Hg(B)~1 7@,

Hence if K is complex, then the exponent — 2 — 0 in (4.2) may be replaced
by — 1 — 4. It follows that in general if « is a complex (non-real) algebraic
number, then the exponent — 2 — ¢ in (4.1) may be replaced by — 1 — 6.
By (4.4) the exponent — 1 — § is best possible in this case.

Suppose f is an element of K of degree d. If b is the leading coefficient
of the defining polynomial P of f8, then ¢, = by* is the leading coefficient

1) See also Mahler (1961), Appendix C, Assertion (2.1I).




— 209 —

of the polynomial P'/? used in the definition of Hy (B). For every o n
0 <o =<1, let ¥ (o) be the class of § in K with

lco | £ Hg (B) -
Mahler (1963) proved a result which contains Theorem 4C, namely

THEOREM 4D. Suppose K, oy, ..., &, f (B), O are as above, and suppose
0 < ¢ < 1. There are only finitely many  in € (o) with

fB <HgB™ '

Of particular interest is the case when ¢ = 0, because % (0) consists
precisely of the integers of K. Therefore given an algebraic number «,
there are only finitely many integers f of K with I o — f | < H (B~ 72,
and by applying this to K and its subfields it follows that there are only
finitely many integers f§ of K with

(4.7) o = BI<HEB)'°.

The exponent — 1 — ¢ in (4.7) may be replaced by — + — 0 if o 1s complex.
Mahler also proved some “inhomogeneous” theorems, which are
contained in more recent and more general results to be stated in §7.4.

4.5. The first one to recognize the importance of p-adic diophantine
approximations was K. Mahler. He developed an extensive theory and
in particular he proved (1933a, b) the following

THEOREM 4E (Mahler (1933a). Suppose F (x, y) is a binary form as in
Theorem 2C and suppose p,, ..., p, are distinct rational primes. There are
only finitely many rational integers x, y, z{, ..., Z, with

F(x,y) = pt'...p.".

Mahler (1933c) gave an asymptotic formula for the number N (m) of
solutions of

]F(x,y)]]F(x,y)‘pl...}F(x,y)]prgm

where H , denotes the p-adic valuation. His results were generalized to
algebraic number fields by Parry (1940, 1950). For a sharper version of
Theorem 4E see Theorem 5E and the remarks below it. Using Roth’s
method, Ridout (1957) proved (but see also Schneider (1957), Satz 6) a
result which can be formulated as follows.
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THEOREM 4F. Let o be a real algebraic number distinct from zero and
let py, ..., Pyy 4y, - q, be distinct rational primes. Suppose 6 > 0. There are
only finitely many rationals p/q with

by

p=p'.pvp, q=4q".. 3¢

where ay, ..., a,, by, ..., b, are non-negative integers and where p', q' are
non-zero integers such that

1
< . 5
lp"q | |pql

(4.8)

a__
q

The case p’ = ¢’ = 1 of this theorem is due to Mahler (1936). In this
paper Mahler also proved a weaker version of Theorem 4F, of the type of
Schneider’s Theorem mentioned in §2.4. For a rather better recent estimate
in this case see Theorem 5B. Bounds for the number of solutions of inequal-
ities of the type (4.8) were given by Fraenkel (1962). More general versions
of Theorem 4F were given by Stepanov (1967) and Walliser (1969).

Now let o be a real algebraic irrational. Recall that the convergents
Pulq, to o satisfy |« — p,/q, | < g, . It follows from Mahler’s (1936) result
that the greatest prime factor of p,g, tends to infinity, and it follows from
Theorem 4F that in fact the greatest prime factor of p, as well as that of g,
tends to infinity.

Let K = Q (w) be a number field of degree . We shall recall some
well known facts about valuations of K. Suppose that ¢t = r + 2s and that
oD, ..., 0" are real and o"*D, .., 0" TSTY 0@ are complex
with o *s*7) the complex conjugate of ™9 (i=1, ..., s). Let Q be the set
consisting of the integers 1, 2, ..., ¥ + s and of the prime ideals of the ring
of integers of K. If ve€ Q, 1 £v < r + s and if « €K, then we put |o |, =
| «® | where || denotes the ordinary absolute value. Now suppose v is a

prime ideal p. The norm 4" (p) equals pN P where pis a rational prime and
where Np is a positive rational integer. If « € K, o # 0, then the fractional

ideal (x) may uniquely be written («) = p°p3? ... pi* where a, a,, ..., @, are
rational integers and where p, p,, ..., p, are distinct prime ideals. We now
, = p “and we put |0, = 0. It is clear that |of |, = ||, | B, |
and that if o # 0, then |« |, = 1 for all but finitely many v € Q. The map- '
pings o — | o |, where v € Q are all the inequivalent valuations of K, and
the Archimedean valuations are those where v = 1,2, ..., r + s. For every

put | «

v € Q, there is a completion K, of K with respect to I lv.

PSR 2o
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Put Ny=lor N,=2if1Sv=rorifr+1=v=r+s, respect-
*ively; N, was defined above when v is a prime ideal. Put || o ||, = [a[;*. It
is clear that the definition of | & |, and of || a ||, can be extended to a € K,,.
The product formula

I1 ell, =1

vef

holds for every non-zero « in K. One can show that

(4.9) c; (K)Hg () = [] max (1, {[ B 11,) = ¢2 (K) Hg (B) -

vef

THEOREM 4G. Let S be a finite subset of Q2. For each v € S, let «, be an
element of K, which is algebraic over K. For f € K put

g(B) = []min (1, [l e, =B, -

veS

Then for every 6 > 0 there are only finitely many f§ € K with

g(B) < Hg(B)™*7°.

A more general version of this theorem may be found in Mahler ((1961),
Appendix C, Assertion (2,I)). See also Lang ((1962), ch. 6). In its present
form Theorem 4G does not contain Theorem 4F, but Mahler’s generaliza-
tion of 1t does. The case of Theorem 4G when K is the field of rationals is
due to Ridout (1958). It may be seen that Mahler’s Theorem 4C is equivalent
with the case of Theorem 4G when S = { 1,2,..,r+ S} , 1.e. when we are
considering only Archimedean valuations. Lang and Ridout also gave
- p-adic versions of Theorem 2C and thus sharpened Theorem 4E. Like
- Roth’s Theorem, the results discussed here do not permit to give an estimate
- for the “ size ” (say H () of the solutions, and hence they are non-effective.
- For weaker but effective p-adic results see Theorem 5B, 5D and 5E. For an
~ effective weaker version of Theorem 4G see Sprindzuk (1970b, 1971a).

5. EFFECTIVE METHODS. BAKER’S THEOREM

$ 5.1. All the results obtained by the method of Thue, Siegel and Roth
share the disadvantage that they are non-effective. Although they show that
certain inequalities and equations have only finitely many integer solutions,
. they do not give bounds for the size of the solutions and hence give no
. method to compute all the solutions.
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Effective bounds, which however do not imply Roth’s Theorem, and
which do not imply Thue’s or Siegel’s Theorem unless « is of a special type,
were given by Baker. He first used hypergeometric series (see also Siegel

(1937)) to deal with algebraic numbers of the type a = (’/5/’?. He showed
(1964a) thatif x > 2,d = 3andif g, b are integers withb > 0,a > (a—b)“'c,
where ¢; = ¢; (x,d) (i=1, 2), then all rational numbers p/q with ¢ > 0

satisfy
{31
dl — — —
b ¢

where ¢ = c; (d, k, a, b). The constants c,, ¢,, ¢; are computable here. In
another paper (1964b), Baker proved among other results that

K

> 39

— 10°6
\3/2—5} >F§—5-§.

These results of Baker improve the exponent in Liouville’s Theorem for
certain algebraic numbers. Using his estimates of linear forms whose coeffi-
cients are logarithms of algebraic numbers, Baker also proved a result
which holds for all real algebraic numbers and which improves Liouville’s
Theorem by a factor which is smaller than any positive power of g:

THEOREM 5A (Baker 1968b). Suppose o is a real algebraic number of |
degree d = 3 and suppose i« > d. Then there is a computable ¢, = c, (0, k) >0 §
such that

1/k —d

p i
o ——| > et g

for every rational £ with g > 0.
q

. . 1/k
Hence if f(q) is of smaller order of magnitude than 99 /" for some

x> d, say if f(q) < ellos? AT where § > 0, then the solutions L of
q

P

a— = | < f(q) g% must have ¢ £ q; = ¢, (a, 6) where ¢, is computable.

Recently Baker and Stark (to appear) could replace ¥ > d by the milder
condition x > 1.
Feldman (1968a, 1968b) proved a result which contains the following.
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THEOREM S5B. Suppose o is an irrational algebraic number and let

. p .
Pis .., pr be distinct rational primes. Then for all rationals ; with

p=3,q9=3(p,q =1, of the type

p ay ar
— = Dy .- DPr
q
with rational integers a, ..., a,, one has
p 1
o ——| > =
q| (logg)

where cs is an effectively computable constant depending on o, py, ..., p,.

This sharpens the case p’ = ¢’ = 1 of Theorem 4F. To prove Theo-
rem 5B, Feldman used the method of Baker and refined it in the special case
needed here. Baker’s (1966, 1967b) papers would have yielded | o — (p/q) [

> C o~ (log log )%
5.2. As for Thue’s equation, the following effective theorem holds.

THEOREM 5C (Baker 1968b, 1968c). Suppose the form F (x, y) in Thue’s
equation

(5.1) F(x,y) = m

is of degree d = 3, it has rational integer coefficients and is irreducible over
the rationals. Then every integer solution (x, y) of this equation satisfies

max (|x/, [y]) < exp (dH) D + (log m)**+2),
where H is the height of F.

Baker also gave explicit bounds for the solutions of elliptic and hyper-
elliptic equations (1968c, 1968d, 1969) and Baker and Coates (1970) did
the same for equations which define curves of genus 1. Vinogradov and
Sprindzuk (1968), Coates (1969, 1970a, 1970b) and Sprindzuk (1970b) used
Baker’s method to prove effective p-adic theorems.

