
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1971)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DISTANCE BOOLÉENNE SUR UN 3-ANNEAU

Autor: Batbedat, André

DOI: https://doi.org/10.5169/seals-44577

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44577
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DISTANCE BOOLÉENNE SUR UN 3-ANNEAU

par André Batbedat

Introduction

Dans [3] et [4] respectivement, R. A. Melter et J. Zemmer se sont

intéressés à une géométrie booléenne sur un p-anneau.
Le travail ici présenté a été motivé par leurs articles ; nous avons essayé

de retrouver les principales propriétés de la géométrie classique dans le cas

particulier des 3-anneaux (voir définition 2).

Pour les transformations ponctuelles l'adaptation est relativement aisée ;

par contre il ne semble pas que les notions de droite ou de segment
conviennent dans cette théorie: c'est le disque qui s'impose...

Nous avons opté pour un exposé élémentaire afin que cet article soit
accessible à tous les mathématiciens spécialistes de la question ou non.
C'est ainsi que nous n'utilisons pas directement la notion de spectre pour
un anneau et commençons par des rappels très développés concernant les

anneaux booléens.

Tous les anneaux considérés sont unitaires.

Rappel :

Un anneau booléen (.B, ©, muni de la somme © et du produit
est défini par:

« Pour tout ae B, a2 a » (Tout élément est idempotent).

Par (2a)2 4a 2a, on voit que B est de caractéristique 2. Par (a©ß)2
a © ß il vient aß © ßa 0: compte-tenu de ce qui précède, B est com-

mutatif.
Considérons sur B la relation aß a; elle est réflexive (idempotence),

antisymétrique (commutativité) et transitive: c'est une relation d'ordre
a^fi.

Puisque pour tout a g B, a0 0 et al =a, 0 est le plus petit élément et 1

le plus grand.
Si s est un minorant de y et S alors sy e et eô s donc syô s : e minore

yô. Or yôy — yô et yôô yô : yô est un minorant de y et ô.
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Ainsi pour tout couple (7, <5) il existe un plus grand minorant [Inf (7, <5)]

noté y a S: On dit que (B, est un inf-demi-treillis.
On vérifie de même que pour tout couple (7, S) il existe un plus petit

majorant [Sup (7, <5)] noté 7 V ô, à savoir 7 © <5 © 7<5. On dit alors que
(B, ±=) est un treillis.

Ce treillis est distributif parce qu'il en est ainsi des opérations a et v
l'une par rapport à l'autre; il est complémenté: pour tout oc e B,

a a (l©oe) 0 et a v (l©a)=l
Comme exemple (classique) d'anneau booléen citons l'ejisemble des

parties d'un ensemble muni de la différence symétrique et de l'intersection :

le inf et le sup correspondant respectivement à l'intersection et à la réunion.
Le seul anneau booléen intègre est Z/2 (et c'est un corps); en effet,

avec a (l©a) 0, l'intégrité implique ac — 0 ou a=l.

Définition 1 :

Soit A un ensemble, B un anneau booléen et d une application de A2

dans B telle que :

i) d (0, b) — 0 ssi1} a b

- ii) d (0, b) d (b, a)

iii) d (<a, b) y d {b, c) ^ d (a, c)

pour tous a, b, c de A.
On dit que d est une distance (booléenne) sur A.

Exemple :

On vérifie que si A — B, d (a, ß) oc © ß est une distance sur B.

Définition 2 :

A est un 3-anneau2) si c'est un anneau vérifiant:

pour tout as A, a3 a et 3a 0

Dans toute la suite A désigne un 3-anneau.

Exemple :

(Z/3)n est un 3-anneau.

x) ssi: si et seulement si.
2) Les 3-anneaux sont étudiés dans: [1], ensemble généralisé des parties d'un ensemble.
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Remarque 1 :

i) Dans A tout carré est idempotent (a4 a2).

On note B l'ensemble des idempotents.

ii) a2 0 est équivalent ha — 0

iii) 4a a pour tout a e A.

