Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 17 (1971)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: DISTANCE BOOLEENNE SUR UN 3-ANNEAU
Autor: Batbedat, André

DOl: https://doi.org/10.5169/seals-44577

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-44577
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

DISTANCE BOOLEENNE SUR UN 3-ANNEAU

par André BATBEDAT

INTRODUCTION

Dans [3] et [4] respectivement, R. A. MELTER et J. ZEMMER se sont
intéressés a une géométrie booléenne sur un p-anneau.

Le travail ici présenté a été motivé par leurs articles; nous avons essayé
de retrouver les principales propriétés de la géométrie classique dans le cas
particulier des 3-anneaux (voir définition 2).

Pour les transformations ponctuelles I’adaptation est relativement aisée;
par contre il ne semble pas que les notions de droite ou de segment
conviennent dans cette théorie: c’est le disque qui s’impose...

Nous avons opté pour un expos¢ ¢lémentaire afin que cet article soit
accessible a tous les mathématiciens spécialistes de la question ou non.
C’est ainsi que nous n’utilisons pas directement la notion de spectre pour
un anneau et commengons par des rappels trés développés concernant les
anneaux booléens.

Tous les anneaux considérés sont unitaires.

Rappel :

Un anneau booléen (B, @, .), muni de la somme @ et du produit .,
est défini par:

« Pour tout « € B, o> =a » (Tout élément est idempotent).

Par (2¢)? =40=2a, on voit que B est de caractéristique 2. Par (a@®f)*=
=o @ B il vient aff @ fa=0: compte-tenu de ce qui précéde, B est com-
mutatif.

Considérons sur B la relation aff=o; elle est réflexive (idempotence),
antisymétrique (commutativité) et transitive: c’est une relation d’ordre
a=p.

Puisque pour tout a € B, a0=0 et al =a, 0 est le plus petit élément et 1
le plus grand.

Si ¢ est un minorant de y et 6 alors ey=c¢ et ed=¢ donc eyd=¢ : ¢ minore
0. Or péy=75 et p65=7yd : p6 est un minorant de y et J.
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Ainsi pour tout couple (y, d) il existe un plus grand minorant [ Inf (y, §)]
noté y Ad: On dit que (B, =) est un inf-demi-treillis.
On vérifie de méme que pour tout couple (y, §) il existe un plus petit

majorant [ Sup (y, 6)] noté yv §, a savoir y @ 6 @ y6. On dit alors que
(B, =) est un treillis.

Ce treillis est distributif parce qu’il en est ainsi des opérations A et v,
I’'une par rapport a I'autre; il est complémenté: pour tout o € B,

o A(1Pa)=0 et av (I1Px)=1.

Comme exemple (classique) d’anneau booléen citons I’ensemble des
parties d’un ensemble muni de la différence symétrique et de I'intersection:
le inf et le sup correspondant respectivement a I’intersection et a la réunion.

Le seul anneau booléen intégre est Z,, (et c’est un corps); en effet,
avec o . (1®a)=0, I'intégrité implique «=0 ou a=1.

Définition 1 :
Soit 4 un ensemble, B un anneau booléen et d une application de A?

dans B telle que:

) d(a,b)=0ssiVa=h
ii) d(a, b) = d (b, a)
iii) d(a, b) v d(b, c) =d(a, c)

pour tous a, b, ¢ de A.
On dit que d est une distance (booléenne) sur A.

Exemple :
On vérifie que si A=B, d(a, f)=a @ p est une distance sur B.

Définition 2 :
A est un 3-anneau ® si c’est un anneau vérifiant:

pour tout a€ A4, a®*=a et 3a=0
Dans toute la suite 4 désigne un 3-anneau.

Exemple :

(Z/3)" est un 3-anneau.

1) ssi: si et seulement si.
2) Les 3-anneaux sont étudiés dans: [1], ensemble généralisé des parties d’un ensemble.
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Remarque 1 :

i) Dans A tout carré est idempotent (a*=a?).
On note B I’ensemble des idempotents.

ii) a®>=0 est équivalent & a=0

iii) 4a=a pour tout a € 4.

MONTRONS QUE TOUT 3-ANNEAU EST COMMUTATIF

Pour tout ae 4, tout a € B, a=1l.a=(1—a) a+oa d’ou: ax=(1 —a) ax+
+oao

De [(1—a) ax)®>=0 on tire (Remarque 1, ii)] ao—oax=0

De méme aa—aax=0
et par conséquent aa=ao: on dit que les idempotents de 4 sont centraux.