Sprindzuk (1969, 1970a) used a p-adic method for estimating the size of
the integer solutions x, y, z,, ..., z, of the equation

(5.2)  F(x,y) = mpi'...py”  (x,y) = 1,2z, 20,...,z
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where F'(x, y) is an irreducible form of degree d = 3 and where p, ..., p,
are rational primes. In (1970b) he improved these results. He defined
exceptional forms F (x, y) and showed that if F (x, y) is not exceptional then
max (|x|, |y]) < ¢; exp (log |m|)* where k > 2 and ¢; = ¢, (F, , py, ..., p,)
1s an effective constant independent of m. He further improved his results in
(1971a). He showed that there are no exceptional forms of degree d = 5 and
he proved the following:

THEOREM 5D. Suppose F(x,y) is not an exceptional form. Then all

the integer solutions of (5.2) satisfy

4(d+r+1
(5.3) max ([x], |y]) <c, | m l(log log|m|)y*d+r+1) .

Here ¢, = ¢, (F, py, ..., p,) IS effective.

A full account of this work is given by Sprindzuk (to appear).

Baker (to appear) further improves this estimate for the more special
equation F(x,y) = m but for all irreducible forms F of degree d = 3
without exception, and derives the estimate

max (|x}, [y]) < es | m [P toiml,

It is almost certain that this estimate can be extended to the more general
equation (5.2). On the other hand Sprindzuk at the end of his (1971a) paper
indicates that his method can be used to replace (5.3) by the still sharper
inequality

max (|x|, [y]) <cg[m][®.

THeEOREM SE (Sprindzuk 1971b). Suppose the binary form F(x,y) of B

degree d = 3 is not exceptional. Let x,y be coprime integers with X
, l yl) > 10. Then the greatest prime factor of F(x,y) is

= max (|x
(5.4) > c¢ loglog X/logloglog X
where cq = c¢ (F) is effectively computable.

Earlier Coates (1970a) had given the lower bound c, (loglog X)!/*
which holds for all irreducible forms of degree d = 3. Probably it is possible
to generalize Baker’s paper (to appear) to the p-adic case, and then to prove
the estimate of Theorem 5E for all irreducible forms of degree d > 3.
Mahler’s Theorem 4E had said that the greatest prime factor of F(x, y)
tends to infinity as X — oo.
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Now suppose F (x) is a polynomial in one variable x with rational integer
coefficients, of degree d = 2 and with distinct roots. Keates (1969) shows
that the greatest prime factor p (x) of F(x) is > cglog log I x| if F(x)
is of some special type, e.g. if F(x) is of degree d = 2 or 3. Combining
Keates’ argument with recent papers of Baker and Sprindzuk it might be
possible to show that p (x) > cglog log | X ] in general. It is interesting that
this bound is only slightly better than the inequality (5.4) for forms in two
variables. Further references on p (x) are given in Keates (1969).

For an effective version of Theorem 4G see Sprindzuk (1970b, 1971a).

5.3. Baker derived Theorem 5A from his deep lower bounds for
expressions of the type

(5.5) | fylog oy + ... + f8,log a, |

where «y, ..., ®,, B, ..., B, are non-zero algebraic numbers such that
log ay, ..., log «, are linearly independent over the rationals, which he
developed 1n (1966, 1967b, 1967c, 1968a).

Namely, suppose | o — P is small and put f = qu — p. Let Q («) be

the field obtained by adjoining « to the field Q of rationals, let ¢¥) =
= a,a®, ..., « be the conjugates of « and for w e Q let w™®, ..., »® be
the conjugates of w corresponding to o'', ..., «”. We have

(@D —a®) O 4 (4@ — M) ) 1 (g0 _gy gk — g

for any integers j, k,/ with 1 < j, k,/ < d. Let y be an associate of f,
of the type

y =Bty

where ny, ..., 7, is a fixed set of fundamental units of Q («) and where

by, ..., b, are rational integers. We have
(2®) — ) g (2 — ) g
(oc(j) — OC(l)) 5(k) (oc(j) _ cx(”) ﬁ(k) >
whence
(5.6) ot e 1 =g
‘where

(@ — 1) 5®

_ k) o
o, = n' )/’75J)(1§S§1)’ Upp1 = (o((k)““a(l)) ))(j)
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and
o (@® — ) g
(oc(j) ——oc(”) ﬁ(k) )
Now | B | = | B | is small by hypothesis, and it is clear that there is a

conjugate f® with | B% | = ¢, (0)] g | We now put / =1 and pick
distinct from k, . The quotient | /8% | and hence |o | is then small.
Therefore the left hand side of (5.6) will be small and "

| b, logay + ... + b, loga, —loga,.;, — kni|

will be small for some integer k. Since ni = log (—1), this expression is
of the type (5.5). One can choose the associate y of f such that all the
quotients | y® /| (1<k, j<d) are bounded independently of p, g, and
hence o, . ; as well as o4, ..., o, and their conjugates are bounded. Substituting
explicit values for the estimates and using his lower bounds for (5.5), Baker
obtains a contradiction if § = ga — p is too small, and thereby he proves
Theorem 5A.

A more quantitative discussion of this argument as it applies in the
proof of Theorem 5C is given by Baker (1971). There is an anticipation of the
argument at the end of Gelfond’s (1952) book. Gelfond dealt with certain
cubic Thue equations F (x, y) = 1 and pointed out that a lower bound for
(5.5) (which then was not known) would provide upper bounds for the size
of solutions of these equations.

6. SIMULTANEOUS APPROXIMATION TO REAL NUMBERS BY RATIONALS

6.1. In this section we shall provide the background for the more
special problem of simultaneous approximation to real algebraic numbers,
which will be discussed in §7. Using the same general principles that were
used in the proof of Theorem 1A and its corollary, Dirichlet (1842) proved
the following two theorems and their corollaries.

THEOREM 6A. Let oy, ..., o; be real numbers and suppose Q is an integer
greater than 1. Then there exist integers g, py, ..., p; With

6.1) 1=£qg<@Q" and |ag—-p|=Q " (=1,..,D.
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COROLLARY 6B. Suppose at least one of ay, ..., o, is irrational. Then
there are infinitely many rational I-tuples (p/q, ..., p)/q) with ¢ >0 and
(q, pys - p) ¥ = 1 and such that

Di
O(L-——~

q

(6.2) <qlTam o (i=1,..,]).

The restriction in Theorem 6A that Q is an integer can be removed by
using a slightly different proof. Essentially the theorem says that if
g, Oq, ..., ®; are real numbers, not all zero, then there exist non-zero integer
(I+1)-tuples (q¢, py, ..., p;) Which are fairly proportional to (o, aq, ..., ;).
Put differently, it says that if («y, ¢y, ..., &;) is @ non-zero vector in (/4 1)-
dimensional space, then there are non-zero integer vectors in that space
whose direction is fairly close to that of (ag, oy, ..., &;).

THEOREM 6C. Suppose oy, ..., o, and Q are as in Theorem 6A. Then
there exist integers ¢y, ..., q,, p with

1 < max (lg,l, ... lg,)) < Q' and

(6.3) _
logy + oo Foyq +pl S 070

COROLLARY 6D. Suppose 1, oy, ..., o, are linearly independent over the
rationals. Then there are infinitely many (I+1)-tuples of coprime integers
G1s -y 41, P With ¢ = max (]q1 y ey lqll) > 0 and with

(6.4) |otgy + oo +oyq +pl <q7h.

Again the restriction in Theorem 6C that Q is an integer can be removed.
A geometric interpretation is that if we have a hyperplane in (/+ 1)-dimen-
sional space defined by an equation a«yxy + a;x; + ... + o,x; = 0, then
there are integer points (p, gy, ..., ¢;) which almost satisfy this equation
and which therefore in some sense are fairly close to the hyperplane.

6.2. Let us say that (o4, ..., o)) is badly approximable of the first type
if Corollary 6B cannot be improved by an arbitrary factor, i.e. if there is a
constant ¢ = ¢ («y, ..., ;) > 0 such that

_n
q

Pi

oy ——

q

3 seey

>> cq=1=am

1) l.e. the greatest common divisor of G, D1y o5 D)
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for every rational /-tuple (p,/q, ..., p,/q). Let us say that («, ..., &) is very
well approximable of the first type if the exponent in Corollary 6B can be
improved, i.e. if there is a 6 = d (a4, ..., «;) > 0 such that the system of
inequalities

Di
O(i__

q

< g tmam-e (i=1,....])

has infinitely many solutions (p,/q, ..., p,/q). Similarly we shall say that
(atyy ..o ) 18 badly approximable of the second type if there is a (¢’
= ¢’ (aq, ..., «;) > 0 such that

longy + .o + g +p| >c'qg”

for any integers ¢, ..., ¢, p with ¢ = max (|¢], ..., |¢,)) > 0, and that
it is very well approximable of the second type if there is a 6’ = d' («y, ..., &)
> 0 such that the inequality

logy + o g +p| <q”
has infinitely many solutions.

Theorems 6A and 6C and their corollaries are usually considered dual
to each other, and usually if one has a refinement of one of them one can
prove a refinement of the other. In fact Khintchine (1925, 1926a) proved a
transference principle which contains the following theorem as a special case.

THEOREM OE. An [-tuple (a4, ..., a,) is badly approximable of the first
type if and only if it is badly approximable of the second type. It is very well
approximable of the first type precisely if it is very well approximable of the
second type.

The first of the four assertions of this theorem had earlier been proved
by Perron (1921). In view of the theorem we may speak of badly approximable
and of very well approximable I-tuples.