Montrons que tout 3-anneau est commutatif

Pour tout a g A, tout oce B, a=l.a (l—a) a + oca d'où: aa (l — a) aa +
+ aaa

De [(1— a)aa)2 0 on tire (Remarque 1, ii)] aoc — ocaoc 0

De même aa — ocaot 0

et par conséquent aa aa: on dit que les idempotents de A sont centraux.
Ainsi on a: a (a2 + b)2 (a2 + b)2a (Remarque 1, i))
Soit a (a2 + a2b + ba2 + b2) (a2 + a2b + ba2 + b2)a

a + ab + aba2 + ab2 a + a2ba + ba + b2a

2ab=Iba

d'où (Remarque 1, iii)): ab ba tous a, b, dans A.

Remarque 2 :

B, ensemble des idempotents de A, muni de la somme : a © ß — a + ß + aß
et du produit aß (produit dans A) est un anneau booléen.

Le sup et le inf s'expriment avec les opérations dans A :

| y a <5 y <5

jyv<5 =y + ô —yd

Lemme 1 :

Pour tous tf, b, c de A, l'expression:

(a —b)2v (b —c)2

est symétrique en a, b, c.

En effet: (a — b)2 a2 + b2 + ab et par suite (remarque 2):

(a -b)2v(b -c)2 a2 +fe2 +c2 -a2fr2 -fc2c2 -c2a2 -a2bc-b2ca -c2ab

Propriété 1 :

L'application d de A2 dans B (Remarque 2) définie par:
d(a, b) (a — b)2

est une distance (booléenne).
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En effet:

i) (a — b)2 0 ssi (a—b) 0 (Remarque 1, ii))

ii) («a — b)2 (b — a)2

iii) D'après le lemme 1 on a:

(ia — c)2v{c — b)2 (a — b)2v(b — c)2 et par conséquent:

(a — c)2 {a — b)2 v (b — c)2

Remarque 3 :

De d(a, b) — a2 + b2 + ab et a2 v b2 a2 + b2 — a2b2, on tire:

a2vb2 d (a, b) + e (a, b)

en posant: e {a, b) — —ab — a2b2

e {a, b) est idempotent et e (<a, b) d (a, b) 0

D'autre part: a e (a, b) b e (a, b)= —(a + b). e (a, b).

Définition 3 :

On appelle diamètre d'une partie E do A:

V d{e,f)\9
{e,f)eE2

lorsque ce sup. existe (dans B).

Remarque 4 :

i) Le diamètre d'une partie finie est toujours défini.

ii) Si E= { a, b] le diamètre de E est la distance des points a et b.

iii) Même pour E fini si Card E ^ 3 il n'existe pas nécessairement deux

points a et b dans E pour lesquels d (<a, b) diamètre de E, car B

n'est pas totalement ordonné.

Définition 4 :

Un cercle ^ (rjP) de centre r e A et de rayon pe B est l'ensemble des

points me A tels que :

d (r, m)=p

Ainsi me^(r)P) ssi: {r — m)2 p
multipliant successivement par pr2, p(l—r2), (1 —p)r2, (1— p)(l— r2),

il vient respectivement:
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pr2m2 Apr m =0
p (1 —r2)—p (1 -r2) m2

m (1 — p) r2 1 —p) r
m2 (1 — p) (1 —r2) —0

On en déduit:

^(r,p) { m/m (\-p)r-prs + p (1 -r2) n }

avec se B et n inversible dans A

Lemme 2 :

Pour tout a e B il existe un unique idempotent sur le cercle

Pour tout a inversible dans A il existe un unique élément inversible sur le

cercle al
En effet: { tn/m= — as + (l — a) n }; m idempotent implique

5 0 et n 1 d'où m= 1—a

^(fl>i) { m/m= — as }; m inversible implique s= 1 d'où m — a.

Propriété 2 :

Pour tout cercle le diamètre est égal au rayon.
Pour tout point d'un cercle il existe un unique point « diamétralement

opposé ».

En effet:
Soient mi et m2 sur le cercle l'inégalité triangulaire entraîne:

d (mu m2) — d (ml9 r) v d (r, m2) p. On va montrer que p est atteint.

(ml -m2)= -pr[st -e2] -r2)[n1 -n2]
d (m1, m2)=p [ rd(el5e2) +(1 -r2) d

Fixons m1 : d'après le lemme 2 il existe un unique s2 tel que d (s1? e2) 1

et un unique n2 tel que d(nun2)= 1, donc un unique m2 tel que
d (m1, m2) p.

Définition 5 :

i) a, b, c est un triplet équilatéral si d (<a, ù) <i (ù, c) d(c, a).
On dira aussi: a-triplet, pour désigner un triplet équilatéral de
distance commune a.

ii) a, b est un a-biplet si d(a, b) a.

