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Remarque 1 :

i) Dans A tout carré est idempotent (a4 a2).

On note B l'ensemble des idempotents.

ii) a2 0 est équivalent ha — 0

iii) 4a a pour tout a e A.

Montrons que tout 3-anneau est commutatif

Pour tout a g A, tout oce B, a=l.a (l—a) a + oca d'où: aa (l — a) aa +
+ aaa

De [(1— a)aa)2 0 on tire (Remarque 1, ii)] aoc — ocaoc 0

De même aa — ocaot 0

et par conséquent aa aa: on dit que les idempotents de A sont centraux.
Ainsi on a: a (a2 + b)2 (a2 + b)2a (Remarque 1, i))
Soit a (a2 + a2b + ba2 + b2) (a2 + a2b + ba2 + b2)a

a + ab + aba2 + ab2 a + a2ba + ba + b2a

2ab=Iba

d'où (Remarque 1, iii)): ab ba tous a, b, dans A.

Remarque 2 :

B, ensemble des idempotents de A, muni de la somme : a © ß — a + ß + aß
et du produit aß (produit dans A) est un anneau booléen.

Le sup et le inf s'expriment avec les opérations dans A :

| y a <5 y <5

jyv<5 =y + ô —yd

Lemme 1 :

Pour tous tf, b, c de A, l'expression:

(a —b)2v (b —c)2

est symétrique en a, b, c.

En effet: (a — b)2 a2 + b2 + ab et par suite (remarque 2):

(a -b)2v(b -c)2 a2 +fe2 +c2 -a2fr2 -fc2c2 -c2a2 -a2bc-b2ca -c2ab

Propriété 1 :

L'application d de A2 dans B (Remarque 2) définie par:
d(a, b) (a — b)2

est une distance (booléenne).
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En effet:

i) (a — b)2 0 ssi (a—b) 0 (Remarque 1, ii))

ii) («a — b)2 (b — a)2

iii) D'après le lemme 1 on a:

(ia — c)2v{c — b)2 (a — b)2v(b — c)2 et par conséquent:

(a — c)2 {a — b)2 v (b — c)2

Remarque 3 :

De d(a, b) — a2 + b2 + ab et a2 v b2 a2 + b2 — a2b2, on tire:

a2vb2 d (a, b) + e (a, b)

en posant: e {a, b) — —ab — a2b2

e {a, b) est idempotent et e (<a, b) d (a, b) 0

D'autre part: a e (a, b) b e (a, b)= —(a + b). e (a, b).

Définition 3 :

On appelle diamètre d'une partie E do A:

V d{e,f)\9
{e,f)eE2

lorsque ce sup. existe (dans B).

Remarque 4 :

i) Le diamètre d'une partie finie est toujours défini.

ii) Si E= { a, b] le diamètre de E est la distance des points a et b.

iii) Même pour E fini si Card E ^ 3 il n'existe pas nécessairement deux

points a et b dans E pour lesquels d (<a, b) diamètre de E, car B

n'est pas totalement ordonné.

Définition 4 :

Un cercle ^ (rjP) de centre r e A et de rayon pe B est l'ensemble des

points me A tels que :

d (r, m)=p

Ainsi me^(r)P) ssi: {r — m)2 p
multipliant successivement par pr2, p(l—r2), (1 —p)r2, (1— p)(l— r2),

il vient respectivement:
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pr2m2 Apr m =0
p (1 —r2)—p (1 -r2) m2

m (1 — p) r2 1 —p) r
m2 (1 — p) (1 —r2) —0

On en déduit:

^(r,p) { m/m (\-p)r-prs + p (1 -r2) n }

avec se B et n inversible dans A

Lemme 2 :

Pour tout a e B il existe un unique idempotent sur le cercle

Pour tout a inversible dans A il existe un unique élément inversible sur le

cercle al
En effet: { tn/m= — as + (l — a) n }; m idempotent implique

5 0 et n 1 d'où m= 1—a

^(fl>i) { m/m= — as }; m inversible implique s= 1 d'où m — a.

Propriété 2 :

Pour tout cercle le diamètre est égal au rayon.
Pour tout point d'un cercle il existe un unique point « diamétralement

opposé ».