6.3. Now suppose that «, ..., «; are real algebraic numbers and that
1, 2, ..., is a basis of a number field K of degree n = [/ + 1. There is
a rational integer a > 0 such that ao, ..., ax, are algebraic integers, and
hence for any rational integers ¢4, ..., ¢;, p Which are not all zero, the norm

N (a (g + ... + g, +P))
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is a non-zero rational integer and hence has absolute value at least I.
The conjugate factors af” g, + ... + «{? g, + p have absolute values
< ¢, max (|g;]- ..., |¢4), | p|), and this implies that

|oiqy + ... +uq, +pl 2 ¢ (max(lqll, ey [ s IPD)_I-

Now if |e1qy + . + g, + p| is small, then ¢ = max (g}, ..., |q/)
> c; max (|qq), .- |q4), | P]), and we get |o;qy + ... + 09, + p | = cag”h.

Thus we have

THEOREM 6F. [-tuples (o, ..., ot;) such that 1,ay, ..., o; is a basis of a
real number field, are badly approximable.

In particular badly approximable I-tuples exist, and Corollaries 6B and
6D can be improved at most by constant factors. In fact they can be
improved by respective factors c5 (/) < 1, ¢ (/) < 1, but the best value
for these factors is known only when / = 1, when ¢5 (/) = ¢4 (1) = 7€ by
Theorem 1C. It is possible but there is no strong evidence that the extreme
cases are attained by the /-tuples of Theorem 6F, and that therefore the
optimal values of ¢s (/), c¢s (/) are algebraic of degree / + 1. The latest
information on ¢5 (/), ¢s (/) may be found in Cassels (1955) and the references
given there.

The following * metrical ” theorem is a consequence of a more general
theorem of Khintchine (1926b).

THEOREM 6G. Almost no I-tuple (ay, ..., o)) (in the sense of Lebesgue
measure) is either badly approximable or very well approximable.

We saw that Corollary 6B cannot be improved by more than a constant
factor. Combining the inequalities (6.2) we obtain

[y = (puf@) [ e — (pfa) | < q7'7"

or

lg|-layqg —py]...log -pl <1,
and therefore

(6.5) lqg |- Hogll... llagll <1,

L’Enseignement mathém., t. XVII, fasc. 3. 14
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where || & H denotes the distance from a real number £ to the nearest integer.
It is possible that (6.5) can be improved by more than a constant factor if
/ > 1. This is in fact a famous conjecture of Littlewood, which is usually
stated in the form that for / > 1 and arbitrary real numbers oy, ..., o,,

liminf g || oyq ... [loug |l = 0.
g— o0
6.4. Dirichlet’s principle in the proof of Theorems 6A, 6C may be
replaced by Minkowski’s Convex Body Theorem:

THEOREM 6H (Minkowski 1896). Suppose K is a convex set in Euclidean
E", symmetric at 0 (i.e. if a point x € K then also — xe€ K) and with volume
V(K) > 2". Then K contains an integer point different from 0.

Sometimes one needs a more general version of this result in which the
set of integer points is replaced by a point lattice A. Namely, such a lattice A
is any discrete subgroup of the vector space E” which contains n linearly
independent vectors. It is easy to see that A is obtained from the set of
integer points by a non-singular linear transformation 4, and although 4
is not determined by A, the absolute value of the determinant of A is. This
absolute value is called the determinant of the lattice A4 and will be denoted by
d (A). Theorem 6H remains true if the integer points are replaced by a
lattice A and if the inequality V' (K) > 2" is replaced by V(K) > 2"d(A.)

A special case of Theorem 6H is when K is a parallelepiped given by
inequalities

(6.6) | L,(x)| < R, (i=1,...,n)

where L; (X) = ¢;1x; + ... + ¢;.x, (i=1, ..., n) are linear forms of deter-
minant 1 and where the R,’s are positive constants with R, R, ... R, > 1.
Continuity arguments show that the conclusion is still trueif R, R, ... R, =1
and if one of the inequalities in (6.6) is replaced by <. Thus we have

THEOREM 6] (Minkowski’s Linear Forms Theorem). Suppose L., ..., L,
are linear forms with determinant 1 and suppose that R, ..., R, are positive
with R, ... R, = 1. There is an integer point x # 0 with

LX) =Ry, [ LX) [ <Ry ooy [ LX) | <R,.

Now suppose/ = 1l and putn = [/ + 1, and for vectors x = (g, py, ..., P))
put L, (x) = a,q — py» -y L (X) = 00,9 — p,;, but L, (x) = g. We obtain
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Theorem 6A by applying Minkowski’s Linear Forms Theorem to these
linear forms and to R, = ... = R, = Q"' and R, = Q"

6.5. For later applications it will be convenient to state explicitly
two other simple applications of Minkowski’s Linear Forms Theorem.
Suppose 1 < m < n and let L, (X), ..., L,, (x) be linearly independent linear
forms. Assume without loss of generality that Ly, ..., L, X{, ..., X,_,, are
linearly independent, and that these n linear forms have determinant d.
By Theorem 61 there is for every Q > 1 an integer point x # 0 with

ld|7" Lix)| £Q ™™ (i=1,...,m)
and
[d]7 " x| £ Q" (j=1,...,n—m).

Then if the norm | x | of x = (xy, ..., x,) is defined by
(6.7) | x| = max (|x], ..., [x,]),

we have | x| < ¢, Q™ and

(6.8) L) <y |x | ™M (=1, m)

where ¢, ¢, depend on L,, ..., L,, only. Since Q may be chosen arbitrarily
large, it follows that there are infinitely many integer points x # 0 with
(6.8). More generally, it can be shown that if L, (x), ..., L,, (X) are linear
forms of rank r (i.e. there are r but not r + 1 linearly independent ones
among them) with 1 < r < n, then the exponent in (6.8) may be replaced by
— (n—r)/r. Therefore the following holds.

COROLLARY 6J. Suppose Ly, ..., L, are linear forms of rank r with
I <r<n There is a c3 = c3(Ly, ..., L,) such that there are infinitely
many integer points X # 0 with

| LX) | S ey x |70 (i=1,..,m).

Corollary 6] essentially implies Corollaries 6B, 6D, i.e. it implies versions
of these corollaries involving constants such as c;. Finally Theorem 6I
yields

COROLLARY . 6K. Suppose L (X), ..., L, (x) are linear forms of deter-
minant d # 0. Suppose yy, ..., y, are reals with y, + ... + v, = 0. For any
Q > 0 there is an integer point x # 0 with
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|L,(x)| < |d]|'"Q (i=1,...,n).

6.6. An important special case of Theorem 6C is when o, = «,
o, = o2, ...,a;, = o, Changing our notation from / to d, we obtain a
solution of the inequalities

1 =max(|g,], .-, lga) < @Y%, g0 + ... + g0 + g0 | £O71.
The polynomial P (x) = ¢g,x* + ... + ¢x + ¢, has height H(P) < ¢, Q'
and | P(x) | £ 07", whence ‘

|[P(0) | < c,H(P)™?,

where ¢;, ¢, depend on « and on d only. Now one can show that unless
] P’ (o) [ 1s extremely small, there is a real root § of P with

o =Bl = e [P()[/IP ()] S caea HP) ™| P () |71

In general it is likely that | P’ («) | is of about the same order of magnitude
as H (P), and then we obtain

o =Bl = c,HP)™ ™! S esH(B)™ 7.

(The defining polynomial of f is a divisor of P, and this implies that H (/)
=< ccH (P) by, e.g., Theorem 4-3 in vol. 2 of LeVeque (1955)). Unfortunately
we don’t know whether | P’ () | is large. At any rate one is tempted to
conjecture that for every real « which is not itself algebraic of degree < d,
there are infinitely many real algebraic f of degree < d such that

(6.9) o =Bl S HB)™*".

A weaker conjecture is that for every o as above and every ¢ > 0 there are
infinitely many real algebraic numbers f of degree < d with

(6.10) Ja =Bl < HB) @0,

The conjecture related to (6.9) is true for d = 1 by Dirichlet’s Theorem,
and it was shown to be true for d = 2 by Davenport and Schmidt (1967).
For general d, Wirsing (1961) showed that there are infinitely many f of
degree < d with

lo = B S cgH(B)" 712,

He also showed that if («, o2, ..., &%) is not very well aproximable, then (6.10)
does have infinitely many solutions for every ¢ > O.




— 223 —

Inequalities as above in which B is an algebraic integer are more difficult.
Here one has to deal with polynomials x? 4+ ¢,_; x*™' + ... + ¢1X + qo,
and hence one has to deal with an inhomogeneous approximation problem.
One might conjecture that if d = 2 and if « is not an algebraic integer of
degree d and is not algebraic of degree < d — 1, then for every ¢ > 0 there
are infinitely many real algebraic integers  of degree < d with

(6.11) | — Bl < H(B)™“"®.

This conjecture is true if («, o, ..., «*~1) is not very well approximable.
Davenport and Schmidt (1969) showed a result with (6.11) replaced by

o= B S coH (B Hr /2,

6.7. We have discussed approximation properties of general /-tuples
oy, ..., o, and of [-tuples o, o?, ..., a’. Interesting questions arise if one
asks about approximation properties of special /-tuples. For example,
(e, e, ..., e') is not very well approximable (Popken (1929); see Schneider
(1957), Kap. 4). A more general result (which 1s analogous to Theorem 7A
below) concerning the I-tuple o; = €'}, ..., a; = ¢! with distinct non-zero
rationals rq, ..., r; was proved by Baker (1965). For the behavior of /-tuples
log oy, ..., log «;, where oy, ..., a; are algebraic, see Baker (1966, 1967b,
1967¢c, 1968a) and Feldman (1968a, 1968b). In the next section we shall turn

to [-tuples of real algebraic numbers.

7.  SIMULTANEOUS APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS

7.1. We have already seen (Theorem 6F) that (v, ..., a;) is badly
approximable if 1, ay, ..., ; is a basis of a real algebraic number field.
In the same way one can show that if 1, o, ..., «; are linearly independent
over the field of rationals and if they generate a field of degree d, then

loygy + ..o +oaq +pl = |q]!

for every non-zero integer point q = (g, ..., ¢,, p). Here ¢; = ¢, (oy, ..., o))
> 0 is easily computable. The case / = 1 of this inequality yields
Liouville’s Theorem 2A.