De la propriété 2 on déduit les propriétés suivantes:
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Propriété 3 :

Pour tout p-biplet mu m2 de ^(#.jP) (points « diamétralement opposés »)
le triplet r, ml9 m2 est équilatéral.

Propriété 4 :

Etant donné deux points il existe un unique triplet équilatéral les contenant.

Propriété 5 :

Pour tout biplet a, b, ^(a)d(a}b)) et ont un unique point commun.

Remarque 5 :

i) si d (ru r2) >Plvp2alors#(ri;Pl) n ^(n,P2) <t>

ii) La formule (1) montre que:

^ <1.(1 - p), p (1 - r2» C # (r, p)

Plus généralement on va montrer que:

Propriété 6:
Si l'intersection de deux cercles ^(rl,P1> et ^(r2,P2) n'est pas vide elle est

contenue dans un cercle de rayon p± p2.

Soit m g il existe s e B et n inversible dans A tels que:

m =(1 -Pi)rt -PiVis(1 n

Maintenant on suppose m g r2,p2):

De m (l —p2) m + p2m (l —p2) m + p2r1m + p2 (1 — rx) m, on tire:

m =(1 -p2) r2 + p2 (1 -Pj) ^ +p[-Pi^i e +Pi (1 -r?) "] +
+ P2 (1 ~rï)[—Piri £ +Pi (1 —rï)w]

avec la condition: P1P2(1— ri) rln—P1P2 (1— rCetteformule du

type (1) définit un cercle, qui contient ^(n,P]) n ^(r2,P2), et de rayon:

P2rl (Pi'"î +Pi(l -riX +P2 (1 -^2) (Pi^i +Pi (1 ~r\)),
c'est-à-dire Pi p2-

Définition 6 :

Un disque de centre s g ^ et de rayon cr g B est l'ensemble des

points me A tels que :

d (s, m) ^ g
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Ainsi m e 0(s><T) ssi: (s-m)2 ^ g

soit {s-m)2 (1 -g) 0 ou encore (s-m) (1 -g) 0

c'est-à-dire m (1 — g) s (1 — g)

{ m/m (1 -g) s + at } avec te A | (2)

Définition 7 :

On appelle cœur du disque @(S,a) Ie point So (1 — cr) s.

On appelle couronne du disque le cercle ^^o>ay

Propriété 7:

Tout point d'un disque est centre de Q).

En effet: pour tous m1? m2, de ^(Sj<r):

d (m1? m fi) ^ d (m1? s) v d (m2, s) ^ g

Prenant le centre au cœur du disque:

% j(T) { m/m So + ot}
m est dans la couronne ssi:

d (m, s0) ot2 cr c'est-à-dire o ^ t2

C'est toujours le cas si t est inversible.

Propriété 8 :

Tout disque Q) de rayon g peut être engendré par:

i) La famille des cercles ^(S,y) centrés en un point s fixe de Çè et le

rayon y parcourant [0, o].

ii) La famille des cercles dont le centre parcourt la couronne de

Q) et le rayon est g.

La première famille: définition 6 et propriété 7.

La deuxième famille: puisque pour tout m e il reste à

montrer que pour a e 3) il existe m de la couronne de 2) tel que a e ^(m5<T).

Soit a s0 + ot et m — s0 + on.

Si nous choisissons n inversible, m sera dans la couronne. Prenons
n — t + (1 — t2). Alors d (m, d) o (n — t)2 o. Cqfd

Propriété 9 :

Si l'intersection de deux disques n'est pas vide, c'est un disque dont le

rayon est le produit des rayons.

L'Enseignement mathém., t. XVII, fasc. 2. 13
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En effet: soient Çè et Sf' de rayons respectifs g et g' et qui ont le point ^

en commun; prenons s comme centre commun: n Q)' c'est l'ensemble des

m tels que d (s9 m) ^ g et d {s, m) ^ g' d'où d {s, m) ^ gg

Considérons la famille des disques contenant deux points a et b: ils
admettent tous a pour centre; leur rayon est supérieur ou égal à d(a, b).

Définition 8 :

Le disque ^^a>d(a,b)) est dit engendré par les points a et b. On le note Q)ab

Ainsi, deux points d'un disque de rayon g engendrent ce disque si leur
distance est égale à g (cr-biplet).