En effet:
Soient mi et m2 sur le cercle l'inégalité triangulaire entraîne:

d (mu m2) — d (ml9 r) v d (r, m2) p. On va montrer que p est atteint.

(ml -m2)= -pr[st -e2] -r2)[n1 -n2]
d (m1, m2)=p [ rd(el5e2) +(1 -r2) d

Fixons m1 : d'après le lemme 2 il existe un unique s2 tel que d (s1? e2) 1

et un unique n2 tel que d(nun2)= 1, donc un unique m2 tel que
d (m1, m2) p.

Définition 5 :

i) a, b, c est un triplet équilatéral si d (<a, ù) <i (ù, c) d(c, a).
On dira aussi: a-triplet, pour désigner un triplet équilatéral de
distance commune a.

ii) a, b est un a-biplet si d(a, b) a.

De la propriété 2 on déduit les propriétés suivantes:
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Propriété 3 :

Pour tout p-biplet mu m2 de ^(#.jP) (points « diamétralement opposés »)
le triplet r, ml9 m2 est équilatéral.

Propriété 4 :

Etant donné deux points il existe un unique triplet équilatéral les contenant.

Propriété 5 :

Pour tout biplet a, b, ^(a)d(a}b)) et ont un unique point commun.

Remarque 5 :

i) si d (ru r2) >Plvp2alors#(ri;Pl) n ^(n,P2) <t>

ii) La formule (1) montre que:

^ <1.(1 - p), p (1 - r2» C # (r, p)

Plus généralement on va montrer que:

Propriété 6:
Si l'intersection de deux cercles ^(rl,P1> et ^(r2,P2) n'est pas vide elle est

contenue dans un cercle de rayon p± p2.

Soit m g il existe s e B et n inversible dans A tels que:

m =(1 -Pi)rt -PiVis(1 n

Maintenant on suppose m g r2,p2):

De m (l —p2) m + p2m (l —p2) m + p2r1m + p2 (1 — rx) m, on tire:

m =(1 -p2) r2 + p2 (1 -Pj) ^ +p[-Pi^i e +Pi (1 -r?) "] +
+ P2 (1 ~rï)[—Piri £ +Pi (1 —rï)w]

avec la condition: P1P2(1— ri) rln—P1P2 (1— rCetteformule du

type (1) définit un cercle, qui contient ^(n,P]) n ^(r2,P2), et de rayon:

P2rl (Pi'"î +Pi(l -riX +P2 (1 -^2) (Pi^i +Pi (1 ~r\)),
c'est-à-dire Pi p2-

Définition 6 :

Un disque de centre s g ^ et de rayon cr g B est l'ensemble des

points me A tels que :

d (s, m) ^ g
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Ainsi m e 0(s><T) ssi: (s-m)2 ^ g

soit {s-m)2 (1 -g) 0 ou encore (s-m) (1 -g) 0

c'est-à-dire m (1 — g) s (1 — g)

{ m/m (1 -g) s + at } avec te A | (2)

Définition 7 :

On appelle cœur du disque @(S,a) Ie point So (1 — cr) s.

On appelle couronne du disque le cercle ^^o>ay

Propriété 7:

Tout point d'un disque est centre de Q).

En effet: pour tous m1? m2, de ^(Sj<r):

d (m1? m fi) ^ d (m1? s) v d (m2, s) ^ g

Prenant le centre au cœur du disque:

% j(T) { m/m So + ot}
m est dans la couronne ssi:

d (m, s0) ot2 cr c'est-à-dire o ^ t2

C'est toujours le cas si t est inversible.

Propriété 8 :

Tout disque Q) de rayon g peut être engendré par:

i) La famille des cercles ^(S,y) centrés en un point s fixe de Çè et le

rayon y parcourant [0, o].

ii) La famille des cercles dont le centre parcourt la couronne de

Q) et le rayon est g.

La première famille: définition 6 et propriété 7.

La deuxième famille: puisque pour tout m e il reste à

montrer que pour a e 3) il existe m de la couronne de 2) tel que a e ^(m5<T).

Soit a s0 + ot et m — s0 + on.

Si nous choisissons n inversible, m sera dans la couronne. Prenons
n — t + (1 — t2). Alors d (m, d) o (n — t)2 o. Cqfd

Propriété 9 :

Si l'intersection de deux disques n'est pas vide, c'est un disque dont le

rayon est le produit des rayons.