Cassels and Swinnerton-Dyer (1955) have shown that Littlewood’s
conjecture is true for /-tuples (ay, ..., o;) such that 1, oy, ..., o, is a basis of a
real number field. (This conjecture applies only if /> 1.) Peck (1961) showed
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for such /-tuples with / > 1 that there are infinitely many rational /-tuples

<£’i,...,ﬁ> -
g’y

P1

‘ o0y ——| <cyg tTUD
q

a; - £ < c,q A (log )1/ D (i=2,...,0).

Schmidt (1966) derived an asymptotic formula for the number v(N) of

D;
O(i -

solutions with ¢ < N of <y (q)(i=1,...,1) for such 'l-tuples

and for certain functions ¥ (g). Earlier Lang (1965b, 1965¢c, 1966a) had done
this for / = 1 and for a wider class of numbers «;. Adams (1967) replaced
our special /-tuples by badly approximable /-tuples and proved (1969a,
1969b, to appear) other results of this type.

7.2. As in §6.3,
to the nearest integer.

¢ || will denote the distance from a real number ¢

THEOREM 7A. Suppose oy, ..., o, are real algebraic numbers such that
1, ¢4, ..., o, are linearly independent over the rationals, and suppose 6 > O.
There are only finitely many positive integers q with

(7.1) " logg | feog Il < 1.

The inequalities

Di
OCi - -

q

(7.2) < g 1Tam=s (=1, ]

imply that || o || < q'"(l”)_‘S (i=1,..,1) and hence they imply (7.1).
Therefore (7.2) has only finitely many solutions, and we obtain f

COROLLARY 7B. Suppose oy, ..., o, and 6 are as in Theorem TA. Then

there are only finitely many rational [-tuples <I—)—1 y e &) with (7.2).

q q

THEOREM 7C. Again assume that o4, ..., o, and & are as in Theorem TA.
Then there are only finitely many I-tuples of non-zero integers q, ..., q, With
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(7.3) 119, - 4, T agy . F gl <1

By applying Theorem 7C to all the non-empty subsets of oy, ..., a, one
deduces |

COROLLARY 7D. If again oy, ..., o,; & are as in Theorem TA, then there
are only finitely many (I+1)-tuples of integers qi,...,q,p Wwith ¢
= max (|q,|, ..., |q,]) > 0 and with

(7.4) |o1qy + oo g, +pl<q0.

By Corollaries 6B and 6D the exponents in Corollaries 7B and 7D are
best possible. In view of Khintchine’s Transference Principle (Theorem 6E),
the Corollaries 7B and 7D say the same, namely that oy, ..., ; 1s not very
well approximable. The case / = 1 of these corollaries is Roth’s Theorem.
Theorems 7A and 7C and their corollaries were proved by Schmidt (1970).
They had been anticipated by a weaker version of the case / = 2 and by the
case [ = 2 itself (Schmidt 1965 and 1967a, respectively).

Before Roth’s Theorem was known Hasse (1939) used Siegel’s method to
derive estimates for simultaneous approximation. Baker (1967a), Feldman
(1970a) and Osgood (1970) proved weaker but effective versions of Corollary
7D for special algebraic numbers «;, ..., «;.

7.3. Corollary 7B shows that the exponent in Corollary 6B is best
possible for algebraic numbers ¢y, ..., «;, and Corollary 7D does the same
for Corollary 6D. We shall now examine Corollaries 6J and 6K in the special
case when the coeflicients of the linear forms involved are algebraic. Suppose
1 £m < nand L{(x), ..., L,(x) are linear forms with real algebraic coeffi-
cients. We shall call Ly, ..., L, a Roth System if for every 6 > 0 the in-
equalities

(7.5) | L;(x) | < |x |~ (@rmm)/m)=o (i=1,...,m)

have only finitely many solutions in integer points x # 0. Roth’s Theorem
says that for n = 2, m = 1, the linear form L (x) = ax, — x, with a real
algebraic irrational « is a Roth System.

Tueorem 7E (Schmidt (1971a)). Linear forms L, (X), ..., L, (x) with
real algebraic coefficients and with m < n are a Roth System if and only
if their restrictions to every rational subspace S of dimension d with
1 < d =< n have rank r satisfying
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(7.6) ' r=dmjn.

This theorem contains Corollaries 7B and 7D. For suppose m = 1,
n=1+1landL (x) =L, (X) = oyx; + ... + a,;x; + x, where the numbers
oy, ..., %, 1 are algebraic and linearly independent over the rationals. Then
L (x) # 0 for every integer point x # 0, and hence L has rank » = 1 on
every rational subspace S¢ # 0. Since dm/n = d/n < 1, the inequality (7.6)
is always satisfied, and L (x) is a Roth System. Hence there are only finitely
many integer points x # 0 with |L(x)| < |x|7“""7% = |x |77, and
Corollary 7D follows. Corollary 7B can be similarly derived. ’

The necessity of the condition (7.6) in Theorem 7E is easy to see: A
rational subspace S? is a d-dimensional Euclidean space, and the integer
points in such a space form a lattice 4. By applying a result analogous to
Corollary 6J to the restrictions of Ly, ..., L, to S¢ and to the lattice 4,
we obtain infinitely many integer points x # 0 in S¢ with

|Li(x)| S ¢y |x |79 = ¢ |x|P 7@MD (i=1,...,m).
Now if r < dm/n, say if r = dmn™}(14+6)"!, then
| Li(x)| S ¢ [x['TOMUTD <o [x [TOmmIMT0 (=1, ..., m),

and we don’t have a Roth System.

Suppose L, (X), ..., L, (x) are linear forms with real algebraic coefficients
and suppose v, ..., 7, are reals with y; + ... + 7, = 0. In view of Corollary
6K the following definition is natural. We shall call (L, ..., L,; }1, ..., ) &
General Roth System if for every 0 > 0 there is a Qq = Qo (L, ..., L,;
V1is ooy Vus 0) such that for O > Q, there is no integer point x # @ with

ILI.(X)I <Q}’i"5 (l=1,,n)

Roth’s Theorem says that for » = 2 and an algebraic irrational «, the
system (L, (X) = ax; — X, L, (X) = x{;7; = — 1,9, = 1) is a General
Roth System. Schmidt (1971a) derives necessary and sufficient conditions
for General Roth Systems which contain Theorem 7E as a special case.

7.4. We shall briefly discuss an inhomogeneous approximation problem.
Suppose [ > 1 and suppose 1,ay, ..., o, are algebraic and linearly
independent over the rational field Q. The special case ¢; = 1 of Theorem 7C
shows that there are only finitely many integer /-tuples ¢, ..., q¢;_, p With
g = max (|g,], -, |¢:=1]) > 0 and with

loygy + oo + 41 gy +p + oyl < g =D~
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One can easily show that more generally this is still true if «; is not of the
type oo, = o;x; + ... + &;_1X,_; + X, withrational integers x¢, Xy, ..., X;—1-
Changing the notation we obtain

CoROLLARY 7F. Suppose oy, ..., a,, B are real algebraic numbers such
that B is not a linear combination of &y, ..., o, with rational integer coefficients.
Then for every & > 0 there are only finitely many integer I-tuples q, ..., q,
with ¢ = max (|q1|, ey q,l) > 0 and with

longy + o +aq + B <g TP

This holds also when / = 1, but is trivial in this case. The case when
[ = 2 and a,/a, is quadratic was proved by Mahler (1963). Combining
Corollary 7D with certain transference theorems (see, e.g., Cassels (1957),
ch. V) one obtains

CorOLLARY 7G. Suppose o, ..., o, are real, algebraic and linearly in-
dependent over Q. Then for every real  and every ¢ > 0 there are infinitely
many integer I-tuples (g4, ..., q;) with ¢ = max (lqll, - [q,l) > 0 and

loayqy + ... +og + | <qg 1T

7.5. Suppose « is a real algebraic number. Assume at first that it
is not algebraic of degree < d where d is a given positive integer. Then
1, o, ..., a? are linearly independent over the rationals, and by Corollary 7D
there are only finitely many integer solutions of

| qeo + ... 4+ g0 + g0 <q7?° (q =max (|g], ..., [q4]) > 0)

for any given 6 > 0. Thus there are only finitely many polynomials P (x)
of degree at most d with rational integer coeflicients and with

| P()] < H(P)™"7°.

Now if § is a root of P (x) and if, say, P (x) = a (x—f) (x—B,) ... (x—=B.),
then | P (@) | =|a—f||a(@—p,) ... (x—B) | < |u — Bl (Je|+1)¢~ 1 ¢, H(P)
by the well known inequality ] a | (1 +|/3l) (1+ |ﬁ2|) o (I 1B.) < ¢y H (P)
where ¢; = ¢; (¢). (See e.g. LeVeque (1955), vol. 2, Theorem 4.2.) Thus
| o — B| < H(P)™*"'7° would imply that | P (x) | < ¢, H(P) ¢, which
has only finitely many solutions. Thus we see that the inequality

(7.7) o — B | < H(B)~ 4172




— 228 —

has for every 6 > O only finitely many solutions in algebraic numbers f
of degree < d. It can be shown that the assumption on the degree of «
can be removed, and we obtain

THEOREM TH. Suppose o is a real algebraic number, d a positive integer,

6 > 0. There are only finitely many (real or complex) algebraic numbers f

of degree at most d with (7.7).

This supersedes Wirsing’s Theorem 4B. Suppose « is real and algebraic

but not algebraic of degree < d. Then by Corollary 7D the d-tuple
(a, a?, ..., a%) is not very well approximable. Using a result of Wirsing

(1961) mentioned in §6.6, we obtain a theorem which complements Theo-
rem 7H.

THEOREM 7I.  Suppose o is algebraic of some degree greater than d.

Then for every ¢ > O there are infinitely many real algebraic numbers f
of degree < d with (6.10), i.e. with

la =Bl <H(B™ 717,

In order to obtain results about approximation by algebraic integers B,
one has to apply Corollary 7F with / = d and oy = 1, 0, = o, ..., 0y

— ad—Z’ oy = O(d—l, B — O(d.

