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(w+u)l=(—w+u)l=u*=1
c’est-a-dire w=0 et u*=1.
Réciproquement toute contraction m — um+v avec u”=1 conserve les
distances.

Propriété 21 :
Les isométries sont les transformations de la forme:

m — um+v; avec v, udans A et u?=1.

ASPECT MATRICIEL

On a une isométrie a point 0 fixe ssi 5 est inversible. D’ailleurs d’aprés
la propriété 21 elle doit €tre involutive. Elle est nécessairement de la forme
(5%) avec a+pf=1 et af=0.

Propriété 22 :

Les isométries a 0 fixe sont définies par les matrices ("[,ﬁ) avec «, f3
idempotents tels que af=0; a+f=1.
Remarque 13 :

L’isométrie m — um étant associée a la matrice (j ﬁ), ona:u=u—2p.

Lemme : 3

L’ensemble des points m pour lesquels ¢,(m)=y, y fixé, est le cercle
e
7(1,(1=y)

=n effet:
l—y=1-¢ (m)=6,(m)=d(1, m)

’ropriété 23 :

Pour tous o, B, y, de B tels que af =0 et a+ =1, ’'ensemble des points m
érifiant: |

® . &y(m)+p . ex(m)=y ;

st le cercle de centre u=a—f et de rayon (1—7).
-ompte tenu de la remarque 13, ’'ensemble des points m considéré se déduit

var 'isométrie m’=um, de ’ensemble des points m’ pour lesquels ¢,(m")=y;

"apres le lemme 3 c’est donc un cercle de rayon (1 —7) et de centre u image
ie 1.
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Propriété 24 :

Une contraction 7 est déterminée par la donnée d’un 1-triplet et de son
image par T.
Soit T la contraction m — wm?4+um-+v=m’. Par hypothése on donne
a, b, ctels que d (a, b)=d (b, ¢)=d (c, a)=1, et leurs images par T : a’, b’, c'.
On a donc:
2

’

a 1 aa v
b'1=(1 b b* u
¢’ 1 ¢ c? W

Sous I’hypothése: « a, b, ¢ est un 1-triplet », la matrice:

a? —b%> —c? b2 —c?>—a? ? —a? —b?
' '=| a—-b—c b—c—a c¢—a—b Jestinverse de of =
—1 -1 —1

—_ = =

o o[

o S8
[\

ce qui détermine v, u, w.

Remarque 14 :

Compte tenu de la remarque 10, </ peut encore s’écrire:

—be —ca —ab
' =| —a —b —c
-1 -1 —1
On en tire:
—v= —a’bc—b’ca —c’'ab
—u= —aa’ —bb’ —cc’
—w= —a’' —b' —¢’

Définition 13 :

On appelle affinité de rapport « € B une contraction pour laquelle il existc
un 1-triplet a, b, ¢ dont 'image est:

a=a; b'=b; ¢’=(1+a)b—aa

Ainsi a et b sont invariants et I'image de ¢ est I’'unique point i, du disque
2° pour lequel d (b, i,) = o . d(a, i,) (propriété 12).

‘d(a,c)=1; d(b,c)=a; d(c,c)=(1—a).

Appliquant les formules de la remarque 14 on détermine:
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v =ab—a)(l —a)
u=1+0b-a)(1—-a)c
w=(b-a{l—-x

d’ot: m' =m+w (m*+cm+ab)
ce qui s’€crit:

‘ m' =m-—w-(1—d(c,m), avec w=(b—a)(l—a) 7(6)

Repérons les points dans la base métrique: { a, ¢ }.

d(c,m") =[(m—c)—w(l—d(c, m)]?
d(c,m’) =d(c, m)+(1 —a) (1 —d(c, m))

d(c,m) =(1—a)+a-d(c, m) (7).

d(a,m’) =[(m—a)—w(l—d(c, m)]?
d(a,m") =d(a,m)+(1 —«) (1 —d(c, m))(1+(b—a)(m—a))
d(a,m") =d(a,m)+(1—a)(1—d(c, m))(b—a)(m—c)

| d(a,m)=d(a, m) (M4

Remarque 15 :

On voit (formules (7)) que les points invariants pour une affinité de
rapport o définie par a, b, ¢ et son image, vérifient:

dc, m)=(1—-a)+pf avec f=u

Il en résulte en particulier que o est un élément caractéristique pour la trans-
formation considérée.

Définition 14 :
Une affinité de rapport nul est une projection.

Ainsi une projection est une contraction pour laquelle il existe un
1-triplet a, b, ¢ dont I'image est:
a'=a; b'=b; ¢'=b
T étant une projection on a pour tout m € A4, repéré dans la base métrique
{a,c}:

d(a:m) T d(aam) T d(aam)
m — ml — m/r
d(c, m) 1 1

Compte tenu des formules (7) pour a=0, d’ot:
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Propriété 25 :
Toute projection est une contraction idempotente.

L’image de A4 est le cercle de centre ¢ et de rayon 1; c’est aussi 'ensemble
des points invariants.

Exemple :
La contraction définie par 0, 1, 2 et sonimage0, 1, 1, (a=a'=0, b=5b"=1,
c=2, ¢'=>b) est une projection

L’image de A4 est le cercle de centre 2 et de rayon 1: c’est B. Elle est
définie par m’=m?.

Remarque 16 :

La propriété 15 montre que sur I'image de A4 par projection il n’existe
pas de triplet équilatéral.

Remarque 17 :

On voit facilement que toute contraction pour laquelle il existe un
I-triplet a, b, ¢ dont I'image est a, a, a envoie tout point m en a.

Définition 15 :
Une application de 4 dans A4 est une similitude de rapport o« € B si pour
tous m, n et leur image m’, n’:

d(m', n")y=ad (m, n)

Ainsi une similitude de rapport « est une contraction. Elle transforme
tout f-triplet en un «f-triplet, tout cercle (resp: disque) de rayon p en un
cercle (resp: disque) de rayon « . p.

Considérons la similitude définie par m’'=wm?+um+v. L’image du
1-triplet a, b, ¢ est un a-triplet: on a nécessairement w=—a’'—b"—c’ (Re-
marque 14)
d’ou w=0 (remarque 10)

Alors u? . d(m, n)=d (m’, n')

Propriété 26 : |
Les similitudes sont les transformations de la forme m — um-+v; le
rapport est u?.
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Propriété 27 :

Une similitude T est déterminée par la donnée d’un 1-biplet et de son

image par 7.
‘a’\ (1 a\ (v
(b’ “\1b) \u

En effet:
Sous I’hypothése d (a, b)=1, la matrice

b2 —ab a® —ab
a—>b b—a

(15)

CHERCHONS MAINTENANT LES POINTS INVARIANTS PAR UNE SIMILITUDE

est inverse de

Si m est invariant par la similitude n - un+v:
m=um-+7v

multipliant successivement par (1—u?), &,(u), €,(1) on en tire respecti-
vement:

(1 —u>)m=(1—-u?)v
eq(u) - v=0
g(u)  -m= —gy(u) v

Ainsi sous la condition nécessaire &,(u) . v=0, I’ensemble des points m
invariants est donné par:

m=(1—-u?>—¢e,(u))v+e)-t, ted
C’est le disque
2
Drt—u - s2)o, s1(w)]
Propriété 28 :

La similitude » - un+v a des points invariants ssi v . &,(z)=0. Dans
cette hypothése ’ensemble des points invariants est le disque

2
@[(1—u —&2(u)).v, el(u)]
Remarque 18 :

Toute similitude a un unique point invariant ssi () =0; c’est (1 +u>)v.
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