Ainsi on a: a (a®+b)*>=(a*+b)*a (Remarque 1, i))

Soit a (a®*+a*b+ba* +b?*)=(a*+a’*b+ba*+b?*)a

a+ab+aba® +ab*=a+a*ba+ba+b’a
2ab=2ba

d’ou (Remarque 1, iii)): |ab = ba| tous a, b, dans A.

Remarque 2 :

B, ensemble des idempotents de A, muni de la somme: o @ f=a+f+aff
et du produit «ff (produit dans A) est un anneau booléen.
Le sup et le inf s’expriment avec les opérations dans A4:

[yAS =70
YVO=y+0—y0
Lemme 1 :
Pour tous a, b, ¢ de A4, ’'expression:
(a —=b)*v (b —0)?,
est symétrique en a, b, c.
En effet: (a—b)*>=a®+b*+ab et par suite (remarque 2):

(a —=b)*v (b —c)* = a®> +b*+c? —a?b? —b%c? —c2a® —a*be —b%ca —c2ab .

Propriété 1 :
L’application d de 4* dans B (Remarque 2) définie par:
d(a,b) = (a —b)* .

est une distance (booléenne).
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En effet:
i) (a—b)? =0 ssi (a—b) = 0 (Remarque 1, ii))
i) (a—b)? = (b—a)?
1) D’aprés le lemme 1 on a:
(a—c)*v (c—b)*=(a—b)*v (b—c)? et par conséquent:
(a—c)*> =(a—b)*v (b—c)?.

Remarque 3 :
De d(a, b) = a*>+b*+ab et a*v b> = a®*+b*—a*b?, on tire:

a’*v b* =d(a, b)+e (a, b)

en posant: e (a, b)= —ab—a?*b*?
e (a, b) est idempotent et e (a, b) . d (a, b)=0
D’autre part: a.e(a, b)=b.e(a, b)=—(a+b) . e(a, b).

Définition 3 :
On appelle diamétre d’une partie £ de A4:

v d )|,
(e, f) e E?

lorsque ce sup. existe (dans B).

Remarque 4 :
1) Le diamétre d’une partie finie est toujours défini.
ii) Si E={a, b} le diamétre de E est la distance des points a et b.

ii1) Méme pour E fini si Card E = 3 il n’existe pas nécessairement deux
points a et b dans E pour lesquels d (a, b)=diamétre de E, car B
n’est pas totalement ordonné.

Définition 4 :
Un cercle € (, ,, de centre r € 4 et de rayon pe B est 'ensemble des
points m € A tels que:
d(r, m)=p
Ainsi me 6, , ssi: (r—m)*>=p
multipliant successivement par pr?, p(1—r?), (1—p)r?, (1—p)(1—r?),
il vient respectivement:
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pr*m? +prm =0
p(L—r)=p(l—r*) m?
m(1—p)r*=(1—p)r
m?(1 —p)(1 =r*)=0

On en déduit:

C i py={ mim=1—p) r—pre+p (1—r?)n} 1)
avec ¢ € B et n inversible dans A4

Lemme 2 :

Pour tout « € B il existe un unique idempotent sur le cercle €, ;).

Pour tout a inversible dans A il existe un unique élément inversible sur le
cercle €, 1.

En effet: %, ={m/m=—ae+(1—a)n}; m idempotent implique
e=0etn=1doum=1—-a

Ca.1y=1{m/m=—ae}; m inversible implique e=1 d’ou m= —a.

Propriété 2 :

Pour tout cercle le diamétre est égal au rayon.

Pour tout point d’un cercle il existe un unique point « diamétralement
Oppose ».

En effet:
Soient my et m, sur le cercle €, , : I'inégalité triangulaire entraine:
d(my, my) =d(my,r) v d(r, my)=p. On va montrer que p est atteint.
(my—my)= —prle; —e]+p (1 —1*)[ny —n,]
d(my, my)=p[rd (e, &)+ —ry)d(ng,ny)
Fixons m,: d’apres le lemme 2 il existe un unique ¢, tel que d (¢, £,)=1

¢t un unique n, tel que d(ny,n,)=1, donc un unique m, tel que
d<m1)m2)=p'

Définition 5 :

1) a, b, c est un triplet équilatéral si d(a, b)=d (b, ¢)=d (c, a).
On dira aussi: a-triplet, pour désigner un triplet équilatéral de dis-
tance commune «.

i) a, b est un a-biplet si d (a, b)=o.