THEOREM 7). Suppose o, d, 0 are as in Theorem TH. There are only

finitely many (real or complex) algebraic integers B of degree at most d with

o =Bl <H(B™°.

Using certain transference principles (see Davenport and Schmidt

(1969)) together with the results of this section one can prove

THEOREM 7K. Suppose d = 2 and o is a real algebraic number of some
degree = d but is not an algebraic integer of degree d. Then for every ¢ > 0 §

there are infinitely many real algebraic integers f of degree < d with

la =Bl <H@E™ .

7.6. In the course of his classification of algebraic and transcendental §

real numbers, Mahler (1932) defines w, = w, () as the supremum of the
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numbers o such that there are infinitely many polynomials P with rational
integer coefficients of degree < d and with

0<|P()|<HP) .

By Corollary 6D it is clear that w, = d unless « is algebraic of degree < d.
Furthermore if « is algebraic of degree n, then one can show using the norm
of P(«) that w; £ n — 1(d=1, 2, ...). Thus Mahler could characterize the
algebraic numbers o by the property that w, (x) (d=1, 2, ...) remains
bounded.

Koksma (1939) defines w; = wy () as the supremum of the numbers @
such that there are infinitely many algebraic numbers f of degree < d with

o~ BI<HEB) ™.

It is easy to see that w, < w, and Wirsing (1961) showed that w,; = 1 (w,;+1)
if « is transcendental. Hence the algebraic numbers can also be characterized
by the property that o, (x) (d=1, 2,...) is bounded. We have w, < w,
< n — 1 if « is algebraic of degree n, and the results of the last section
show that w; = dif d < n — 1. Since w; and w, increase with d, we have
for algebraic « of degree n,

o — o — d if d<n-—-1
@ T T n—11if d=n.

Thus the exponent in Theorem 7H is best possible precisely if d < n.

Another characterization of algebraic numbers by approximation
properties was given by Gelfond (1952, §III.4, Lemma VII) and refined by
Lang (1965a) and Tijdeman (1971, Lemma 6). This lemma was slightly
improved by D. Brownawell (unpublished).

8. TooLs FROM THE GEOMETRY OF NUMBERS

8.1. To prove the theorems enunciated in the last section one needs
certain results from the Geometry of Numbers. This field was first investi-
gated under this name by Minkowski (1896). Other books on the Geometry
of Numbers are Cassels (1959) and Lekkerkerker (1969).

Let K be a symmetric ') convex set in Euclidean E”. For convenience
let us assume that K is compact and has a non-empty interior. For A > 0
let 2K be the set consisting of the points Ax with x € K. Minkowski defines

1y le. if x €K, then also — x € K.
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the first minimum A, as the least positive value of A such that 1K contains
an integer point x # 0. More generally, for 1 < j < n, the j-th minimum 4;
is the least positive value of A such that AK contains j linearly independent
integer points. It is clear that 0 < 4, < 1, < ... £ /1, < o0, and that there
are linearly independent integer points xg, ..., X, with

(8.1) x;e ;K (j=1,...,n).
Minkowski’s Theorem 6H is easily seen to be equivalent with the inequality
AV(K) £2".

Later Minkowski could refine this to the much stronger

THEOREM 8A (Minkowski’s Theorem on Successive Minima).
(8.2) 2"t < A4 A V(K) £ 2.

Like Theorem 6H this result can be generalized to arbitrary lattices A4,
and then (8.2) is to be replaced by

(8.3) d(A) 2" < Ay . A V(K) < d(A)2".

Of particular interest to us will be the situation when L, (x), ..., L, (X)
are linearly independent linear forms and R, ..., R, are positive numbers,
and when K is the parallelepiped defined by ')

(8.4) | L,(x)| < R, (i=1,..,n).

In the special case when R, ... R, = 1 and when idet (Ly, ...,L,,)I = A,
say, we have V' (K) = 2"/4, whence 4/n! < A, ... 4, £ A. In particular we

have
(8.5) 1< ... 4, <1,

where the notation 4 € B means that A < ¢B with ¢ = ¢ (n, 4). Later on
the notation 4 > < B will mean that both 4 € B and B € A.

8.2. We shall need three so-called “ transference theorems ” which
relate the successive minima of certain parallelepipeds to the successive
minima of other parallelepipeds.

1) The case when R; = ... = R, = 1 is just as general, but the factors Ry, ..., R,
will be convenient for later applications.




— 231 —

THeoREM 8B (¢ Davenport’s Lemma ” (Davenport, 1937)). Let 4y, ..., 4,
be the successive minima of the parallelepiped IT given by (8.4). Let pq, ..., Py
be numbers with

Py =Py 2 ...2p, >0 and pidy S .0 Z P

Then there is a permutation (¢4, t5, ..., t,) of (1, 2, ..., n) such that the successive
minima 1y, ..., A, of the new parallelepiped II' given by

|Li(x)| < Rip;;" (i=1,...,n)
satisfy
(8.6) ;> < pik (j=1,...,n).

Moreover, let Xy, ..., X, be linearly independent integer points with (8.1),
i.e. with Ri* | L; (x;) | £ 4; (i, j=1, ..., n). Let T be the subspace consisting
of 0, and for 1 < j < n let T; be the subspace spanned by X, ..., X;. Then
every integer point X outside the subspace T;_{ where 1 < j < n satisfies

max (Rl_lpjl I Ll (X) |> vony R;lpjn l Ln(x) |) > ij} .

Note that the ratios of p,44, ..., p,4, are equal to or smaller than the
ratios of 1., ..., 4,, so that the successive minima have been “ pushed closer
together ”. Usually in transference theorems only inequalities such as (8.6)
are given. But the last statement of the theorem will also be needed.

8.3. Every linear form L (x) is of the type L(x) = ax where a is
a fixed vector and where ax denotes the inner product. Now suppose that
L (x),..,L,(x) are linearly independent linear forms. Then if L, (x)

= a)x (i=1, ..., n), the vectors a4, ..., a, are linearly independent. There are
. * .
unique vectors a:, ..., 4, With
aiaj = 511 == .
0 otherwise .

The linear forms L:, ..., L. given by L: (x) = a’:x (i=1, ..., n) are called
dual to Ly, ..., L,; they satisfy the identity L,(x) L] (y) + ... + L, (x) L;, (y)
= xy. The dual linear forms are again linearly independent, and they have
determinant 1 if Ly, ..., L, have determinant 1. The parallelepiped

o*: |[Lix)| SR (i=1,..,n)
is called the dual of the parallelepiped IT defined by (8.4).
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Remark. One can define the polar set of any convex symmetric set,
and the dual of a parallelepiped is closely related to its polar set. But the
polar set of a parallelepiped has the disadvantage that it need not be a
parallelepiped.

TueoReM 8C (Mahler 1939).  Let 2y, ..., A, and 1, ..., A, be the successive
minima of a parallelepiped Il and of its dual I1*, respectively. Then

}“j > < j'n_-l-ll—j (]:13 9n)

Moreover, if x,, ..., X, are linearly independent points with (8.1), i.e. with
|L;(x;)| £ 4R, (i, j=1, ...,n), and if X,,..,x, are defined by xX;
= 0;; (i, /=1, ..., n), then

(87) IL*i(X:-i-l—j> | < /’{jRL—l (la.]:l: ’n) :

8.4. Suppose 1 < p < nand put [ = (}). Vectors in E" will be denoted
as usual by a, b, ..., and vectors in E' will be denoted by A, B, ... . By

a, A ... Aa,

we shall denote the exterior product of the vectors a,, ..., a,, l.e. the vector
in E' whose coordinates are the (p x p)-determinants formed from the matrix
with rows a,, ..., a,, and arranged in lexicographic order. For example if

n = 4andp = 2, thenl = 6; and Ifa = (Ocla Xy, X3, OC4-)>b = (/513 ﬁZ: ﬂ3’ ﬁ4)7
Oy Oy

then
/))3 [))4

“":(Mz B Bs|” | BiBal’ |B2Bs|” | BrBe
with 1 = i,

Let C(n, p) be the set of all p-tuples of integers iy, ..., 1
< ... < i, £ n. There are [ such p-tuples.

Now suppose that L, (x) = a;X, ..., L, (x) = a,x are independent linear
forms. For o = { iy, ..., 7, } in C(n, p), let A, be the vector

> > 2 3 3

p

A, =a, N ...Aa .
o i1 ip

Let L7 be the linear form in E' defined by L") (X) = A, X. The / linear
forms L with ¢ € C (n, p) are again linearly independent, and they have
determinant 1 if L, ..., L, have determinant 1. Let R,, ..., R, be positive
constants with R, R, ... R, = 1 and define R, by R, = II R,. The inequal-

ities -
ILPX)| <R, (oeC(n,p)
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define a parallelepiped IT‘?’ in E* which we shall call the p-th pseudocompound
of the parallelepiped II defined by (8.4).

Remarks. Mahler (1955) defined the p-th compound of any symmetric
convex set, and the pseudocompound of a parallelepiped is closely related
to its compound. But the compound of a parallelepiped is not necessarily a
parallelepiped. Except for the notation, the (n—1)-st pseudocompound is
the same as the dual of a parallelepiped, and hence the results of the last
subsection may be interpreted as special cases of the results of the present
subsection.

THEOREM 8D (Mahler 1955).  Let Ay, ..., A, and vy, ..., v, be the successive
minima of a parallelepiped II and of its p-th pseudocompound IT P, respect-
ively. For o € C(n, p) put A, = II A; and order the elements of C (n, p) as

1eg

O1s ey 0y SUCh that A, < ... < Ay Then
vj></16j (]=1,,l)

Moreover, if xy, ..., x, are linearly independent integer points with (8.1),
i.e. with lLi (XJ,-)I = LR (G j=1,..,n), and if for © = {j,..,j,} in
C(n,p) we put X, = X;; A ... A X, then

L (X) | < AR,  (o,7eC(n,p)).

