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Remarque 1 :

i) Dans A tout carré est idempotent (a*=a?).
On note B I’ensemble des idempotents.

ii) a®>=0 est équivalent & a=0

iii) 4a=a pour tout a € 4.

MONTRONS QUE TOUT 3-ANNEAU EST COMMUTATIF

Pour tout ae 4, tout a € B, a=1l.a=(1—a) a+oa d’ou: ax=(1 —a) ax+
+oao

De [(1—a) ax)®>=0 on tire (Remarque 1, ii)] ao—oax=0

De méme aa—aax=0
et par conséquent aa=ao: on dit que les idempotents de 4 sont centraux.

Ainsi on a: a (a®+b)*>=(a*+b)*a (Remarque 1, i))

Soit a (a®*+a*b+ba* +b?*)=(a*+a’*b+ba*+b?*)a

a+ab+aba® +ab*=a+a*ba+ba+b’a
2ab=2ba

d’ou (Remarque 1, iii)): |ab = ba| tous a, b, dans A.

Remarque 2 :

B, ensemble des idempotents de A, muni de la somme: o @ f=a+f+aff
et du produit «ff (produit dans A) est un anneau booléen.
Le sup et le inf s’expriment avec les opérations dans A4:

[yAS =70
YVO=y+0—y0
Lemme 1 :
Pour tous a, b, ¢ de A4, ’'expression:
(a —=b)*v (b —0)?,
est symétrique en a, b, c.
En effet: (a—b)*>=a®+b*+ab et par suite (remarque 2):

(a —=b)*v (b —c)* = a®> +b*+c? —a?b? —b%c? —c2a® —a*be —b%ca —c2ab .

Propriété 1 :
L’application d de 4* dans B (Remarque 2) définie par:
d(a,b) = (a —b)* .

est une distance (booléenne).
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En effet:
i) (a—b)? =0 ssi (a—b) = 0 (Remarque 1, ii))
i) (a—b)? = (b—a)?
1) D’aprés le lemme 1 on a:
(a—c)*v (c—b)*=(a—b)*v (b—c)? et par conséquent:
(a—c)*> =(a—b)*v (b—c)?.

Remarque 3 :
De d(a, b) = a*>+b*+ab et a*v b> = a®*+b*—a*b?, on tire:

a’*v b* =d(a, b)+e (a, b)

en posant: e (a, b)= —ab—a?*b*?
e (a, b) est idempotent et e (a, b) . d (a, b)=0
D’autre part: a.e(a, b)=b.e(a, b)=—(a+b) . e(a, b).

Définition 3 :
On appelle diamétre d’une partie £ de A4:

v d )|,
(e, f) e E?

lorsque ce sup. existe (dans B).

Remarque 4 :
1) Le diamétre d’une partie finie est toujours défini.
ii) Si E={a, b} le diamétre de E est la distance des points a et b.

ii1) Méme pour E fini si Card E = 3 il n’existe pas nécessairement deux
points a et b dans E pour lesquels d (a, b)=diamétre de E, car B
n’est pas totalement ordonné.

Définition 4 :
Un cercle € (, ,, de centre r € 4 et de rayon pe B est 'ensemble des
points m € A tels que:
d(r, m)=p
Ainsi me 6, , ssi: (r—m)*>=p
multipliant successivement par pr?, p(1—r?), (1—p)r?, (1—p)(1—r?),
il vient respectivement:
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pr*m? +prm =0
p(L—r)=p(l—r*) m?
m(1—p)r*=(1—p)r
m?(1 —p)(1 =r*)=0

On en déduit:

C i py={ mim=1—p) r—pre+p (1—r?)n} 1)
avec ¢ € B et n inversible dans A4

Lemme 2 :

Pour tout « € B il existe un unique idempotent sur le cercle €, ;).

Pour tout a inversible dans A il existe un unique élément inversible sur le
cercle €, 1.

En effet: %, ={m/m=—ae+(1—a)n}; m idempotent implique
e=0etn=1doum=1—-a

Ca.1y=1{m/m=—ae}; m inversible implique e=1 d’ou m= —a.

Propriété 2 :

Pour tout cercle le diamétre est égal au rayon.

Pour tout point d’un cercle il existe un unique point « diamétralement
Oppose ».