De la propriété 2 on déduit les propriétés suivantes:
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Propriété- 3 :

Pour tout p-biplet m,, m, de €, ,, (points « diamétralement opposés »)
le triplet r, m,, m, est équilatéral.
Propriété 4 :

Etant donné deux points il existe un unique triplet équilatéral les conte-
nant.
Propriété 5 :

Pour tout biplet a, b, €, a(a pyy €t B (b,4(a,5y) Ot UN UNique point commun.
Remarque 5 :

i) sid(ry,ry) > pyvpyalors €, 0 O Gy py) = ¢

il) La formule (1) montre que:

Cott=-pnoa-rm) < Cup

Plus généralement on va montrer que:

Propriété 6 :

Si I'intersection de deux cercles €,, ,,) et %, ,, n’est pas vide elle est
contenue dans un cercle de rayon p, . p,.

Soit m € €, ) 1l existe ¢ € B et n inversible dans A4 tels que:
m=(1—p)r —pirie+p; (1 —r)n.
Maintenant on suppose m € €, .-
De m=(1—p,) m+p,m=((1—p,) m+p,rym+p, (1—ry) m, on tire:
m=(1—py)ry+p, (L—py) vy +por5 [ —psry e+ py (1 =13) n| +
+p, (1 =r) [ —pirie+p, (1 =1 n],

avec la condition: p,p, (1—r})ron=—r, pp, (1—r3). Cette formule du
type (1) définit un cercle, qui contient €,, ,;) N G ry,p9)> €t de rayon:

Pz"g (P17'% +p,(1 “7'%)( +p, (1 —rg_) (P17']7f +p, (1 _"%)) ’
c’est-a-dire p; . p,.
Définition 6 :
Un disque 9, de centre s€ A et de rayon o € B est I’ensemble des

points m € A tels que:
d(s,m)=a
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Ainsi me Dy, ssi: (s—m)* =0
soit (s—m)? (1—a) =0 ou encore (s—m) (1—0g) =0
c’est-a-dire m (1—0) =s(1—0)

‘@(S’a)={m/m=(l—a)s+at} avec teA‘ (2)

Définition 7 :
On appelle ceur du disque D . le point s. = (1—0) s.
On appelle couronne du disque D, . le cercle € 4.

Propriété 7 :
Tout point d’un disque 2 est centre de Z.
En effet: pour tous my, m,, de D4 q):
dim, my) =d(my, s) v d(m,,s)=a
Prenant le centre au cceur du disque:
Ds..0p = { Mm=5.+ 0t }
m est dans la couronne ssi:
d(m, s,)=0ct*=0, Ccest-a-dire o = >

C’est toujours le cas si ¢ est inversible.

Propriété 8 :
Tout disque 2 de rayon ¢ peut €tre engendré par:

i) La famille des cercles %, ,, centrés en un point s fixe de & et le
rayon y parcourant [0, o].

ii) La famille des cercles %, ,y dont le centre parcourt la couronne de
2 et le rayon est o.

La premicre famille: définition 6 et propriété 7.

La deuxiéme famille: puisque pour tout me 9, %, ,, < 2, il reste a
montrer que pour a € 9 il existe m de la couronne de & tel que a € %, ).
S0it a=s,+ ot et m=s,+on. '

Si nous choisissons » inversible, m sera dans la couronne. Prenons
n=—t+(1—1*). Alors d (m, a)=0 (n—1)*=0. Cqfd
Propriété 9 :

Si I'intersection de deux disques n’est pas vide, c’est un disque dont le

rayon est le produit des rayons.

L’Enseignement mathém., t. XVII, fasc. 2. 13
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En effet: soient & et 2’ de rayons respectifs o et ¢’ et qui ont le point s
en commun ; prenons s comme centre commun: 2 N 2’ c’est '’ensemble des
m tels que d (s, m) = o et d(s,m) =c¢" d’ou d (s, m) = oo’.

Considérons la famille des disques contenant deux points a et b: ils
admettent tous a pour centre; leur rayon est supérieur ou égal a d (a, b).

Définition 8 :

Le disque D, a4 py) €t dit engendré par les points a et b. On le note 9
Ainsi, deux points d’un disque de rayon ¢ engendrent ce disque si leur dis-
tance est égale & o (o-biplet).