9. OUTLINE OF THE PROOF OF THE THEOREMS ON SIMULTANEOUS
APPROXIMATION TO ALGEBRAIC NUMBERS

9.1. Let us sez what happens if we try to generalize Roth’s proof to
prove, say, Corollary 7B. In Roth’s proof we constructed a polynomial
P (xy, ..., x,,) in m variables x, ..., x,, which had a zero of high order at
(a, ..., o). Hence the natural thing to try would be

(a) to construct a polynomial P (Xq(, .., X115 eel Xpgs oons X)) In ml
variables of total degree < r, in each block of variables Xpts -nes Xpi
(h =1, ..., m) with a zero of high order at («, ..., ot,; ...: Oy, ..., ;). Then

(b) one would have to show that if each of m given rational [-tuples

Ph: Py i
<f, e f) (h=1, ..., m) satisfies (7.2), then P also has a zero of high
h h

order at
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<I_’11 P,  Pm l&n_l)
/U TR IV

(c) one would have to show that under suitable conditions P cannot
have a high zero at such a rational point.

Finally

If we proceed in this fashion, we encounter difficulties in (c). In Roth’s
Lemma 3C it was essential that P had rather different degrees in its variables

and that the denominators in p—l, . Frm increased very fast. In our present
q1 qm

situation the first / denominators are equal, so that Roth’s Lemma does not
apply. The example m = 1, [ = 2, P (x,, x,) = (x;—Xx,)" shows that we
cannot expect to have a lemma similar to Roth’s in our present context,
since P has a zero of order as high as r at every point (&, &).

The polynomial P is defined on E' x ... x E' (m copies). While it is
difficult to say much about the order of vanishing of P at rational points
r; X ... X I,, it is easier to show that P cannot have a zero of high order on
certain linear manifolds .#; x ... x J, where each .#, is a rational
(i.e. defined by a linear equation with rational coefficients) hyperplane in E.
We can illustrate this when m = 1. Namely, .#, is defined by an equation
a, + a;x; + ... + a;x, = 0 which can be normalized such that a, a,, ..., q,
are coprime rational integers. If P (xy, ..., x;) has a zero of order = i on
A | (i.e. P has a zero of order = i at every point of .#,), then P (x4, ..., X,)
= (ag+a;x;+...+a,x)" R(x,, ..., x;), where R has integer coefficients
by Gauss’ Lemma. It follows that

(9.1) (H (M) < H(P)

where H (M) 1is the height of M (x) = ay + a;x; + ... + a;x;. This
inequality provides a good upper bound for i if H (M) is large.

9.2. It will be more convenient to deal with hyperplanes through the
origin in £'*! than with hyperplanes in E'. Hence we shall put

(9.2) | n=1+1

and we shall consider polynomials P (X, -.., X155 cor3 Xn1s -+ Xmy) Which are
homogeneous of degree r,, in each block of variables x4, ..., x,, (h=1, ..., m).
The manifold #; x ... x ., now becomes a subspace defined by
Ly (X115 eeos X1p) = oo = Ly (Xpn1s oo Xn) = 0, where each L, 1s a not
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identically vanishing linear form in x,q, ..., X, (h=1, ..., m). The poly-
nomial P vanishes on.#, x ... x #,, precisely if it lies in the ideal generated
by L,, ..., L,. A suitable definition of the index is now as follows.

Let L, = L, (X1, ..., X;) (h=1, ..., m) be not identically vanishing linear
forms. For positive integers r,, ..., r,, and for ¢ = 0 let J (c¢) be the ideal
generated by the products L,'* ... L,'™ with

The index of P with respect to (Ly, ..., Ly; Fy, -, I'y) 18 the largest value of ¢
such that Pe 7 (¢) if P is not identically zero, and it is + oo if P is identically
Zero.

9.3. Now suppose that L (x) = a;x; + ... + a,x, has real algebraic
coefficients. In analogy with Lemma 3A in step (a) in the proof of Roth’s
Theorem, one can construct a polynomial P as above which is not identically
zero and which has not too large rational integer coefficients, such that P

has index at least
1
——¢elm,
n

with respect tc (L, ..., L;ry, ..., r,,). Here L really occurs with m different
meanings; namely, the ~-th copy of L means oy x,,; + ... + o,x,, (h=1, ..., m).
Perhaps it should be explained why the factor L — ¢ in Lemma 3A is now

i
replaced by — —e. A form P in mn variables x;, ..., X{,; ...; X
n

mls =*°s Amn

is also a form in L, Xy,, ...y X135 o5 Ly Xp2y ooy Xy provided o # 0 (and
where L occurs with different meanings again). Now for “ most ” monomials

. : . 1
N L, X{o, coey Xqps eoes Ly X2y -oes Xy the degree in L will be about — times
n

, : 1
the total degree of the monomial, and hence will be greater than <——8>
n
times the total degree of the monomial.
But a result with only one linear form L is not enough. In general, say
when dealing with General Roth Systems, one has n linear forms L, ..., L,
to start with, and one can deal with them simultaneously. The following

result now replaces Lemma 3A.

L’Enseignement mathém,. t. XVII, fasc. 3-4. 17




— 236 —

Lemma 9A. Let Ly, ..., L, be not identically vanishing linear forms with
real algebraic coefficients. Suppose ¢ > 0. Then if m > my (Ly, ..., L,; €)
and if ry, ..., 1, are positive integers, there is a polynomial P (x{{, ..., Xy,;
ooy Xt s Xun) 2 O With rational integer coefficients such that

(1) P is homogeneous in x,y, ..., x;, of degree r, (h=1, ..., m).

1
(1) P has index = (———8) m with respect to (L;, ..., L;; 7y, ooy Fry)
n
(i=1, ..., n).

(iiiy H(P) < B!

Tt phere B = B(Ly, ..., L,).

This takes care of generalizing part (a) of Roth’s proof. We have chosen
our definition of the index such that (c¢) has a chance of going through,
and in fact one can derive from Roth’s Lemma 3C a more general lemma
that applies in our situation. Namely, if M, (x), ..., M,, (x) are linear forms
with rational integer coefficients, then under suitable conditions the
index of P with respect to (M, ..., M,,; ¥1, ..., Fpy) 18 < €.

9.4. If thus remains to deal with part (b). Suppose, say, that we want
to derive a criterion for General Roth Systems as defined in §7.3. Suppose
L, .., L, are linear forms with real algebraic coefficients and suppose
vy + ... + v, = 0. Suppose there is a 6 > 0 and there are arbitrarily large
values of Q for which there is an integer point x # 0 with | L; (x) ‘ < QVi7°
(i=1, ..., n). Assume in particular that this is true for O = Q4, ..., O,
and with integer points X,, ..., X,,, respectively. An argument like the one
used in the proof of Lemma 3B shows that if suitable auxiliary conditions
are satisfied, then the polynomial P of Lemma 9A does in fact have

P(x,,....,x,) =0.

But this is not what we really need. Namely, we need a rational subspace of
the type A4, X ... x M, where each .#, is a hyperplane of E", such that P
vanishes on this subspace.

There is a way out of this difficulty, although it is a rather costly one.
Namely, we have to assume that for each Q, (=1, ..., m) there is not just
one but there are

| =n-—-1

linearly independent integer points x\", ..., x;" with
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9.3)  |L,xI)| <047 (i=1,...,nj=1,...,h=1,...,m).

Now if .#, is the hyperplane through 0 spanned by xiV), ..., x" (

= 1, ..., m), then one can show that P vanishes on #, x ... x M, In
fact one can show that if M, is the linear form defining .#, (h=1, ..., m),
then the index of P with respect to (M4, ..., M,,; F{, ..., I'y) 18 = me, which
in conjunction with (c) gives the desired contradiction.

9.5. But what have we really shown now ? The inequalities

(9.4) x| Q"  (i=1,..,n)

define a parallelepiped. The presence of / = n — 1 linearly independent
integer points xV, ..., x¥ with | L; (xV) | < o'’ (=1, ..,n;j=1,..,1)
means that the (n—1) st minimum A,_; = A4,_; (Q) satisfies 1,_; < Q7°.
The inequalities (9.3) mean precisely that A,_,(Q) < 07° for QO
= 0, 05, ..., Q,,. Thus we obtain a theorem about 4,_,:

THEOREM 9B. (Theorem on the next to last minimum ). Suppose n = 2
and Ly, ..., L, are linearly independent linear forms with real algebraic
coefficients, and suppose L1, ..., L, are their duals. Suppose § > 0, suppose
Y1+ ... + 7y, =0, and let X be the set of integers i in 1 < i < n for which

There is a Qo = Qo (Ly, ...y Ly3 V15 .or Yu3 0) with the following property :
Let 1y = 4, (D), ..., 4, = 2,(Q) be the successive minima of the paral-
lelepiped 11 (Q) given by (9.4). Then for Q > Q, either

(95) /’{n—l > Q_é
or
(9.6) L (x) =0 for every i€,

where X1, ..., X, are the duals ') to linearly independent integer points X, ..., X
with x; € 4; 1T (j=1, ..., n).

It was clear from the discussion above that some inequality such as
(9.5) would result. The hyperplanes .# of the discussion above were spanned
by Xy, ..., X, (but with the notation x*’, ..., x"), and hence the coeflicients

n

1) I.e. they satisfy Xx% = 8;; (i, j=1, ..., n).
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in the defining equation for .# are proportional to x,. The alternative (9.6)
had to be put in to allow for the possibility that .# behaves in a somewhat
degenerate fashion. In most cases, e.g., if the coefficients of some L’ with
i e 2 are linearly independent over the rationals, then no integer point
x # 0 can satisfy (9.6), and then (9.5) must hold.

Theorem 9B gives information on A,_, rather than on A,. In what
follows, transference theorems will be used to gain information on A,.