En effet:
Soient my et m, sur le cercle €, , : I'inégalité triangulaire entraine:
d(my, my) =d(my,r) v d(r, my)=p. On va montrer que p est atteint.
(my—my)= —prle; —e]+p (1 —1*)[ny —n,]
d(my, my)=p[rd (e, &)+ —ry)d(ng,ny)
Fixons m,: d’apres le lemme 2 il existe un unique ¢, tel que d (¢, £,)=1

¢t un unique n, tel que d(ny,n,)=1, donc un unique m, tel que
d<m1)m2)=p'

Définition 5 :

1) a, b, c est un triplet équilatéral si d(a, b)=d (b, ¢)=d (c, a).
On dira aussi: a-triplet, pour désigner un triplet équilatéral de dis-
tance commune «.

i) a, b est un a-biplet si d (a, b)=o.

De la propriété 2 on déduit les propriétés suivantes:
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Propriété- 3 :

Pour tout p-biplet m,, m, de €, ,, (points « diamétralement opposés »)
le triplet r, m,, m, est équilatéral.
Propriété 4 :

Etant donné deux points il existe un unique triplet équilatéral les conte-
nant.
Propriété 5 :

Pour tout biplet a, b, €, a(a pyy €t B (b,4(a,5y) Ot UN UNique point commun.
Remarque 5 :

i) sid(ry,ry) > pyvpyalors €, 0 O Gy py) = ¢

il) La formule (1) montre que:

Cott=-pnoa-rm) < Cup

Plus généralement on va montrer que:

Propriété 6 :

Si I'intersection de deux cercles €,, ,,) et %, ,, n’est pas vide elle est
contenue dans un cercle de rayon p, . p,.

Soit m € €, ) 1l existe ¢ € B et n inversible dans A4 tels que:
m=(1—p)r —pirie+p; (1 —r)n.
Maintenant on suppose m € €, .-
De m=(1—p,) m+p,m=((1—p,) m+p,rym+p, (1—ry) m, on tire:
m=(1—py)ry+p, (L—py) vy +por5 [ —psry e+ py (1 =13) n| +
+p, (1 =r) [ —pirie+p, (1 =1 n],

avec la condition: p,p, (1—r})ron=—r, pp, (1—r3). Cette formule du
type (1) définit un cercle, qui contient €,, ,;) N G ry,p9)> €t de rayon:

Pz"g (P17'% +p,(1 “7'%)( +p, (1 —rg_) (P17']7f +p, (1 _"%)) ’
c’est-a-dire p; . p,.
Définition 6 :
Un disque 9, de centre s€ A et de rayon o € B est I’ensemble des

points m € A tels que:
d(s,m)=a
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Ainsi me Dy, ssi: (s—m)* =0
soit (s—m)? (1—a) =0 ou encore (s—m) (1—0g) =0
c’est-a-dire m (1—0) =s(1—0)

‘@(S’a)={m/m=(l—a)s+at} avec teA‘ (2)

Définition 7 :
On appelle ceur du disque D . le point s. = (1—0) s.
On appelle couronne du disque D, . le cercle € 4.

Propriété 7 :
Tout point d’un disque 2 est centre de Z.
En effet: pour tous my, m,, de D4 q):
dim, my) =d(my, s) v d(m,,s)=a
Prenant le centre au cceur du disque:
Ds..0p = { Mm=5.+ 0t }
m est dans la couronne ssi:
d(m, s,)=0ct*=0, Ccest-a-dire o = >

C’est toujours le cas si ¢ est inversible.

Propriété 8 :
Tout disque 2 de rayon ¢ peut €tre engendré par:

i) La famille des cercles %, ,, centrés en un point s fixe de & et le
rayon y parcourant [0, o].

ii) La famille des cercles %, ,y dont le centre parcourt la couronne de
2 et le rayon est o.

La premicre famille: définition 6 et propriété 7.

La deuxiéme famille: puisque pour tout me 9, %, ,, < 2, il reste a
montrer que pour a € 9 il existe m de la couronne de & tel que a € %, ).
S0it a=s,+ ot et m=s,+on. '

Si nous choisissons » inversible, m sera dans la couronne. Prenons
n=—t+(1—1*). Alors d (m, a)=0 (n—1)*=0. Cqfd
Propriété 9 :

Si I'intersection de deux disques n’est pas vide, c’est un disque dont le

rayon est le produit des rayons.