Remarque 6 :

Compte tenu de la remarque 3 le cœur du disque @ab est

s0 =a - e (a, b) b • e (a, b) —(a +b) * e (a, b)

Propriété 10 :

@ab est l'ensemble des points m tels que

d (a, m) y d (m, b) d (a, b)

En effet: m e @ab implique d (<a, m) y d (m, b) ^d (a, b) rayon du disque

(Propriété 7): comme d'autre part on a l'inégalité triangulaire:

d (a, m) y d (m, b) ^d (a, b)

l'égalité en résulte.

Maintenant si l'on a d (a, m) y d (m, b) d (a, b) on a aussi (lemme 1)

d (am) y d(ab) d(a, b) d'où d (a, m) ^ d (a, b) et donc m e @(aÀ(a>b))

@ab.

Définition 9 :

Etant donnés les points a, b et l'idempotent a, on appelle médiateur de

(a, b) à Vordre a et on note Jiab l'ensemble des points m tels que d (m, a)

a d (m, b).

Pour a 1 on dit simplement médiateur de (a, b) et on note Jtab.

Pour déterminer Jlab on multiplie successivement d(a,m) a.d{b,m)

par a et (1—a); il vient respectivement:

a (a2 —b2+(a—b) m) 0

(1 —a) a =(1 —a) m

m est donc nécessairement de la forme:
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m =(1 — a) a — ad (a, b) (a + b) + a (1 — d(a, b)) t avec te A

Réciproquement tout m de cette forme vérifie (1— a)m (l — a) a et par
conséquent (m — a) a {m —a). On a donc:

(m —a)2 — a (m —b)2 oca2 +ocam —ab2 —ahm

— {a — b) [a (a + b) d(a, b) +d (a, b) am]
(a —b) [a (a + b) d (a, b) -ad (a, b) (a + b)] =0

^ { m/m =(1 —a) a —ad (ab) (a+b) + a(l —d (aZ?)) t } t e A (3)

Propriété 11 :

Le médiateur de (a, b) à l'ordre a est un disque de rayon a.(l — d(a, b)).

Remarque 7 :

Le médiateur Jiab de (a, b) est :

Jiah { m/m — —(a + b)d (a, b) +(1 —d (a,b)) t) te A

Etudions Jéab n @ab, c'est-à-dire cherchons les points m du disque
engendré par (a, b) tels que d (a, m) — ad (<b, m) :

i) D'après la propriété 9, si cette intersection n'est pas vide c'est un
disque de rayon nul donc un point.

ii) m —(\ A a) a —ab est un point de Jiab (t — (a + b)) ; c'est aussi un
point de Q)ab puisque:

d (a, m) a.d (a, b) d (a, h)

Propriété 12 :

Il existe un point m et un seul, sur le disque engendré par a et b, tel que
d (a, m) ad (b, m), c'est :

za =(1 -fa) a — ab

Remarque 8 :

d (a, za) ad (a, Z?) ; d (Z?, ij d (a, Z>)

L'ensemble des points zaJ a décrivant B, est le cercle puisque si m
est un point de ce cercle d (am) ^ d (ab) entraîne d (a, m) d(a, m), d(aZ?)
et id(a,my

On remarquera d'autre part que pour tout a, les points b et z'a engendrent
9ab.
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Remarque 9 :

Notant simplement i lorsque a=l, i= — (a + b)

Définition 10 :

On appelle milieu de (a, b) le point i de @ab équidistant de a et b.

Propriété 13 :

Tout triplet de points dont l'un est le milieu des deux autres, est équi-
latéral.

Pour tout triplet équilatéral chaque point est le milieu des deux autres.

La première assertion résulte de la remarque 8 pour a=l.
Maintenant soit (a, b, c) un triplet équilatéral : alors chaque point appartient
au disque engendré par les deux autres.

Propriété 14 :

Pour tout m e Jlah on a d (a, i) ^ d (<a, m)

C'est-à-dire : d (a, i) est la plus petite distance pour m parcourant le

médiateur de (a, b). En effet:

d (a i) =d (a b) d{a m) v d (m, b) =d(a, m)

On voit de plus en plus que si d (<a, i) d (a, m) alors m i...

Propriété 15 :

Quand ils sont distincts, les trois points d'un triplet équilatéral ne sont

jamais cocycliques.