9.6. Theorem 9B says that if Q is large and A,_, < Q% then x,
must lie in a certain subspace. The inequality (8.7) of Mahler’s Theorem 8C
further restricts the possibilities for x,. A combination of these results yields

CoroLLARY 9C. Suppose Ly, ..., L,, V15 «-0s Y 0, X; = X, (0), ..., X,
= X,(0),x; = X (0), ...,X, = X,(Q) are as above. Suppose there are
arbitrarily large values of Q with

(9.7) oy < Q70

Then there is a fixed vector ¢ and there are arbitrarily large values of Q with
(9.7) and with x,(Q) = c.

Next, the condition (9.7) will be replaced by
(9.8) Iy <Q702,.

The latter condition usually is milder, since 4, > 1 by (8.5).

THEOREM 9D. (Theorem on the last two minima). Suppose L, ..., L,,

Vis woos Vs O X1, ooy Xy Xq, ..., X, @re as above. Suppose there are arbitrarily g
large values of Q with (9.8). Then there are arbitrarily large values of Q with §

(9.8) and with x, (Q) = ¢, where ¢ is a fixed vector.

To prove this theorem one needs Davenport’s Lemma (Theorem 8B).
Namely, put po = (A ... 4,42 _;)"/" and

P1 = PolAi s e Py = PolAn—1 > but p, = poli,_1.

By Davenport’s Lemma we can compare the successive minima A, ..., 4,
of IT with the successive minima A, ..., 4, of another parallelepiped II'.

We have A;> < pid(j=1,..,n) and po <A <..< A1 <po |

< (A_ /2" < O7%" by (8.5) and (9.8). Hence 4,_; < Q™% if Q
is large, and applying Corollary 9C to I1' we see that x, (Q) is the same
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for arbitrarily large values of Q, which in turn (by the last assertion of
Davenport’s Lemma) implies that x. (0) is the same for certain arbitrarily
large values of Q.

9.7. Tueorem 9E. (Subspace Theorem). Suppose Ly, ..., Ly, V1, «os Yus O,
x,(0), ..., X,(Q) are as above. Suppose there isa din 1 =d=n — 1 such
that

(9.9) by < Age Q70

for certain arbitrarily large values of Q. Then there is a fixed rational subspace
S of dimension d such that for some arbitrarily large values of Q with (9.9),
the points

x,(0), ..., x,(Q) liein S°.

For the proof put p = n — d and construct the linear forms L) as in
§8.4. Also put I', = X 7y,. The inequalities

LX) 20'° (0 eC(n,p))

define the p-th pseudocompound II1? of II. By Mahler’s Theorem 8D
the last two minima v,_,, v, of this pseudocompound have

Vieg P K Adgradars Ay i > K Ay idarataes o Ao

whence v,_; < v, Q%2 for large QO by (9.9). An application of Theo-
rem 9D shows that X, 1) is the same for some arbitrarily large values of Q.
Some algebra combined with the last assertion of Theorem 8D shows that
(because of (9.9)) X, is proportional to X;,; A ... A X,. It follows that
the subspace S* spanned by X, {, ..., X, is the same for some arbitrarily large
values of Q. But for these values of Q the vectors x, ..., x; lie in the ortho-
gonal complement S¢ of S

9.8. We shall illustrate the power of the Subspace Theorem by deducing
Theorem 7E. Suppose we have 6 > 0, 1 < m < n, m linearly independent
linear forms L, ..., L,, with real algebraic coefficients, and infinitely many
integer solutions x # 0 of

) X; in E! is defined in terms of TI(P) (Q) just as x* in E” was defined in terms of

IT (Q).
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| L(x) | < [x|7@mmim=e (i=1,..,m).

We may assume without loss of generality that Ly, ..., L,, X{, .o, Xp—m
are linearly independent. Put L,,.; (X) = x, ..., L, (X) = x,_,,. It 1S easy
to see that there is a 0’ > 0 and there are arbitrarily large values of Q for
which there are solutions x # 0 of

L] Q" (i=1,....n)
where y;, = ... =y, = — (n—m)/m and y,,, = ... =y, = 1. For these
values of Q one has A, = 4, (0) < Q0™%. Since A, <..=< 1, and

l < 4.4, <1, thereisadwith ]l £d<n—1andao” > 0such that
(9.10) Jg < Ags1 077

for arbitrarily large values of Q. Let S be the subspace in the conclusion
of Theorem 9E.

Let IT" (Q) be the intersection of IT (Q) and S¢; this is a symmetric
convex set in S% Let A7, ..., A; be the successive minima of IT" (Q) with
respect to the lattice A of integer points in ¢, and let V" = V" (Q) be the
(d-dimensional) volume of IT" (Q). By applying (8.3) to the lattice 4 we
obtain

(9.11) 1< 2.V <1,

where the constants in < may depend on S? There are arbitrarily large
values of Q for which x, (Q), ..., X, (Q) lie in S9, and for these values we
have A, = 13, ..., 4, = A;, whence by (8.5) and (9.10),
Apcidy =g dg = Ay A" (Ay .. A= Din
< (g o B Gy o 2y Q0000 ¢ @=0'dn=din — =,
say. In conjunction with (9.11) this yields V* > Q".
Now if L,, ..., L, have rank r on S then

V* < Q—(r(n-—m)/m)+d—r e Qd—(rn/m) )
It follows that d — (rn/m) = n > 0 and that
r <dmjn.

This cannot happen if (7.6) holds, and hence L4, ..., L,, is a Roth System
in this case. Since the case of linearly dependent forms L, ..., L,, is trivial
and since the other half of the theorem was proved in §7.3, Theorem 7E

is established.
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10. NORM FORMS

10.1. Let K be an algebraic number field of degree f. There are ¢
isomorphisms of K into the complex numbers; denote the images of an
element o« of K under these isomorphisms by oV, ... «®. Let L (x)
= oyxX; + ... + a,x, be a linear form with coefficients in K. For 1 i = ¢
put LY (x) = a{’x; + ... + a{”x,. The norm

N (LX) = LD (x)... LY (x)

is a form of degree ¢ with rational coefficients. A form obtained in this way
will be called a norm form. It is easy to see that every form F (x) which has
rational coefficients and is irreducible over the rationals but which is a
product of linear forms with algebraic coefficients, is a constant times a norm
form. In particular when n = 2, every form with rational coefficients which
is irreducible over the rationals is essentially a norm form.

10.2. We may as well discuss more general products of linear forms
with real or complex algebraic coefficients. For any real or complex number «
we denote its complex conjugate by . The complex conjugate of a linear
form L(x) = oyx; + ... + a,x, is defined by L(x) = o;x; + ... + a,x,.
We shall call linear forms L, ..., L, a Symmetric System if, except for the
ordering, L, ..., L, are the same as the given forms.

THEOREM 10A (Schmidt, 1971b). Suppose L, ...,L, is a Symmetric
System of linear forms with algebraic coefficients. Suppose n > 0. The
Jfollowing two conditions are equivalent :

(@) There is a constant ¢, = ¢y (L, ..., L,;;n) and there are infinitely
many integer points X with

Ly (0 L) | < ey X[

(b) There is a rational subspace S* of dimension d with 1 < d < n and
there is a Symmetric System of linear forms L, ..., L with 1 S m <t

and iy, < ... < i, whose restrictions to S have rank r with
(10.1) r<dmln and r <d.

This theorem again contains Roth’s Theorem. It can be deduced from
the Subspace Theorem.
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10.3. We shall now discuss diophantine equations
(10.2) A (L(x)) = a

where a is a constant. As x runs through the integer points, A" (L (x)) runs
through certain rationals with bounded denominators. Hence there are
constants a for which (10.2) has infinitely many integer solutions x precisely
if there are constants b for which the inequality

(10.3) | A (L)) | < b

has infinitely many solutions. This will in fact be the case if the coefficients
of L are linearly dependent over the rationals, so that we shall assume in the
sequel that the coefficients are linearly independent.

We shall say that a linear form with coefficients in K 1s full in K if its
coefficients form a field basis of K. Suppose the linear form L (x) i1s full
in K where K is neither the rational field nor an imaginary quadratic field.
Further assume for a moment that the coefficients of L form in fact aninteger
basis of K. By Dirichlet’s unit theorem K contains infinitely many units,
and hence there are infinitely many integer points x with 4" (L (x)) = 1.
By studying units of certain subrings of K one sees more generally that if
L (x) is full in K where K is not rational or imaginary quadratic, then (10.3)
has infinitely many solutions if b is large enough. We shall say that a linear
form L (x) represents a linear form L’ (y) (where the number of components
of y need not be n) if there is a constant ¢ such that for every integer point y
there is an integer point x with L’ (y) = cL (x). Now suppose L (Xx) is a
linear form with coefficients in K. We shall call L (x) degenerate if it repre-
sents a linear form L’ (y) which is full in a subfield K’ of K which is

neither rational nor imaginary quadratic. For example, L (x) = \/le
+ \/3 x, + \/6 x3 is not full in K = Q(\/?_ \/3) but it represents the

form 2y, + \/6y2 \/2(\/2y1+\/3y2) which is full in K’ = Q(\/6) and
thus L (x) is degenerate. From what we said above it follows that for
degenerate L (x) and for large b the inequality (10.3) has infinitely many
integer solutions. A detailed proof may be found, e.g., in Borevich and
Shafarevich (1966, ch. 2).

10.4. The converse also holds:

THEOREM 10B (Schmidt, 1971b). Suppose L (x) is a non-degenerate
linear form with linearly independent coefficients in a number field K. Then for

{
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any fixed b, the inequality (10.3) has only finitely many solutions in integer
points X.

When the number of variables 7 = 2, this becomes Thue’s result on
his equation F(x, y) = m where F (x, y) is a binary form. When n = 3
the theorem was shown by Skolem (1935) when K has degree t = 5 and by
Chabauty (1938) for general degree, but these authors made the additional
assumption that among the isomorphisms of K into the complex numbers
there are at least two pairs of complex conjugates. Skolem and Chabauty
used a p-adic method. The general case n = 3 was settled by Schmidt (1967b).
Before the results of §7 were known, Gyory (1968) assumed the hypothetical
truth of Corollary 7B and derived results about norm forms in an arbitrary
number of variables. Since he did not have Theorem 10A as a tool, his results
are relatively weak. See also Gydry (1969), where he proves some special
cases of Theorem 10B. Ramachandra (1969) dealt with special norm forms
and derived for them an asymptotic formula for the number of solutions of
(10.3), thus generalizing Mahler’s (1933c) result.