Remarque 6 :

Compte tenu de la remarque 3 le ceeur du disque 9 est

so=a-e(a,b)=b-e(a,b)= —(a+Db) e(a,b)

Propriété 10 :

2" est ’ensemble des points m tels que

d(a,m) v d(m, b)y=d (a, b)
En effet: m e 2°° implique d (a, m) v d(m, b) = d (a, b) rayon du disque
(Propriété 7): comme d’autre part on a 'inégalité triangulaire:
d(a,m) v d(m,b) =d(a,b),

I’égalité en résulte.
Maintenant si 'on a d(a, m) v d(m,b)=d(a, b) on a aussi (lemme 1)
d(am) v d(ab)=d(a, b) d’ol d(a, m) =d(a, b) et donc me D, 40a,py)=
=9,
Définition 9 :

Etant donnés les points a, b et 'idempotent «, on appelle médiateur de
(a, b) a I’ordre o et on note 4% ’ensemble des points m tels que d (m, a)=
o d(m, b).
Pour a=1 on dit simplement médiateur de (a, b) et on note £,

Pour déterminer .#“° on multiplie successivement d (a, m)=oa.d (b, m)
par a et (1 —o); il vient respectivement:

a(a® —b*+(a—b)m)=0
(1-0)a=(1—-a) m

m est donc nécessairement de la forme:
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m=(1—a)a—oad(a,b)(a+b)+a(l—-d(a,b)).t avec teA.

Réciproquement tout m de cette forme vérifie (1 —o) m=(1—a)a et par
conséquent (m—a)=a (m—a). On a donc:

(m —a)?* —a (m —b)? =aa® +aam —ab® —abm
=(a —b)[a(a+b)d(a, b)+d(a,b)am]
=(a —b) [oc(a +b)d(a,b)—ad(a,b)(a+b)]=0

M‘;”:{ m/m=(1 —«)a —ad (ab)(a +b)+a (1 —d(ab))t} te A| (3)

Propriété 11 :

Le médiateur de (a, b) & I’ordre o est un disque de rayon o.(1 —d (a, b)).

Remarque 7 :
Le médiateur .#* de (a, b) est:

MP={m/m= —(a+b)d(a,b)+(1 —d(a,b)).t} te4
Etudions M% n 2, cest-a-dire cherchons les points m du disque
engendré par (a, b) tels que d (a, m)=ad (b, m):

i) D’apres la propriété 9, si cette intersection n’est pas vide c’est un
disque de rayon nul donc un point.

ii) m=(14+a) a—ab est un point de 4% (t= —(a+b)); c’est aussi un
point de 2* puisque:
d(a,m)=a.d(a,b)=d(a,b)

Propriété 12 :

I1 existe un point m et un seul, sur le disque engendré par a et b, tel que
d (a, m)=od (b, m), c’est:

i,=(4+a) a—ab

Remarque 8 : |
d(a,i)=od(a,b); d(b,i)=d(a,b).
L’ensemble des points 7,, o décrivant B, est le cercle €, 4,5y, Puisque si m

est un point de ce cercle d (am) = d (ab) entraine d (a, m)=d (a, m), d (ab)
et m= id(a,m)'

On remarquera d’autre part que pour tout o, les points b et i, engendrent
2%,
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Remarque 9 :

Notant simplement i lorsque a=1, i= —(a+b)

Définition 10 :
On appelle milieu de (a, b) le point i de P*° équidistant de a et b.

Propriété 13 :
Tout triplet de points dont 'un est le milieu des deux autres, est équi-

latéral.
Pour tout triplet équilatéral chaque point est le milieu des deux autres.

La premiére assertion résulte de la remarque 8 pour a=1.
Maintenant soit (a, b, ¢) un triplet équilatéral: alors chaque point appartient
au disque engendré par les deux autres.

Propriété 14 :
Pour tout m e .4 on a d(a,i) = d(a, m)
C’est-a-dire: d(a,i) est la plus petite distance pour m parcourant le
médiateur de (a, b). En effet:
d(ai)=d(ab)=d(am)v d(m,b)=d(a, m)

On voit de plus en plus que si d(a,i)=d (a, m) alors m=i ...

Propriété 15 :

Quand ils sont distincts, les trois points d’un triplet équilatéral ne sont
jamais cocycliques.

Soit a, 7, b un triplet équilatéral et %, ,) un cercle circonscrit:

d(r,a)=d(r,i) v d(i,a) =>d(r,a)=d (i, a)

ce qui est absurde (propriété 14) si les points sont distincts.