L’Enseignement mathém., t. XVII, fasc. 2. 13
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En effet: soient & et 2’ de rayons respectifs o et ¢’ et qui ont le point s
en commun ; prenons s comme centre commun: 2 N 2’ c’est '’ensemble des
m tels que d (s, m) = o et d(s,m) =c¢" d’ou d (s, m) = oo’.

Considérons la famille des disques contenant deux points a et b: ils
admettent tous a pour centre; leur rayon est supérieur ou égal a d (a, b).

Définition 8 :

Le disque D, a4 py) €t dit engendré par les points a et b. On le note 9
Ainsi, deux points d’un disque de rayon ¢ engendrent ce disque si leur dis-
tance est égale & o (o-biplet).

Remarque 6 :

Compte tenu de la remarque 3 le ceeur du disque 9 est

so=a-e(a,b)=b-e(a,b)= —(a+Db) e(a,b)

Propriété 10 :

2" est ’ensemble des points m tels que

d(a,m) v d(m, b)y=d (a, b)
En effet: m e 2°° implique d (a, m) v d(m, b) = d (a, b) rayon du disque
(Propriété 7): comme d’autre part on a 'inégalité triangulaire:
d(a,m) v d(m,b) =d(a,b),

I’égalité en résulte.
Maintenant si 'on a d(a, m) v d(m,b)=d(a, b) on a aussi (lemme 1)
d(am) v d(ab)=d(a, b) d’ol d(a, m) =d(a, b) et donc me D, 40a,py)=
=9,
Définition 9 :

Etant donnés les points a, b et 'idempotent «, on appelle médiateur de
(a, b) a I’ordre o et on note 4% ’ensemble des points m tels que d (m, a)=
o d(m, b).
Pour a=1 on dit simplement médiateur de (a, b) et on note £,

Pour déterminer .#“° on multiplie successivement d (a, m)=oa.d (b, m)
par a et (1 —o); il vient respectivement:

a(a® —b*+(a—b)m)=0
(1-0)a=(1—-a) m

m est donc nécessairement de la forme:
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m=(1—a)a—oad(a,b)(a+b)+a(l—-d(a,b)).t avec teA.

Réciproquement tout m de cette forme vérifie (1 —o) m=(1—a)a et par
conséquent (m—a)=a (m—a). On a donc:

(m —a)?* —a (m —b)? =aa® +aam —ab® —abm
=(a —b)[a(a+b)d(a, b)+d(a,b)am]
=(a —b) [oc(a +b)d(a,b)—ad(a,b)(a+b)]=0

M‘;”:{ m/m=(1 —«)a —ad (ab)(a +b)+a (1 —d(ab))t} te A| (3)

Propriété 11 :

Le médiateur de (a, b) & I’ordre o est un disque de rayon o.(1 —d (a, b)).

Remarque 7 :
Le médiateur .#* de (a, b) est:

MP={m/m= —(a+b)d(a,b)+(1 —d(a,b)).t} te4
Etudions M% n 2, cest-a-dire cherchons les points m du disque
engendré par (a, b) tels que d (a, m)=ad (b, m):

i) D’apres la propriété 9, si cette intersection n’est pas vide c’est un
disque de rayon nul donc un point.

ii) m=(14+a) a—ab est un point de 4% (t= —(a+b)); c’est aussi un
point de 2* puisque:
d(a,m)=a.d(a,b)=d(a,b)

Propriété 12 :

I1 existe un point m et un seul, sur le disque engendré par a et b, tel que
d (a, m)=od (b, m), c’est:

i,=(4+a) a—ab

Remarque 8 : |
d(a,i)=od(a,b); d(b,i)=d(a,b).
L’ensemble des points 7,, o décrivant B, est le cercle €, 4,5y, Puisque si m

est un point de ce cercle d (am) = d (ab) entraine d (a, m)=d (a, m), d (ab)
et m= id(a,m)'

On remarquera d’autre part que pour tout o, les points b et i, engendrent
2%,
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Remarque 9 :

Notant simplement i lorsque a=1, i= —(a+b)

Définition 10 :
On appelle milieu de (a, b) le point i de P*° équidistant de a et b.

Propriété 13 :
Tout triplet de points dont 'un est le milieu des deux autres, est équi-

latéral.
Pour tout triplet équilatéral chaque point est le milieu des deux autres.