L'Enseignement mathém., t. XVII, fasc. 2. 13
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En effet: soient Çè et Sf' de rayons respectifs g et g' et qui ont le point ^

en commun; prenons s comme centre commun: n Q)' c'est l'ensemble des

m tels que d (s9 m) ^ g et d {s, m) ^ g' d'où d {s, m) ^ gg

Considérons la famille des disques contenant deux points a et b: ils
admettent tous a pour centre; leur rayon est supérieur ou égal à d(a, b).

Définition 8 :

Le disque ^^a>d(a,b)) est dit engendré par les points a et b. On le note Q)ab

Ainsi, deux points d'un disque de rayon g engendrent ce disque si leur
distance est égale à g (cr-biplet).

Remarque 6 :

Compte tenu de la remarque 3 le cœur du disque @ab est

s0 =a - e (a, b) b • e (a, b) —(a +b) * e (a, b)

Propriété 10 :

@ab est l'ensemble des points m tels que

d (a, m) y d (m, b) d (a, b)

En effet: m e @ab implique d (<a, m) y d (m, b) ^d (a, b) rayon du disque

(Propriété 7): comme d'autre part on a l'inégalité triangulaire:

d (a, m) y d (m, b) ^d (a, b)

l'égalité en résulte.

Maintenant si l'on a d (a, m) y d (m, b) d (a, b) on a aussi (lemme 1)

d (am) y d(ab) d(a, b) d'où d (a, m) ^ d (a, b) et donc m e @(aÀ(a>b))

@ab.

Définition 9 :

Etant donnés les points a, b et l'idempotent a, on appelle médiateur de

(a, b) à Vordre a et on note Jiab l'ensemble des points m tels que d (m, a)

a d (m, b).

Pour a 1 on dit simplement médiateur de (a, b) et on note Jtab.

Pour déterminer Jlab on multiplie successivement d(a,m) a.d{b,m)

par a et (1—a); il vient respectivement:

a (a2 —b2+(a—b) m) 0

(1 —a) a =(1 —a) m

m est donc nécessairement de la forme:
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m =(1 — a) a — ad (a, b) (a + b) + a (1 — d(a, b)) t avec te A

Réciproquement tout m de cette forme vérifie (1— a)m (l — a) a et par
conséquent (m — a) a {m —a). On a donc:

(m —a)2 — a (m —b)2 oca2 +ocam —ab2 —ahm

— {a — b) [a (a + b) d(a, b) +d (a, b) am]
(a —b) [a (a + b) d (a, b) -ad (a, b) (a + b)] =0

^ { m/m =(1 —a) a —ad (ab) (a+b) + a(l —d (aZ?)) t } t e A (3)

Propriété 11 :

Le médiateur de (a, b) à l'ordre a est un disque de rayon a.(l — d(a, b)).

Remarque 7 :

Le médiateur Jiab de (a, b) est :

Jiah { m/m — —(a + b)d (a, b) +(1 —d (a,b)) t) te A

Etudions Jéab n @ab, c'est-à-dire cherchons les points m du disque
engendré par (a, b) tels que d (a, m) — ad (<b, m) :

i) D'après la propriété 9, si cette intersection n'est pas vide c'est un
disque de rayon nul donc un point.

ii) m —(\ A a) a —ab est un point de Jiab (t — (a + b)) ; c'est aussi un
point de Q)ab puisque:

d (a, m) a.d (a, b) d (a, h)

Propriété 12 :

Il existe un point m et un seul, sur le disque engendré par a et b, tel que
d (a, m) ad (b, m), c'est :

za =(1 -fa) a — ab

Remarque 8 :

d (a, za) ad (a, Z?) ; d (Z?, ij d (a, Z>)

L'ensemble des points zaJ a décrivant B, est le cercle puisque si m
est un point de ce cercle d (am) ^ d (ab) entraîne d (a, m) d(a, m), d(aZ?)
et id(a,my

On remarquera d'autre part que pour tout a, les points b et z'a engendrent
9ab.
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Remarque 9 :

Notant simplement i lorsque a=l, i= — (a + b)

Définition 10 :

On appelle milieu de (a, b) le point i de @ab équidistant de a et b.

Propriété 13 :

Tout triplet de points dont l'un est le milieu des deux autres, est équi-
latéral.