Remarque 10 :

Pour tout a-triplet a, b, c:
a+b+c=0
a?+b*+c2=ab+bct+ca= —u
a—-b=b—-c=c—a
a* —b? —c*= —bc...etc ...
a—b—c=—a...etc...
a’> —bc=a ...etc ...

Comme le montre la remarque 9.
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Propriété 16 :
Pour tous a, b 'ensemble des points m tels que d (a, m) . d (b, m)=0
est le cercle € 4,5 avec i milieu de a, b.

Procédons par équivalences:
d(a,m)-d(b,m)=0
(a —m)? - (b—m)*=0
(a—m) - (b—-—m)=0
m? —am —bm+ab=0
m>+m(—a—b)=a*+a(—a—>b)

i milieu de a, b, et i24+m?+mi=i*+a’+ai

d(i,m)=d(i,a)=d (a, b) .

Définition 11 :

Une partie E de A4 est une base métrique si pour tous a, b de A4:

d(a, e)=d (b, e) pour tout e € E implique a=5b

Remarque 11 :
Il n’existe pas de base métrique a un élément.

Si e=0, d(a,e)=d(—a,e) et a # —a pour a # 0.
Sie #0,d(0,e)=d(—e,e).

La définition 11 peut s’interpréter ainsi: E est une base métrique st pour
tous a, b, de A4:

« E < M implique a=b »

Comme le diamétre de .4 est [1—d (a, b)] (propriété 11), on voit que sile
diamétre de E est 1 alors E est une base métrique. Nous avons 1a une condi-
tion suffisante 1.

Considérons une partie £ de A Card E = 2 vérifiant I’hypothése: il
existe un idempotent § non nul tel que pour tout (e f,) € E2, B. d (e, £.)=0
Alors fe=ff. Pour e choist dans F on a:

1) La condition nécessaire et suffisante est la suivante:
Soit X = Spec B le dual de B et w,, I’of associé canoniquement a d (a, b). On pose ) =

(e,f) € E2 “el
E est une base métrique ssi () est dense dans X. On remarquera que d (a, €) = d (b, e)
et d(a,f) = d(b,f) impliquent d (a, b) . d (e, f) = 0 c’est-a-dire w,, N Wep = I ...
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d(0,f)=d(—pe,f) pour tout fe E
ce qui montre que E n’est pas une base métrique si fe # 0.
Envisageons donc le cas ol pour tout e € E, fe=0:

d (B, e)=d(—p, e) pour tout ec E
ce qui montre encore que E n’est pas une base métrique.

On suppose maintenant que E est fini; le diamétre de E existe toujours

dans ce cas et s’il n’est pas égal a 1 nous sommes dans I’hypothése précé-
dente (f...)

Propriété 17 :

Une partie E de 4, ayant n éléments; n = 2, est une base métrique ssi
le diamétre de E est 1.

Soit E={ ey, e, } avec d(ey, e,)=1:E est une base métrique. Tout
point a est caractérisé par les deux idempotents d (a, e,), d(a, e,). On a:

d(a,e;)—d(a,e,) =e% —e% +a(e; —ey)

Co: [ a=—(es+e)+(es—e,)(d(@,e) —d(a,e)) 4)

En particulier on pourra choisir ey, e,, parmi 0, 1, 2. d(a, 0)=a?;
d(a,1)=a*+a+1; d(a,2)=a*—a+1. Le choix: e;=1, e,=2, annule
(e; +e,) dans la formule (4). Posant §,(a)=a*+a+1 et §,(a)=a*—a+1
il vient:

a= —94d,(a)+d,(a) (4 bis)

Posons &,(a)=1-06,(a)= —a—a?; e,(a)=1-5,(a)=a—a? Les idem-
potents ¢,(a), ¢,(a) sont orthogonaux et:

a= —06,(a) +d,(a) =(1 —6,(a)) —(1 =9, (a)) =&;(a) —e&,(a).
Réciproquement soient o et f deux idempotents orthogonaux tels que
a=ao—p.

Il vient a?=a+p d’ott [ o= —a—a’=¢,(a)
B=a—a*=¢,(a).

Propriété 18 :

Pour tout a € 4 il existe un couple unique d’idempotents orthogonaux
e1(a), &,(a), tels que:

a=¢;(a) —&,(a)
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Définition 12 :
i) On appelle contraction une application T de A dans A4 telle que pour
tous a, b, de A: |

d(T(a), T(b)) = d (a, b)

i1) On appelle isométrie une application de A dans A qui conserve les
distances.

ii1) On appelle franslation et on note %, v € A, I'application de A dans
A:m—> m+v.