La premiére assertion résulte de la remarque 8 pour a=1.
Maintenant soit (a, b, ¢) un triplet équilatéral: alors chaque point appartient
au disque engendré par les deux autres.

Propriété 14 :
Pour tout m e .4 on a d(a,i) = d(a, m)
C’est-a-dire: d(a,i) est la plus petite distance pour m parcourant le
médiateur de (a, b). En effet:
d(ai)=d(ab)=d(am)v d(m,b)=d(a, m)

On voit de plus en plus que si d(a,i)=d (a, m) alors m=i ...

Propriété 15 :

Quand ils sont distincts, les trois points d’un triplet équilatéral ne sont
jamais cocycliques.

Soit a, 7, b un triplet équilatéral et %, ,) un cercle circonscrit:

d(r,a)=d(r,i) v d(i,a) =>d(r,a)=d (i, a)

ce qui est absurde (propriété 14) si les points sont distincts.

Remarque 10 :

Pour tout a-triplet a, b, c:
a+b+c=0
a?+b*+c2=ab+bct+ca= —u
a—-b=b—-c=c—a
a* —b? —c*= —bc...etc ...
a—b—c=—a...etc...
a’> —bc=a ...etc ...

Comme le montre la remarque 9.
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Propriété 16 :
Pour tous a, b 'ensemble des points m tels que d (a, m) . d (b, m)=0
est le cercle € 4,5 avec i milieu de a, b.

Procédons par équivalences:
d(a,m)-d(b,m)=0
(a —m)? - (b—m)*=0
(a—m) - (b—-—m)=0
m? —am —bm+ab=0
m>+m(—a—b)=a*+a(—a—>b)

i milieu de a, b, et i24+m?+mi=i*+a’+ai

d(i,m)=d(i,a)=d (a, b) .

Définition 11 :

Une partie E de A4 est une base métrique si pour tous a, b de A4:

d(a, e)=d (b, e) pour tout e € E implique a=5b

Remarque 11 :
Il n’existe pas de base métrique a un élément.

Si e=0, d(a,e)=d(—a,e) et a # —a pour a # 0.
Sie #0,d(0,e)=d(—e,e).

La définition 11 peut s’interpréter ainsi: E est une base métrique st pour
tous a, b, de A4:

« E < M implique a=b »

Comme le diamétre de .4 est [1—d (a, b)] (propriété 11), on voit que sile
diamétre de E est 1 alors E est une base métrique. Nous avons 1a une condi-
tion suffisante 1.

Considérons une partie £ de A Card E = 2 vérifiant I’hypothése: il
existe un idempotent § non nul tel que pour tout (e f,) € E2, B. d (e, £.)=0
Alors fe=ff. Pour e choist dans F on a:

1) La condition nécessaire et suffisante est la suivante:
Soit X = Spec B le dual de B et w,, I’of associé canoniquement a d (a, b). On pose ) =

(e,f) € E2 “el
E est une base métrique ssi () est dense dans X. On remarquera que d (a, €) = d (b, e)
et d(a,f) = d(b,f) impliquent d (a, b) . d (e, f) = 0 c’est-a-dire w,, N Wep = I ...
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d(0,f)=d(—pe,f) pour tout fe E
ce qui montre que E n’est pas une base métrique si fe # 0.
Envisageons donc le cas ol pour tout e € E, fe=0:

d (B, e)=d(—p, e) pour tout ec E
ce qui montre encore que E n’est pas une base métrique.

On suppose maintenant que E est fini; le diamétre de E existe toujours

dans ce cas et s’il n’est pas égal a 1 nous sommes dans I’hypothése précé-
dente (f...)

Propriété 17 :

Une partie E de 4, ayant n éléments; n = 2, est une base métrique ssi
le diamétre de E est 1.

