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Appliquons maintenant la propriété 18:

T(a) 81(a)'T(l) + s2(a)'T(2)
d'où: T(a) a (T(2)-T(l)) + a2 (-T(2)-T(l))
Montrons que réciproquement toute transformation T:

T (ä) — wa2 + ua + v ; v, u, w dans A

est une contraction:

d (T(a), T(b)) [w (a2 —b2)+u (a —b)~\2

— d (a, b) • [w (a +b)+u~]2 d (a, b)

Propriété 19 :

Les contractions sont les transformations de la forme m->wm2 +
+ um + v; v, u, w étant des éléments de A.

Aspect matriciel

Soit T une contraction a 0 fixe: T(m) 81(m). r(l) + e2(^) • T(2).

Appliquons la propriété 18 à T(l) et T(2)

T(l) 0ii-0i2
T(i) d21-e22

On obtient:

/8i(r(m))\ n (s1(m)\
\s2(T(m))y a \e2(m)J

la matriceH =(o11 ^21 étant à coefficients dans B avec les éléments de
\" 1 2 Ö 2 2/

chaque colonne orthogonaux.

Réciproquement une matrice ^ définit une application de A dans A

pourvu que les deux éléments de [[=] (^(mj)] s°ient orthogonaux ce qui
impose l'orthogonalité des éléments de chaque colonne pour }=j. On se

ramène alors à la forme wm2 + um ce qui montre que la transformation
définie par § est une contraction.

Propriété 20 :

Les contractions à 0 fixe sont définies par les matrices § à coefficients
dans B orthogonaux pour chaque colonne.

Supposons que m -* wm2 + um-\-v soit une isométrie. L'appliquant au

1-triplet 0, 1, 2 on en tire les conditions nécessaires:
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W + II)2 — w +u)2 — u2 l
c'est-à-dire w 0 et u2 1.

Réciproquement toute contraction m -> wm + v avec w2 l conserve les

distances.

Propriété 21 :

Les isométries sont les transformations de la forme :

m -» wm-j- v; avec v, w dans A et u2 1

Aspect matriciel

On a une isométrie a point 0 fixe ssi ° est inversible. D'ailleurs d'après
la propriété 21 elle doit être involutive. Elle est nécessairement de la forme
G a) avec ot + ß=l et aß 0.

Propriété 22 :

Les isométries à 0 fixe sont définies par les matrices avec a, ß

idempotents tels que aß 0; a + ß 1.

Remarque 13 :

L'isométrie m -» um étant associée à la matrice (^), on a: u oc — ß.

Lemme : 3

L'ensemble des points m pour lesquels s1(m) y, y fixé, est le cercle

^(U1 -y)y
En effet:

1—7 1 —s1 (m) <5X (m) =d{ 1, m)

Propriété .23 :

Pour tous a, ß, y, de 5 tels que aß 0 et a + ß 1, l'ensemble des points m
érifiant :

a (m) + ß s2(m) y ;

st le cercle de centre u a — ß et de rayon (1—7).

Eompte tenu de la remarque 13, l'ensemble des points m considéré se déduit
tiar l'isométrie m' um, de l'ensemble des points m' pour lesquels el(m') y ;

d'après le lemme 3 c'est donc un cercle de rayon (1 —7) et de centre u image
le 1.
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