Remarque 12 :

1) L’ensemble des contractions (resp: des isométries; resp: des transla-
tions) est stable pour la composition des applications de 4 dans A.

ii) Toute isométrie est une contraction.

iii) Toute translation est une isométrie.

Soit 7" une contraction: T=%_1. o, 0 T” est une contraction: 7 (a)=
=T"(a)—T'(0); elle laisse O fixe.

Etudions les contractions T & 0 fixe '):

[ T(0)=0
d(T(a), T(b)(= d (a, b)

- T*@)=d(T(0), T(a)) = d (0, a)=a?, d’olt pour a € B: T*(0a) = (0a)? = o
ce qui implique 7 (aa)=oa. T(aa)

- Par suite (7' (0a) —«.T(@))? =a.d(T(aa), T(a)) = o.d(xa, 2)=0 d’olt
T(aa)=o- T(a)

D’autre part:

(T(a+b) = T(a) - T(b))* = d (T(a+b), T(@) v T (b)
=<d(a+b,a) v T*(b)

= b?

. Comme a et b jouent des rdles analogues, cette expression est inférieure ou
égale & a®.b” et par conséquent:

a*b=0=T(a+b)=T(a)+ T(b)

') T2 (a) représente le carré de I’élément T (a) de A; c’est encore d (0, T (a)).

JEE =
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Appliquons maintenant la propriété 18:
T(a)=¢s(a) - T(1) +&x(a) - T(2)
d’ol: T(@)=a (T RQ)—-T ())+a* (-T (2)—T (1))

Montrons que réciproquement toute transformation 7
T (a)=wa*+ua+v ; v,u, wdans 4,
est une contraction:
d(T(a), T(b))=[w(a*®=b*) +u(a —b)]* =
=d(a,b)-[w(a+b)+u]*=d(a,b)
Propriéte 19 :

Les contractions sont les transformations de la forme m — wm?+
+um+v; v, u, w étant des éléments de A.

ASPECT MATRICIEL

Soit T une contraction a 0 fixe: T (m)=¢,(m). T (1)+¢&,(m) . T (2).
Appliquons la propriété 18 a 7 (1) et 7T (2)

T(l) = 911 - 912
T(2) = 921 - 922

<81<T<m>)>=g, 3 <m>>
€ (T(m)) H \ ey (m)

. 0,,0 , . i ..,
la matrlce% =<611 621> étant & coefficients dans B avec les éléments de
12V22

chaque colonne orthogonaux.

On obtient:

Réciproquement une matrice 5 définit une application de A4 dans A4
pourvu que les deux éléments de [3 . (:{m))] soient orthogonaux ce qui
impose 1’orthogonalité des éléments de chaque colonne pour 5. On se
raméne alors a la forme wm?+um ce qui montre que la transformation

définie par g est une contraction.

Propriété 20 : ,
Les contractions & O fixe sont définies par les matrices 5 a coefficients
dans B orthogonaux pour chaque colonne.

Supposons que m — wm?+um+v soit une isométrie. L’appliquant au
I1-triplet 0, 1, 2 on en tire les conditions nécessaires:

TR TS AW A PP Y
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(w+u)l=(—w+u)l=u*=1
c’est-a-dire w=0 et u*=1.
Réciproquement toute contraction m — um+v avec u”=1 conserve les
distances.

Propriété 21 :
Les isométries sont les transformations de la forme:

m — um+v; avec v, udans A et u?=1.

ASPECT MATRICIEL

On a une isométrie a point 0 fixe ssi 5 est inversible. D’ailleurs d’aprés
la propriété 21 elle doit €tre involutive. Elle est nécessairement de la forme
(5%) avec a+pf=1 et af=0.

Propriété 22 :

Les isométries a 0 fixe sont définies par les matrices ("[,ﬁ) avec «, f3
idempotents tels que af=0; a+f=1.
Remarque 13 :

L’isométrie m — um étant associée a la matrice (j ﬁ), ona:u=u—2p.

