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W + II)2 — w +u)2 — u2 l
c'est-à-dire w 0 et u2 1.

Réciproquement toute contraction m -> wm + v avec w2 l conserve les

distances.

Propriété 21 :

Les isométries sont les transformations de la forme :

m -» wm-j- v; avec v, w dans A et u2 1

Aspect matriciel

On a une isométrie a point 0 fixe ssi ° est inversible. D'ailleurs d'après
la propriété 21 elle doit être involutive. Elle est nécessairement de la forme
G a) avec ot + ß=l et aß 0.

Propriété 22 :

Les isométries à 0 fixe sont définies par les matrices avec a, ß

idempotents tels que aß 0; a + ß 1.

Remarque 13 :

L'isométrie m -» um étant associée à la matrice (^), on a: u oc — ß.

Lemme : 3

L'ensemble des points m pour lesquels s1(m) y, y fixé, est le cercle

^(U1 -y)y
En effet:

1—7 1 —s1 (m) <5X (m) =d{ 1, m)

Propriété .23 :

Pour tous a, ß, y, de 5 tels que aß 0 et a + ß 1, l'ensemble des points m
érifiant :

a (m) + ß s2(m) y ;

st le cercle de centre u a — ß et de rayon (1—7).

Eompte tenu de la remarque 13, l'ensemble des points m considéré se déduit
tiar l'isométrie m' um, de l'ensemble des points m' pour lesquels el(m') y ;

d'après le lemme 3 c'est donc un cercle de rayon (1 —7) et de centre u image
le 1.
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Propriété 24 :

Une contraction T est déterminée par la donnée d'un 1-triplet et de son

image par T.

Soit T la contraction m - wm2 + um + v m'. Par hypothèse on donne

a, b, c tels que d (a, b) d (ib, c) d(c, a) 1, et leurs images par T : <z', b\ c'.

On a donc:

a a2\

V1 c c2

Sous l'hypothèse: « a, b, c est un 1-triplet », la matrice:

!a2—b2—c2 b2 —c2 —a2 c2 —a2 —b2\ fl a a2X

1 a—b—c b—c—a c—a—b lest inverse de sé I 1 b b2

-1 —1 —1/ \l c c2 '

ce qui détermine v, u, w.

Remarque 14:

Compte tenu de la remarque 10, sé' peut encore s'écrire:

— bc —ca —ab\

On en tire:

—v —a'bc —b'ca —c'ab

—u —aa' —bbf —cc'

— w —a' —b' —c'

Définition 13 :

On appelle affinité de rapport a e B une contraction pour laquelle il existe

un 1-triplet a, b, c dont l'image est:

a' a\ b' b; c' (l +a) b — aa

Ainsi a et b sont invariants et l'image de c est l'unique point ia du disque
@ah pour lequel d (,b, za) a d (a, za) (propriété 12).

• d(a9 c') 1 ; d (h, c') a ; d (c, c') =(1 —a).

Appliquant les formules de la remarque 14 on détermine:
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v ab (b —a) (1 — a)

u 1 +(b -a) {I —cc)c

w (b —a) (1 — a)

d'où: m, — mJrw(m2-\-cmJrab)
ce qui s'écrit:

m' m — w • (1 — d (c, m)), avec w =(b —a) (1 —a) (6)

Repérons les points dans la base métrique: { a, c }.

d (c, m') [(m —c) — w (1 — d (c, m))]2
d (c, m') d (c, m) +(1 —a) (1 — d(c, m))

d (c, m') (1 — a) 4-a • d(c, m) (J)c

d(a, m') [(m -a) — w(l —d(c, m))]2

d(a, m') d(a, m)+(l — a)(l —d(c, m))(l +(ù —a) (m —a))
d (a, m') d (a, m) +(1 —a) (1 —d (c, m)) (6 —u) (m —c)

d (a, m') d(a,m) (Va

Remarque 15 :

On voit (formules (7)) que les points invariants pour une affinité de

rapport a définie par a, b, c et son image, vérifient:

d(c, m) =(1—a) + ß avec ß ^ oc

Il en résulte en particulier que a est un élément caractéristique pour la
transformation considérée.

Définition 14:

Une affinité de rapport nul est une projection.

Ainsi une projection est une contraction pour laquelle il existe un
1-triplet a, ù, c dont l'image est:

a' —a ; b' =b ; c' =b
T étant une projection on a pour tout me A, repéré dans la base métrique

[a, c):

m

d (a, m)

d (c, m)

m

d (a, m)

m

d (a, m)

1

Compte tenu des formules (7) pour a 0, d'où:
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Propriété 25 :

Toute projection est une contraction idempotente.

L'image de A est le cercle de centre c et de rayon 1 ; c'est aussi l'ensemble
des points invariants.

Exemple :

La contraction définie par 0, 1, 2 et son image 0,1, 1, {a a' 0, b b' 1,

c — 2, c' b) est une projection

L'image de A est le cercle de centre 2 et de rayon 1 : c'est B. Elle est

définie par m' m2.

Remarque 16 :

La propriété 15 montre que sur l'image de A par projection il n'existe

pas de triplet équilatéral.

Remarque 17 :

On voit facilement que toute contraction pour laquelle il existe un
1-triplet a, b, c dont l'image est a, a, a envoie tout point m en a.

Définition 15 :

Une application de A dans A est une similitude de rapport a g B si pour
tous m, n et leur image m', n' :

d (m\ n') ad (;m, n)

Ainsi une similitude de rapport a est une contraction. Elle transforme
tout ^-triplet en un a/Ltriplet, tout cercle (resp: disque) de rayon p en un
cercle (resp: disque) de rayon a p.

Considérons la similitude définie par m' wm2 + um + v. L'image du

1-triplet a, b, c est un a-triplet: on a nécessairement w= — a' — b' — c'

(Remarque 14)

d'où w 0 (remarque 10)

Alors u2 d (m, n) d (m\ n')

Propriété 26 :

Les similitudes sont les transformations de la forme m -> wm + v; le

rapport est w2.



— 183 —

Propriété 27:

Une similitude T est déterminée par la donnée d'un 1-biplet et de son

image par T.

En effet:

Sous l'hypothèse d(a,b)= 1, la matrice

fb2-ab a2— ab\

\a—b b—a

est inverse de

Cherchons maintenant les points invariants par une similitude

Si m est invariant par la similitude n -» un + v :

m —um +v

multipliant successivement par (1 — u2), s1 (u), e2(u) on en bre respectivement

:

(1 — u2) m =(1 —u2)v

ê1(m) • v =0
s2(u) - m — s2(u) - v

Ainsi sous la condition nécessaire s^u) v 0, l'ensemble des points m

invariants est donné par:

m =(1 — u2 —s2(u))v + s^u) -1, te A

c'est le disque

^[(l-u2 —£2(u))v, el(u)]

Propriété 28 :

La similitude n un + v a des points invariants ssi v e1(w) 0. Dans
cette hypothèse l'ensemble des points invariants est le disque

^[(1 — «2 — e2(u)).v, £ 1 (u) ]

Remarque 18 :

Toute similitude a un unique point invariant ssi e1(«) 0; c'est (1 +w2)v.
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