Soit a, /, b un triplet équilatéral et un cercle circonscrit:

d (r, a) ^ d (r, i) v d (i, a) => d (r, a) ^ d (i, a)

ce qui est absurde (propriété 14) si les points sont distincts.

Remarque 10 :

Pour tout a-triplet a, b, c:

a +b +c 0

a2 +b2 +c2 =ab +bc +ca —a

a —b =b —c c —a

a2 —b2 —c2 —bc etc

a — b —c —a etc
a2 —be a etc

Comme le montre la remarque 9.
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Propriété 16 :

Pour tous a, b l'ensemble des points m tels que d (<a, m) d(b, m) 0

est le cercle avec i milieu de a, 6.

Procédons par équivalences:

d (a, m) - d (b, m) 0

(u — m)2 • (h — m)2 0

(a — m) - (b — m) 0

m2 — am — bm + ab 0

m2 + m(-u -h)=u2+u(-a - b)

i milieu de a, b, et z2 +m2 + mz /2 + a2 + a/

d (i, m) d (z, a) d (a, è).

Définition 11 :

Une partie E àz A est une base métrique si pour tous ö, b de ^ :

d(flj g) J(è3 e) pour tout ee£implique a b

Remarque 11 :

Il n'existe pas de base métrique a un élément.

Si e 0, d(a, e) d( — a, ê) et a # pour a # 0.

Si e ^ 0, d (0, e) d — e, e).

La définition 11 peut s'interpréter ainsi: E est une base métrique si pour
tous a, b, de A :

« E c implique a b»

Comme le diamètre de Jtab est [1 — d (ia, 6)] (propriété 11), on voit que si le

diamètre de E est 1 alors E est une base métrique. Nous avons là une condition

suffisante l}.

Considérons une partie E de A Card E ^ 2 vérifiant l'hypothèse : il
existe un idempotent ß non nul tel que pour tout (e/,) eE2, ß. d (e,f.) 0

Alors ße ßf. Pour e choisi dans E on a:

x) La condition nécessaire et suffisante est la suivante:
Soit X — Spec B le dual de B et coa& l'of associé canoniquement à d (a, b). On pose O

U

(ej) E E2 ef'
E est une base métrique ssi Q est dense dans X. On remarquera que d (a, é) d (b, e)

et d (a,f d (b,f impliquent d {a, b). d (<?,/) 0 c'est-à-dire cùah f) oùef 0



d(0,f) d( — ße,f) pour toutfeE
ce qui montre que E n'est pas une base métrique si ße / 0.

Envisageons donc le cas où pour tout e eE, ße 0:

d(ß, é) — d( —/?, e) pour tout e eE
ce qui montre encore que E n'est pas une base métrique.

On suppose maintenant que E est fini; le diamètre de E existe toujours
dans ce cas et s'il n'est pas égal à 1 nous sommes dans l'hypothèse précédente

(/?...)

Propriété 17 :

Une partie E de A, ayant n éléments; n ^ 2, est une base métrique ssi

le diamètre de E1 est 1.

Soit E={eli e2} avec d(eue2) 1 : E est une base métrique. Tout
point a est caractérisé par les deux idempotents d{a, et), d(a, e2). On a:

d (a, ex) — d (a, e2) —e\ —e\ +a (e± —e2)

d'où: ~(e1+e2)+(e1 -e2) (d (a, ej -d (a, e2)) (4)

En particulier on pourra choisir el9 e2, parmi 0, 1, 2. d(a,0) a2;

d(a,l) a2 + a+l; d(a, 2) a2 — a+1. Le choix: e1 l, e2 2, annule

(ei + e2) dans la formule (4). Posant ô1(a) a2 + a+1 et ô2(a) a2 — a+1
il vient:

a= —ö1(a) + ö2(a) (4 bis)

Posons e1(a) 1 — — a — a2\ s2(a) l—ô2(â) a — o2. Les

idempotents s-lOz), s2(à) sont orthogonaux et:

a —ôi(a) + ô2(a) =(1 — <5i(a)) — (1 — ô2 (ia)) £1(a) — s2(a).

Réciproquement soient a et ß deux idempotents orthogonaux tels que
a a — ß.

Il vient a2 a + ß d'où f a= —a~a2 s1(a)
1 ß a-a2 s2{a).