Lemme : 3

L’ensemble des points m pour lesquels ¢,(m)=y, y fixé, est le cercle
e
7(1,(1=y)

=n effet:
l—y=1-¢ (m)=6,(m)=d(1, m)

’ropriété 23 :

Pour tous o, B, y, de B tels que af =0 et a+ =1, ’'ensemble des points m
érifiant: |

® . &y(m)+p . ex(m)=y ;

st le cercle de centre u=a—f et de rayon (1—7).
-ompte tenu de la remarque 13, ’'ensemble des points m considéré se déduit

var 'isométrie m’=um, de ’ensemble des points m’ pour lesquels ¢,(m")=y;

"apres le lemme 3 c’est donc un cercle de rayon (1 —7) et de centre u image
ie 1.
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Propriété 24 :

Une contraction 7 est déterminée par la donnée d’un 1-triplet et de son
image par T.
Soit T la contraction m — wm?4+um-+v=m’. Par hypothése on donne
a, b, ctels que d (a, b)=d (b, ¢)=d (c, a)=1, et leurs images par T : a’, b’, c'.
On a donc:
2

’

a 1 aa v
b'1=(1 b b* u
¢’ 1 ¢ c? W

Sous I’hypothése: « a, b, ¢ est un 1-triplet », la matrice:

a? —b%> —c? b2 —c?>—a? ? —a? —b?
' '=| a—-b—c b—c—a c¢—a—b Jestinverse de of =
—1 -1 —1

—_ = =

o o[

o S8
[\

ce qui détermine v, u, w.

Remarque 14 :

Compte tenu de la remarque 10, </ peut encore s’écrire:

—be —ca —ab
' =| —a —b —c
-1 -1 —1
On en tire:
—v= —a’bc—b’ca —c’'ab
—u= —aa’ —bb’ —cc’
—w= —a’' —b' —¢’

Définition 13 :

On appelle affinité de rapport « € B une contraction pour laquelle il existc
un 1-triplet a, b, ¢ dont 'image est:

a=a; b'=b; ¢’=(1+a)b—aa

Ainsi a et b sont invariants et I'image de ¢ est I’'unique point i, du disque
2° pour lequel d (b, i,) = o . d(a, i,) (propriété 12).

‘d(a,c)=1; d(b,c)=a; d(c,c)=(1—a).

Appliquant les formules de la remarque 14 on détermine:
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v =ab—a)(l —a)
u=1+0b-a)(1—-a)c
w=(b-a{l—-x

d’ot: m' =m+w (m*+cm+ab)
ce qui s’€crit:

‘ m' =m-—w-(1—d(c,m), avec w=(b—a)(l—a) 7(6)

Repérons les points dans la base métrique: { a, ¢ }.

d(c,m") =[(m—c)—w(l—d(c, m)]?
d(c,m’) =d(c, m)+(1 —a) (1 —d(c, m))

d(c,m) =(1—a)+a-d(c, m) (7).

d(a,m’) =[(m—a)—w(l—d(c, m)]?
d(a,m") =d(a,m)+(1 —«) (1 —d(c, m))(1+(b—a)(m—a))
d(a,m") =d(a,m)+(1—a)(1—d(c, m))(b—a)(m—c)

| d(a,m)=d(a, m) (M4

Remarque 15 :

On voit (formules (7)) que les points invariants pour une affinité de
rapport o définie par a, b, ¢ et son image, vérifient:

dc, m)=(1—-a)+pf avec f=u

Il en résulte en particulier que o est un élément caractéristique pour la trans-
formation considérée.

Définition 14 :
Une affinité de rapport nul est une projection.

Ainsi une projection est une contraction pour laquelle il existe un
1-triplet a, b, ¢ dont I'image est:
a'=a; b'=b; ¢'=b
T étant une projection on a pour tout m € A4, repéré dans la base métrique
{a,c}:

d(a:m) T d(aam) T d(aam)
m — ml — m/r
d(c, m) 1 1

Compte tenu des formules (7) pour a=0, d’ot:
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Propriété 25 :
Toute projection est une contraction idempotente.

L’image de A4 est le cercle de centre ¢ et de rayon 1; c’est aussi 'ensemble
des points invariants.

Exemple :
La contraction définie par 0, 1, 2 et sonimage0, 1, 1, (a=a'=0, b=5b"=1,
c=2, ¢'=>b) est une projection

L’image de A4 est le cercle de centre 2 et de rayon 1: c’est B. Elle est
définie par m’=m?.

Remarque 16 :

La propriété 15 montre que sur I'image de A4 par projection il n’existe
pas de triplet équilatéral.

Remarque 17 :

On voit facilement que toute contraction pour laquelle il existe un
I-triplet a, b, ¢ dont I'image est a, a, a envoie tout point m en a.