Pour tout triplet équilatéral chaque point est le milieu des deux autres.

La première assertion résulte de la remarque 8 pour a=l.
Maintenant soit (a, b, c) un triplet équilatéral : alors chaque point appartient
au disque engendré par les deux autres.

Propriété 14 :

Pour tout m e Jlah on a d (a, i) ^ d (<a, m)

C'est-à-dire : d (a, i) est la plus petite distance pour m parcourant le

médiateur de (a, b). En effet:

d (a i) =d (a b) d{a m) v d (m, b) =d(a, m)

On voit de plus en plus que si d (<a, i) d (a, m) alors m i...

Propriété 15 :

Quand ils sont distincts, les trois points d'un triplet équilatéral ne sont

jamais cocycliques.

Soit a, /, b un triplet équilatéral et un cercle circonscrit:

d (r, a) ^ d (r, i) v d (i, a) => d (r, a) ^ d (i, a)

ce qui est absurde (propriété 14) si les points sont distincts.

Remarque 10 :

Pour tout a-triplet a, b, c:

a +b +c 0

a2 +b2 +c2 =ab +bc +ca —a

a —b =b —c c —a

a2 —b2 —c2 —bc etc

a — b —c —a etc
a2 —be a etc

Comme le montre la remarque 9.
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Propriété 16 :

Pour tous a, b l'ensemble des points m tels que d (<a, m) d(b, m) 0

est le cercle avec i milieu de a, 6.

Procédons par équivalences:

d (a, m) - d (b, m) 0

(u — m)2 • (h — m)2 0

(a — m) - (b — m) 0

m2 — am — bm + ab 0

m2 + m(-u -h)=u2+u(-a - b)

i milieu de a, b, et z2 +m2 + mz /2 + a2 + a/

d (i, m) d (z, a) d (a, è).

Définition 11 :

Une partie E àz A est une base métrique si pour tous ö, b de ^ :

d(flj g) J(è3 e) pour tout ee£implique a b

Remarque 11 :

Il n'existe pas de base métrique a un élément.

Si e 0, d(a, e) d( — a, ê) et a # pour a # 0.

Si e ^ 0, d (0, e) d — e, e).

La définition 11 peut s'interpréter ainsi: E est une base métrique si pour
tous a, b, de A :

« E c implique a b»

Comme le diamètre de Jtab est [1 — d (ia, 6)] (propriété 11), on voit que si le

diamètre de E est 1 alors E est une base métrique. Nous avons là une condition

suffisante l}.

Considérons une partie E de A Card E ^ 2 vérifiant l'hypothèse : il
existe un idempotent ß non nul tel que pour tout (e/,) eE2, ß. d (e,f.) 0

Alors ße ßf. Pour e choisi dans E on a:

x) La condition nécessaire et suffisante est la suivante:
Soit X — Spec B le dual de B et coa& l'of associé canoniquement à d (a, b). On pose O

U

(ej) E E2 ef'
E est une base métrique ssi Q est dense dans X. On remarquera que d (a, é) d (b, e)

et d (a,f d (b,f impliquent d {a, b). d (<?,/) 0 c'est-à-dire cùah f) oùef 0



d(0,f) d( — ße,f) pour toutfeE
ce qui montre que E n'est pas une base métrique si ße / 0.

Envisageons donc le cas où pour tout e eE, ße 0:

d(ß, é) — d( —/?, e) pour tout e eE
ce qui montre encore que E n'est pas une base métrique.

On suppose maintenant que E est fini; le diamètre de E existe toujours
dans ce cas et s'il n'est pas égal à 1 nous sommes dans l'hypothèse précédente

(/?...)

Propriété 17 :

Une partie E de A, ayant n éléments; n ^ 2, est une base métrique ssi

le diamètre de E1 est 1.