Propriété 18 :

Pour tout a e A il existe un couple unique d'idempotents orthogonaux

si (a), s2(a), tels que:

a=ei(a)-s2(a)
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Définition 12 :

i) On appelle contraction une application T de A dans A telle que pour
tous a, b, de A :

d(T(a)9T(b))*£d(a9b)

ii) On appelle isométrie une application de A dans A qui conserve les

distances.

iii) On appelle translation et on note v e A, l'application de A dans

A : m -» m + v.

Remarque 12:

i) L'ensemble des contractions (resp : des isométries ; resp : des translations)

est stable pour la composition des applications de A dans A.

ii) Toute isométrie est une contraction.

iii) Toute translation est une isométrie.

Soit T' une contraction: T— W-T'iO) ° est une contraction : T (a)
— T'{a) — T\0); elle laisse 0 fixe.

Etudions les contractions T à 0 fixe *) :

f T{0)0

\d(T(a),T(b)(^d(a,b
T2(a) d(T(0),T(aj) ^ d(0, a) a2, d'où pour <x e T2(aa) ^ (oca)2 a.

ce qui implique T(oca) oc. T(<xa)

Par suite (T (aa)-oc.T(a))2 x.d(T(ata)9 T(a)) ^ oc.d(aa, a) 0 d'où

T(oca) — a • T(a)

D'autre part:

(T(a +b)~ T(a)- T(b)f ^ d + b), T(a)( v T2 (b)
^ v T2 (b)
^b2

Comme aet bjouent des rôles analogues, cette expression est inférieure ou
égale à a2.b2 et par conséquent:

a b=0 => T(a + b)T(a) + T(b)

x) T2 (d) représente le carré de l'élément T(a) de A; c'est encore d(0, T (a)).
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Appliquons maintenant la propriété 18:

T(a) 81(a)'T(l) + s2(a)'T(2)
d'où: T(a) a (T(2)-T(l)) + a2 (-T(2)-T(l))
Montrons que réciproquement toute transformation T:

T (ä) — wa2 + ua + v ; v, u, w dans A

est une contraction:

d (T(a), T(b)) [w (a2 —b2)+u (a —b)~\2

— d (a, b) • [w (a +b)+u~]2 d (a, b)

Propriété 19 :

Les contractions sont les transformations de la forme m->wm2 +
+ um + v; v, u, w étant des éléments de A.

Aspect matriciel

Soit T une contraction a 0 fixe: T(m) 81(m). r(l) + e2(^) • T(2).

Appliquons la propriété 18 à T(l) et T(2)

T(l) 0ii-0i2
T(i) d21-e22

On obtient:

/8i(r(m))\ n (s1(m)\
\s2(T(m))y a \e2(m)J

la matriceH =(o11 ^21 étant à coefficients dans B avec les éléments de
\" 1 2 Ö 2 2/

chaque colonne orthogonaux.

Réciproquement une matrice ^ définit une application de A dans A

pourvu que les deux éléments de [[=] (^(mj)] s°ient orthogonaux ce qui
impose l'orthogonalité des éléments de chaque colonne pour }=j. On se

ramène alors à la forme wm2 + um ce qui montre que la transformation
définie par § est une contraction.

Propriété 20 :

Les contractions à 0 fixe sont définies par les matrices § à coefficients
dans B orthogonaux pour chaque colonne.

Supposons que m -* wm2 + um-\-v soit une isométrie. L'appliquant au

1-triplet 0, 1, 2 on en tire les conditions nécessaires:
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W + II)2 — w +u)2 — u2 l
c'est-à-dire w 0 et u2 1.

Réciproquement toute contraction m -> wm + v avec w2 l conserve les

distances.

Propriété 21 :

Les isométries sont les transformations de la forme :

m -» wm-j- v; avec v, w dans A et u2 1

Aspect matriciel

On a une isométrie a point 0 fixe ssi ° est inversible. D'ailleurs d'après
la propriété 21 elle doit être involutive. Elle est nécessairement de la forme
G a) avec ot + ß=l et aß 0.

Propriété 22 :

Les isométries à 0 fixe sont définies par les matrices avec a, ß

idempotents tels que aß 0; a + ß 1.

Remarque 13 :

L'isométrie m -» um étant associée à la matrice (^), on a: u oc — ß.