Définition 15 :
Une application de 4 dans A4 est une similitude de rapport o« € B si pour
tous m, n et leur image m’, n’:

d(m', n")y=ad (m, n)

Ainsi une similitude de rapport « est une contraction. Elle transforme
tout f-triplet en un «f-triplet, tout cercle (resp: disque) de rayon p en un
cercle (resp: disque) de rayon « . p.

Considérons la similitude définie par m’'=wm?+um+v. L’image du
1-triplet a, b, ¢ est un a-triplet: on a nécessairement w=—a’'—b"—c’ (Re-
marque 14)
d’ou w=0 (remarque 10)

Alors u? . d(m, n)=d (m’, n')

Propriété 26 : |
Les similitudes sont les transformations de la forme m — um-+v; le
rapport est u?.
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Propriété 27 :

Une similitude T est déterminée par la donnée d’un 1-biplet et de son

image par 7.
‘a’\ (1 a\ (v
(b’ “\1b) \u

En effet:
Sous I’hypothése d (a, b)=1, la matrice

b2 —ab a® —ab
a—>b b—a

(15)

CHERCHONS MAINTENANT LES POINTS INVARIANTS PAR UNE SIMILITUDE

est inverse de

Si m est invariant par la similitude n - un+v:
m=um-+7v

multipliant successivement par (1—u?), &,(u), €,(1) on en tire respecti-
vement:

(1 —u>)m=(1—-u?)v
eq(u) - v=0
g(u)  -m= —gy(u) v

Ainsi sous la condition nécessaire &,(u) . v=0, I’ensemble des points m
invariants est donné par:

m=(1—-u?>—¢e,(u))v+e)-t, ted
C’est le disque
2
Drt—u - s2)o, s1(w)]
Propriété 28 :

La similitude » - un+v a des points invariants ssi v . &,(z)=0. Dans
cette hypothése ’ensemble des points invariants est le disque

2
@[(1—u —&2(u)).v, el(u)]
Remarque 18 :

Toute similitude a un unique point invariant ssi () =0; c’est (1 +u>)v.
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Définition 16 :

Une application de A dans A4 est une homothétie de centre h et de rap-
port o € B lorsque pour tout m et son image m'’:

(m" —h)=0a(m —h)
Ainsi
m'=am+(1—-o)h (6)

Toute homothétie est une similitude. Réciproquement toute similitude
n — an+v avec av=0 est une homothétie de rapport « et de centre v.

On voit facilement que:

Propriété 29 :
Le produit d’une isométrie par une homothétie est une similitude.
Toute similitude peut s’écrire comme un tel produit.

Définition 17 :
On appelle symétrie a disque toute isométrie involutive ayant des points

invariants.

On sait (propriété 28) que sous la condition nécessaire v . &,(u)=0C
I’ensemble des points invariants par isométrie est le disque Z(_, 1)
Ceci étant une telle isométrie est involutive parce que uv= —v: c’est donc
une symétrie a disque.

m, m’ étant un biplet homologue par la symétrie a disque n — un+v,
soit 7 le milieu de mm’; on a:

d(—v,)=(—v =) =m?>(1 —u)®>=m? ¢, (u) = &, ()

ce qui prouve que i est dans le disque des points invariants.

Propriété 30 :
Les symétries a disque sont les transformations de la forme:
m— um+vavecu’=1, v.ew)=0.

Le disque des points invariants est Z_, ,1(,; il contient le milieu de
deux points homologues.

Propriété 31 :
Toute isométrie peut s’écrire comme produit de deux symétries a disque.

m’'=um+v s’obtient (par exemple) en composant: m,=2um puis m =
= 2m 1 + y.
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Définition 18 :
On appelle symétrie a centre toute isométrie involutive ayant un unique
point invariant.

Ainsi une symétrie a4 centre est une symétrie & disque pour laquelle
¢,(#)=0 donc de la forme m — 2m+v. L’unique point invariant est 2v
et pour tout m on a:

2y=—m—m’ ce qui montre que 2v est au milieu de m, m’.

Propriété 32 :
Les symétries a centre sont les transformations de la forme m — 2m+v.
Le centre est 2v; il est au milieu de tout biplet m, m’, de points homologues.

On voit facilement que:

Propriété 33 :
1) Le produit de deux symétries a centre ¢, et ¢, est la translation de
vecteur 2 (c,—cy).

1) Le produit de trois symétries a centre est une symétrie a centre.
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