Soit E={eli e2} avec d(eue2) 1 : E est une base métrique. Tout
point a est caractérisé par les deux idempotents d{a, et), d(a, e2). On a:

d (a, ex) — d (a, e2) —e\ —e\ +a (e± —e2)

d'où: ~(e1+e2)+(e1 -e2) (d (a, ej -d (a, e2)) (4)

En particulier on pourra choisir el9 e2, parmi 0, 1, 2. d(a,0) a2;

d(a,l) a2 + a+l; d(a, 2) a2 — a+1. Le choix: e1 l, e2 2, annule

(ei + e2) dans la formule (4). Posant ô1(a) a2 + a+1 et ô2(a) a2 — a+1
il vient:

a= —ö1(a) + ö2(a) (4 bis)

Posons e1(a) 1 — — a — a2\ s2(a) l—ô2(â) a — o2. Les

idempotents s-lOz), s2(à) sont orthogonaux et:

a —ôi(a) + ô2(a) =(1 — <5i(a)) — (1 — ô2 (ia)) £1(a) — s2(a).

Réciproquement soient a et ß deux idempotents orthogonaux tels que
a a — ß.

Il vient a2 a + ß d'où f a= —a~a2 s1(a)
1 ß a-a2 s2{a).

Propriété 18 :

Pour tout a e A il existe un couple unique d'idempotents orthogonaux

si (a), s2(a), tels que:

a=ei(a)-s2(a)
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Définition 12 :

i) On appelle contraction une application T de A dans A telle que pour
tous a, b, de A :

d(T(a)9T(b))*£d(a9b)

ii) On appelle isométrie une application de A dans A qui conserve les

distances.

iii) On appelle translation et on note v e A, l'application de A dans

A : m -» m + v.

Remarque 12:

i) L'ensemble des contractions (resp : des isométries ; resp : des translations)

est stable pour la composition des applications de A dans A.

ii) Toute isométrie est une contraction.

iii) Toute translation est une isométrie.

Soit T' une contraction: T— W-T'iO) ° est une contraction : T (a)
— T'{a) — T\0); elle laisse 0 fixe.

Etudions les contractions T à 0 fixe *) :

f T{0)0

\d(T(a),T(b)(^d(a,b
T2(a) d(T(0),T(aj) ^ d(0, a) a2, d'où pour <x e T2(aa) ^ (oca)2 a.

ce qui implique T(oca) oc. T(<xa)

Par suite (T (aa)-oc.T(a))2 x.d(T(ata)9 T(a)) ^ oc.d(aa, a) 0 d'où

T(oca) — a • T(a)

D'autre part:

(T(a +b)~ T(a)- T(b)f ^ d + b), T(a)( v T2 (b)
^ v T2 (b)
^b2

Comme aet bjouent des rôles analogues, cette expression est inférieure ou
égale à a2.b2 et par conséquent:

a b=0 => T(a + b)T(a) + T(b)

x) T2 (d) représente le carré de l'élément T(a) de A; c'est encore d(0, T (a)).
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Appliquons maintenant la propriété 18:

T(a) 81(a)'T(l) + s2(a)'T(2)
d'où: T(a) a (T(2)-T(l)) + a2 (-T(2)-T(l))
Montrons que réciproquement toute transformation T:

T (ä) — wa2 + ua + v ; v, u, w dans A

est une contraction:

d (T(a), T(b)) [w (a2 —b2)+u (a —b)~\2

— d (a, b) • [w (a +b)+u~]2 d (a, b)

Propriété 19 :

Les contractions sont les transformations de la forme m->wm2 +
+ um + v; v, u, w étant des éléments de A.

Aspect matriciel

Soit T une contraction a 0 fixe: T(m) 81(m). r(l) + e2(^) • T(2).

Appliquons la propriété 18 à T(l) et T(2)

T(l) 0ii-0i2
T(i) d21-e22

On obtient:

/8i(r(m))\ n (s1(m)\
\s2(T(m))y a \e2(m)J

la matriceH =(o11 ^21 étant à coefficients dans B avec les éléments de
\" 1 2 Ö 2 2/

chaque colonne orthogonaux.

Réciproquement une matrice ^ définit une application de A dans A

pourvu que les deux éléments de [[=] (^(mj)] s°ient orthogonaux ce qui
impose l'orthogonalité des éléments de chaque colonne pour }=j. On se

ramène alors à la forme wm2 + um ce qui montre que la transformation
définie par § est une contraction.

Propriété 20 :

Les contractions à 0 fixe sont définies par les matrices § à coefficients
dans B orthogonaux pour chaque colonne.

Supposons que m -* wm2 + um-\-v soit une isométrie. L'appliquant au

1-triplet 0, 1, 2 on en tire les conditions nécessaires:
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