Lemme : 3

L'ensemble des points m pour lesquels s1(m) y, y fixé, est le cercle

^(U1 -y)y
En effet:

1—7 1 —s1 (m) <5X (m) =d{ 1, m)

Propriété .23 :

Pour tous a, ß, y, de 5 tels que aß 0 et a + ß 1, l'ensemble des points m
érifiant :

a (m) + ß s2(m) y ;

st le cercle de centre u a — ß et de rayon (1—7).

Eompte tenu de la remarque 13, l'ensemble des points m considéré se déduit
tiar l'isométrie m' um, de l'ensemble des points m' pour lesquels el(m') y ;

d'après le lemme 3 c'est donc un cercle de rayon (1 —7) et de centre u image
le 1.
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Propriété 24 :

Une contraction T est déterminée par la donnée d'un 1-triplet et de son

image par T.

Soit T la contraction m - wm2 + um + v m'. Par hypothèse on donne

a, b, c tels que d (a, b) d (ib, c) d(c, a) 1, et leurs images par T : <z', b\ c'.

On a donc:

a a2\

V1 c c2

Sous l'hypothèse: « a, b, c est un 1-triplet », la matrice:

!a2—b2—c2 b2 —c2 —a2 c2 —a2 —b2\ fl a a2X

1 a—b—c b—c—a c—a—b lest inverse de sé I 1 b b2

-1 —1 —1/ \l c c2 '

ce qui détermine v, u, w.

Remarque 14:

Compte tenu de la remarque 10, sé' peut encore s'écrire:

— bc —ca —ab\

On en tire:

—v —a'bc —b'ca —c'ab

—u —aa' —bbf —cc'

— w —a' —b' —c'

Définition 13 :

On appelle affinité de rapport a e B une contraction pour laquelle il existe

un 1-triplet a, b, c dont l'image est:

a' a\ b' b; c' (l +a) b — aa

Ainsi a et b sont invariants et l'image de c est l'unique point ia du disque
@ah pour lequel d (,b, za) a d (a, za) (propriété 12).

• d(a9 c') 1 ; d (h, c') a ; d (c, c') =(1 —a).

Appliquant les formules de la remarque 14 on détermine:
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v ab (b —a) (1 — a)

u 1 +(b -a) {I —cc)c

w (b —a) (1 — a)

d'où: m, — mJrw(m2-\-cmJrab)
ce qui s'écrit:

m' m — w • (1 — d (c, m)), avec w =(b —a) (1 —a) (6)

Repérons les points dans la base métrique: { a, c }.

d (c, m') [(m —c) — w (1 — d (c, m))]2
d (c, m') d (c, m) +(1 —a) (1 — d(c, m))

d (c, m') (1 — a) 4-a • d(c, m) (J)c

d(a, m') [(m -a) — w(l —d(c, m))]2

d(a, m') d(a, m)+(l — a)(l —d(c, m))(l +(ù —a) (m —a))
d (a, m') d (a, m) +(1 —a) (1 —d (c, m)) (6 —u) (m —c)

d (a, m') d(a,m) (Va

Remarque 15 :

On voit (formules (7)) que les points invariants pour une affinité de

rapport a définie par a, b, c et son image, vérifient:

d(c, m) =(1—a) + ß avec ß ^ oc

Il en résulte en particulier que a est un élément caractéristique pour la
transformation considérée.

Définition 14:

Une affinité de rapport nul est une projection.

Ainsi une projection est une contraction pour laquelle il existe un
1-triplet a, ù, c dont l'image est:

a' —a ; b' =b ; c' =b
T étant une projection on a pour tout me A, repéré dans la base métrique

[a, c):

m

d (a, m)

d (c, m)

m

d (a, m)

m

d (a, m)

1

Compte tenu des formules (7) pour a 0, d'où:
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Propriété 25 :

Toute projection est une contraction idempotente.

L'image de A est le cercle de centre c et de rayon 1 ; c'est aussi l'ensemble
des points invariants.

Exemple :

La contraction définie par 0, 1, 2 et son image 0,1, 1, {a a' 0, b b' 1,

c — 2, c' b) est une projection

L'image de A est le cercle de centre 2 et de rayon 1 : c'est B. Elle est

définie par m' m2.

Remarque 16 :

La propriété 15 montre que sur l'image de A par projection il n'existe

pas de triplet équilatéral.