Theorem 10B and the theorems of Skolem and Chabauty are non-
effective. Effective bounds for the size of the solutions of certain rather
special equations with norm forms were given by Skolem (1937) (for further
references see Skolem (1938)) and Feldman (1970b). See also the references
given at the end of §7.2.

If L (x) 1s full in K where K is neither rational nor imaginary quadratic,
then the solutions of an equation (10.2) may be parametrized by using
the group of units of K. More generally one can show that if L (x) is degen-
erate, then all solutions of (10.2) with finitely many exceptions belong
to finitely many parameter families. For example, in the equation

(10.4) ./V(\/Exl + \/§x2 + \/gx3) == 4,

all but finitely many solutions have x; = O or x, = 0 or x;, = 0 and hence
come from solutions of A" (\/2x; + /3x,) = a or A (\/Ex1 +- \/€x3) =a

or N (\/gxz + \/gx3) = q. Hence all but finitely many solutions come
from one of the three equations

/

NQ2x 4+ 16x;) = £ 2 /a, N (xy +/3x5) = £ - /a,

[\ R =

N (X + \/5x3) = ié\/a,
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where A, NV, A" are the norms from the fields K’ = Q(\/g), K"

=Q (\/—3) and K" = Q (\/—2). The solutions of these three equations can be
easily described in terms of the units of the fields K’, K" and K’"'. In parti-
cular (10.4) has only finitely many solutions unless a is a perfect square.

10.5. Roth’s Theorem implied not only that for an irreducible binary
form F(x,y) of degree ¢t = 3 there are only finitely many solutions of
| F(x,)| < a, but according to Theorem 2C there are only finitely many
solutions of | F(x,y) | < (|x|+|y])” if v < — 2. In the present context
it is reasonable to expect that “in general ” there are only finitely many
integer points x with

(10.95) I/V(L(x))l < |x|
if
(10.6) v<t-—n.

Using Minkowski’s Linear Forms Theorem one can easily show that unless
n = lorn = 2and no conjugate of L has real coefficients, there are infinitely
many X with | A" (L (x))| < ¢|x|*™"; hence ¢ — n in (10.6) is best possible.

Suppose K = Q () is a number field of degree ¢ and suppose 1
< r £ t. We shall say that K is r times transitive if for any r distinct
conjugates o'V, ..., al") of « there is an element ¢ of the Galois group of
Q («'V, ..., ) (i.e. the least normal extension of K) with ¢ («'!))
= o'V, .., o («'”) = Y. This definition is clearly independent of the
primitive element .

THEOREM 10C (Schmidt, in preparation). Suppose the coefficients of
L(x) = o;x; + ... + a,x, lie in a number field K and are linearly independent
over the rationals. Suppose that K is generated by the quotients o;fu;
(1=, j=n) and that K is (n—1)-times transitive. Finally assume that any
n of the conjugates of L (X) are linearly independent. Then for every v with
(10.6) there are only finitely many integer points x satisfying (10.5).

CoROLLARY 10D. Suppose L (x) is as above and suppose G (X) is a
polynomial of total degree v < t — n. Then the equation

N (L(x)) = G(x)
has only finitely many integer solutions.

This contains Corollary 2D.
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10.6. Both Theorems 10B and 10C are derived from Theorem 10A.
We shall briefly discuss the argument for Theorem 10B. We have to show
that L (x) is degenerate if the inequality

A (L) = LV . LO® | Se =c|x[

has infinitely many solutions. By the case n = ¢ of the assertion (a) = (b)
of Theorem 10A there is a subspace S and there is a Symmetric System
LW LUm) of forms whose restrictions to S¢ have a rank r with

(10.7) r<dmft and r <d.

One can reduce the situation to the special case where L (x) = x; +
+ orx, + ... + o,x, and K = Q («y, ..., o,), and where d = n. The condi-
tions (10.7) now become r < nm/t and r < n, and with

q = t/n
they become
(10.8) rg <m and r <n.

Now rq < m is impossible (this would imply infinitely many solutions
of | /(L (x))| < |x|7? for some § > 0), and hence the rank r of every
Symmetric System LUV, ... LUm) satisfies

(10.9) m s rq.

But by (10.8) there is a special Symmetric System LUV, ..., LU® of rank p
with

(10.10) U =pq and p<n.

I We choose u and p as small as possible with this property. We may assume
} without loss of generality that the forms LUV, .. LGw are 1 1,
k In what follows, « will be a primitive element of K, i.e. an element with
K = Q («). We have to distinguish two cases.

{ (A) For every element ¢ of the Galois group of Q («'V, ..., «®), the
| two sets { «f, .., 0™ } and { @ («V), ..., @ (™) } are identical or disjoint.

(B) We have not (A).

| In the case (A) it turns out that u divides ¢ and that L (x) represents
§ 2 full linear form L' (y) in a field K’ of degree #/u, where K’ is neither
| rational nor imaginary quadratic, and hence L (x) is degenerate. Let us
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discuss what happens in the case (B). For simplicity we shall assume that K §
is totally real. |

There is an element ¢ of the Galois group such that the sets {a‘"), ..., «
and {¢ (@), ..., ¢ (™)} are neither identical nor disjoint. We may assume
without loss of generality that

{(p(oc(l)) ) (oc(“))} — {oz(”, e oc(’), oc(‘“’l), e 06(2”_’)} .

Here 1 < /< pu— 1. The forms L™, ..., L™ have rank p, and hence also
LY L0 LD L5 D have rank p. Denote the rank of L), ..., L®
by r; and the rank of LW .. LW LGr=D by p, Tt is easily seen that
r, < 2p — ry, 1.e. that

ry +ry, < 2p.

Since u was chosen as small as possible with (10.10), and since / < u — 1,
we have I < r;q. The number 2u — [ of elements of LV, ..., LW .. LZr=D
satisfies 2u — [ < r,q by (10.9). Thus

2u =1+ Qu—1) <ryq+ryq =2pq,

which contradicts (10.10). Hence (B) is impossible if K is totally real.

We have in fact used the hypothesis that K is totally real, for in general
LY. LY need not be a Symmetric System, and / < r,q need not hold.
The situation is therefore somewhat more complicated if K is not totally real.

11. (GENERALIZATIONS AND OPEN PROBLEMS

11.1. The theorems of §7 and §10 can almost certainly be generalized
to include p-adic valuations. I understand that work on this question is
being done now. ( p-adic versions of the results of §2 were discussed in §4.5).
Next, suppose that K is an algebraic number field and that «,, ..., «, are
algebraic numbers such that 1, «y, ..., ; are linearly independent over K.
It is likely that for every 6 > O there are only finitely many I-tuples of elements

Bis s By of K with
(1.1 [0 = Bl <A (BT (=1, ),

where S (f) is a suitably defined height of f = (S, ..., f,). A possible
definition for 5 (f) is

A (B) = [Tmax (L, [[ By s -, B 11
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where v runs through the valuations of K and where || ||, is defined as
in §4.5. In view of (4.9), # () is almost the same as Hy (f) if [ = 1, and
hence a theorem on (11.1) would generalize Le Veque’s Theorem 4A. One
could try to obtain a still more general theorem which would contain both
the p-adic case and the case of a number field K. Such a result was put
forward as a conjecture by Lang (1962, Ch. 6).

11.2. We have already said in §2.2 that it would be desirable to replace
the factor ¢° in Roth’s Theorem by something smaller, say by a power of
log g. The same is true of the generalizations of Roth’s Theorem to simul-
taneous approximation.

The theorems of §2, 7 and 10 are non-effective. For approximation to
a single algebraic number o« there are the effective results of Baker (see §5),
but for simultaneous approximation there are only the relatively special
effective theorems of Baker (1967a), Feldman (1970a, 1970b) and Osgood
(1970).

11.3. The following questions also appear to be very difficult. Suppose
(24, ..., 00;) 1s a point of transcendence degree d < /. The theorems of §7
deal with the case when the point is algebraic, 1.e. when d = 0. What can
one say for other values of d? Perron (1932) and Schmidt (1962) obtained
results, of about the same level of sophistication as Liouville’s Theorem,
which can be used to show that certain given points have transcendence
degree /.

A better question perhaps is how close rational points can come to a
given algebraic variety. We may reformulate this question in a homogeneous
setting. Let V' be a homogeneous variety defined over the rationals (i.e. one
defined by homogeneous polynomial equations with rational coefficients)
in E" with n = 2. For every x # 0 we put

y(V,x) =4V, x) (x|

where 4 (V, x) is the distance from x to V. It is clear that ¥ (V, Ax)
= ¢ (V, x); the function  (V,x) may be interpreted as the “ angle”
between ' and the vector x. We are interested in inequalities of the type

(11.2) y(V,x) <c|x|™?

where x runs through the integer points. We saw in §6 that Theorems 6A
and 6C had such an interpretation. The best value of @ for which (11.2) has
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infinitely many integer solutions can always be found if V is linear, i.e.
1s a subspace. For the non-linear case we have neither a good generalization
of Dirichlet’s Theorem nor anything like Roth’s Theorem.

Suppose now that V' is a hypersurface containing no integer point
x # 0 and defined by the equation F (x) = 0 where F is a form of degree d
with rational integer coefficients. For every integer point x # 0 we have

| F(x)| 2 1, and since | ;—F(X) | < ¢y | x|*7! (i=1, ..., n), the distance
X

from x to V'is 2 ¢, | x|' 7%, which in turn implies that

Y (V,x) 2 Cslxl

where the constants depend only on V. This inequality may be interpreted as
a generalization of Liouville’s Theorem. Any improvement of this inequality,
even though perhaps it may apply only to special classes of non-linear hyper-
surfaces, would be of great interest and would shed light on certain dio-
phantine equations different from the equations with norm forms discussed
in §10.
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