Soit E={ ey, e, } avec d(ey, e,)=1:E est une base métrique. Tout
point a est caractérisé par les deux idempotents d (a, e,), d(a, e,). On a:

d(a,e;)—d(a,e,) =e% —e% +a(e; —ey)

Co: [ a=—(es+e)+(es—e,)(d(@,e) —d(a,e)) 4)

En particulier on pourra choisir ey, e,, parmi 0, 1, 2. d(a, 0)=a?;
d(a,1)=a*+a+1; d(a,2)=a*—a+1. Le choix: e;=1, e,=2, annule
(e; +e,) dans la formule (4). Posant §,(a)=a*+a+1 et §,(a)=a*—a+1
il vient:

a= —94d,(a)+d,(a) (4 bis)

Posons &,(a)=1-06,(a)= —a—a?; e,(a)=1-5,(a)=a—a? Les idem-
potents ¢,(a), ¢,(a) sont orthogonaux et:

a= —06,(a) +d,(a) =(1 —6,(a)) —(1 =9, (a)) =&;(a) —e&,(a).
Réciproquement soient o et f deux idempotents orthogonaux tels que
a=ao—p.

Il vient a?=a+p d’ott [ o= —a—a’=¢,(a)
B=a—a*=¢,(a).

Propriété 18 :

Pour tout a € 4 il existe un couple unique d’idempotents orthogonaux
e1(a), &,(a), tels que:

a=¢;(a) —&,(a)
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Définition 12 :
i) On appelle contraction une application T de A dans A4 telle que pour
tous a, b, de A: |

d(T(a), T(b)) = d (a, b)

i1) On appelle isométrie une application de A dans A qui conserve les
distances.

ii1) On appelle franslation et on note %, v € A, I'application de A dans
A:m—> m+v.

Remarque 12 :

1) L’ensemble des contractions (resp: des isométries; resp: des transla-
tions) est stable pour la composition des applications de 4 dans A.

ii) Toute isométrie est une contraction.

iii) Toute translation est une isométrie.

Soit 7" une contraction: T=%_1. o, 0 T” est une contraction: 7 (a)=
=T"(a)—T'(0); elle laisse O fixe.

Etudions les contractions T & 0 fixe '):

[ T(0)=0
d(T(a), T(b)(= d (a, b)

- T*@)=d(T(0), T(a)) = d (0, a)=a?, d’olt pour a € B: T*(0a) = (0a)? = o
ce qui implique 7 (aa)=oa. T(aa)

- Par suite (7' (0a) —«.T(@))? =a.d(T(aa), T(a)) = o.d(xa, 2)=0 d’olt
T(aa)=o- T(a)

D’autre part:

(T(a+b) = T(a) - T(b))* = d (T(a+b), T(@) v T (b)
=<d(a+b,a) v T*(b)

= b?

. Comme a et b jouent des rdles analogues, cette expression est inférieure ou
égale & a®.b” et par conséquent:

a*b=0=T(a+b)=T(a)+ T(b)

') T2 (a) représente le carré de I’élément T (a) de A; c’est encore d (0, T (a)).

JEE =
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Appliquons maintenant la propriété 18:
T(a)=¢s(a) - T(1) +&x(a) - T(2)
d’ol: T(@)=a (T RQ)—-T ())+a* (-T (2)—T (1))

Montrons que réciproquement toute transformation 7
T (a)=wa*+ua+v ; v,u, wdans 4,
est une contraction:
d(T(a), T(b))=[w(a*®=b*) +u(a —b)]* =
=d(a,b)-[w(a+b)+u]*=d(a,b)
Propriéte 19 :

Les contractions sont les transformations de la forme m — wm?+
+um+v; v, u, w étant des éléments de A.

ASPECT MATRICIEL

Soit T une contraction a 0 fixe: T (m)=¢,(m). T (1)+¢&,(m) . T (2).
Appliquons la propriété 18 a 7 (1) et 7T (2)

T(l) = 911 - 912
T(2) = 921 - 922

<81<T<m>)>=g, 3 <m>>
€ (T(m)) H \ ey (m)

. 0,,0 , . i ..,
la matrlce% =<611 621> étant & coefficients dans B avec les éléments de
12V22

chaque colonne orthogonaux.

On obtient:

Réciproquement une matrice 5 définit une application de A4 dans A4
pourvu que les deux éléments de [3 . (:{m))] soient orthogonaux ce qui
impose 1’orthogonalité des éléments de chaque colonne pour 5. On se
raméne alors a la forme wm?+um ce qui montre que la transformation

définie par g est une contraction.

Propriété 20 : ,
Les contractions & O fixe sont définies par les matrices 5 a coefficients
dans B orthogonaux pour chaque colonne.

Supposons que m — wm?+um+v soit une isométrie. L’appliquant au
I1-triplet 0, 1, 2 on en tire les conditions nécessaires:

TR TS AW A PP Y
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