Remarque 17 :

On voit facilement que toute contraction pour laquelle il existe un
1-triplet a, b, c dont l'image est a, a, a envoie tout point m en a.

Définition 15 :

Une application de A dans A est une similitude de rapport a g B si pour
tous m, n et leur image m', n' :

d (m\ n') ad (;m, n)

Ainsi une similitude de rapport a est une contraction. Elle transforme
tout ^-triplet en un a/Ltriplet, tout cercle (resp: disque) de rayon p en un
cercle (resp: disque) de rayon a p.

Considérons la similitude définie par m' wm2 + um + v. L'image du

1-triplet a, b, c est un a-triplet: on a nécessairement w= — a' — b' — c'

(Remarque 14)

d'où w 0 (remarque 10)

Alors u2 d (m, n) d (m\ n')

Propriété 26 :

Les similitudes sont les transformations de la forme m -> wm + v; le

rapport est w2.
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Propriété 27:

Une similitude T est déterminée par la donnée d'un 1-biplet et de son

image par T.

En effet:

Sous l'hypothèse d(a,b)= 1, la matrice

fb2-ab a2— ab\

\a—b b—a

est inverse de

Cherchons maintenant les points invariants par une similitude

Si m est invariant par la similitude n -» un + v :

m —um +v

multipliant successivement par (1 — u2), s1 (u), e2(u) on en bre respectivement

:

(1 — u2) m =(1 —u2)v

ê1(m) • v =0
s2(u) - m — s2(u) - v

Ainsi sous la condition nécessaire s^u) v 0, l'ensemble des points m

invariants est donné par:

m =(1 — u2 —s2(u))v + s^u) -1, te A

c'est le disque

^[(l-u2 —£2(u))v, el(u)]

Propriété 28 :

La similitude n un + v a des points invariants ssi v e1(w) 0. Dans
cette hypothèse l'ensemble des points invariants est le disque

^[(1 — «2 — e2(u)).v, £ 1 (u) ]

Remarque 18 :

Toute similitude a un unique point invariant ssi e1(«) 0; c'est (1 +w2)v.
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Définition 16 :

Une application de A dans A est une homothétie de centre h et de

rapport as B lorsque pour tout m et son image m':

(;m' —h) a (m —h)
Ainsi

m' — am +(1 — a) h (6)

Toute homothétie est une similitude. Réciproquement toute similitude
n -> an + v avec av 0 est une homothétie de rapport a et de centre v.

On voit facilement que:

Propriété 29 :

Le produit d'une isométrie par une homothétie est une similitude.
Toute similitude peut s'écrire comme un tel produit.

Définition 17 :

On appelle symétrie à disque toute isométrie involutive ayant des points
invariants.

On sait (propriété 28) que sous la condition nécessaire v s1(u) Q

l'ensemble des points invariants par isométrie est le disque ^(-yjei(M))-
Ceci étant une telle isométrie est involutive parce que uv — v: c'est donc

une symétrie à disque.

m, m' étant un biplet homologue par la symétrie à disque n -» un + v5

soit i le milieu de mm'\ on a:

à —v, i)=(—v — i)2 m2 (1 —u)2 m2 £1 (u) ^ sl (u)

ce qui prouve que i est dans le disque des points invariants.

Propriété 30 :

Les symétries à disque sont les transformations de la forme:

m -> um + v avec u2 l, v £i(w) 0.
Le disque des points invariants est (M)); il contient le milieu de

deux points homologues.

Propriété 31 :

Toute isométrie peut s'écrire comme produit de deux symétries à disque.

m' um + v s'obtient (par exemple) en composant: m1=2wn puis m'

2m1 + v.
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Définition 18 :

On appelle symétrie à centre toute isométrie involutive ayant un unique

point invariant.

Ainsi une symétrie à centre est une symétrie à disque pour laquelle

sfiu) — 0 donc de la forme m -> 2m + v. L'unique point invariant est 2v

et pour tout m on a:

2v= — m — m' ce qui montre que 2v est au milieu de m, m'.

Propriété 32 :

Les symétries à centre sont les transformations de la forme m -» 2m + v.

Le centre est 2v; il est au milieu de tout biplet m, m', de points homologues.

On voit facilement que:

Propriété 33 :

i) Le produit de deux symétries à centre c1 et c2 est la translation de

vecteur 2 (c2 — Ci).

ii) Le produit de trois symétries à centre est une symétrie à centre.
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