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respectively. If A is a pseudo-differential operator in X of order fi then the

product AK is in Im+ß (X x Y, A) and the principal symbol is the product
of the principal symbol of K (considered as living on A') by that of A lifted

from T* (X) to A' by the projection A' T* (X). If we multiply to the

right instead the result is the same except that we shall use the projection
from A! to I7* (7). If A and B are pseudo-differential operators in X and

in Y respectively and if AK KB we conclude that for the principal symbols

a and b of A and B we must have

(2.3.8) i)) b(y> n)

if the principal symbol of K is not 0 at (x Cl fl)> (y> d))- Conversely,

(2.3.8) implies that AK — KB is of lower order. We can therefore successively

construct the symbol of B for a given A so that AK — KB is of order
— oo, provided that the wave front set of A is concentrated near a point
where K is elliptic. This argument often allows one to pass from one operator
to another with principal symbol modified by a homogeneous canonical
transformation. (See also Lemma 3.2.2 below.)

The operators in lm (X x Y, A') can be described by means of the
classical generating function : For any point (x0, £0, y0, ri0) in the graph of
X one can choose local coordinates in neighborhoods of x0 and y0 so that
there is a function cp (x, rj) in a conical neighborhood of (x0, rj0) which is

homogeneous of degree 1 with respect to rj, such that x is given by (cpn rj)

-> (x, cp'x) and det cpxv # 0. The elements A in Im (X x Y, A) with wave
front set close to (x0, f0, y0, —rj0) are then as operators of the form

Au (x) (27i)~rt J ei(p(x^ a (x, rj) îi(rj)drj, a e Sm (X x R")

when u is in C q in a neighborhood of y0 and x is in a neighborhood of x0.
The assertions made above are easy to prove directly from this
representation.

Chapter III

Pseudo-differential operators with non-singular characteristics

3.1. Preliminaries

Throughout this chapter X will denote a C00 manifold (all manifolds are
tacitly assumed countable at infinity) and P a properly supported pseudo-



— 136 —

differential operator in X of order p with homogeneous principal symbol p.
This means that p is a complex valued C°° homogeneous function of degree p
on T* (X)\0 and that for every local coordinate system the full symbol
of P differs from p by a symbol in S^'1. We shall also require that the
characteristics are simple, that is,

(3.1.1) dp(x, f) A 0 if (x, 0 e T*(X)\0 and p(x,£) 0

The purpose is to give analogues of the existence theorems stated in Chapter I
for the case of differential operators with constant coefficients, in particular
part iii) of Theorem 1.4.6 and the related Theorems 1.5.1 and 1.5.2. This
will require further conditions on P which will be introduced later on.

We shall now recall some classical facts concerning the integration of the

first order differential equation

(3.1.2) p(x, gradw) 0.

At first it will be assumed that p is real valued. If u e C2 (Y) for an open
set Y c X and if u is real valued, then A {(x, grad u (x)), xe 7} is a

section of T* (X) over Y on which (the restriction of) the invariant symplectic
form <7X ZdÇj a dx} vanishes. In fact, the^pullback of gx to Y by the

section is

d (Zdu/dXjdXj) — d du =0.
Conversely, if we have a C1 section A of T* (X) over Y on which ax vanishes,

we can define A in local coordinates by £ £ (x), and dÇj/dxk — dÇJdxj
0 so I du for some function u in Y (determined up to an additive

constant) if Y is simply connected. The (local) integration of (3.1.2) is

therefore equivalent to finding a (local) section A of J1* (X) such that

(i) a 0 on A

(ii) p 0 on A

In other words, A shall be a Lagrangean manifold (see section 2.3) contained
in p~1 (0) such that the projection A -> X is a diffeomorphism. Locally the

last condition means just that A is transversal to the fiber of the projection
T7* (X) -> X. In the local theory one can therefore concentrate on (i) and

(Ü).

The symplectic form a is a non-degenerate skew symmetric bilinear
form on the tangent space of T* (X). That a manifold A is Lagrangean
therefore means that at every point X e A the tangent space Tx (A) is its own
orthogonal complement with respect to a. If (ii) is valid we have dp 0
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ori Tx (A). The tangent vector Hp to T* (X) corresponding to the covector

dp by the definition

<t,dp> a (t,Hp),teT(T*(X)),
is therefore tangential to A. One calls Hp the Hamiltonian vector field

defined by p. In terms of local coordinates x in X and the corresponding

coordinates (x, Ç) in T* (X) the Hamiltonian vector is given by

Hp Z (dp/dÇjdldXj-dpIdXjdldÇj)

If q is another C1 function on T* (X), then

Hpq < Hp, dq > a (Hp,Hq) - a (Hq,Hp) - Hqp

and in local coordinates

Hpq {p,q} Z(dpldÇjdqldxj-dpldXjdqldÇj)

{p, q} is called the Poisson bracket of p and q. For later reference we note
the Jacobi identity

(3.1.3) {p,{q,r}} + {q,{r,p}} + {r, {p,q}}0

or equivalently

H{Ptq) HpHq - HqHp [Hp, HJ

For the proof we first observe that [Hp, Hq] is a first order differential

operator. This implies that (3.1.3) is independent of the second order
derivatives of r, and similarly by the symmetry (3.1.3) is independent of the
second order derivatives of p and q. But if p, q, r are all linear functions it
is clear that all terms in (3.1.3) vanish so (3.1.3) must always be valid.
From the Jacobi identity it follows that the (local) group of transformations
defined by the vector field Hp is canonical, that is, it preserves the symplectic
form. In fact, it suffices to note that if qu q2n are symplectic coordinates
at a point m and Hp qj constant then these functions remain symplectic
coordinates along the orbit of Hp through m since Hp { q}, qk } —

- {ik, {p, ij}}- { ij,{qk,p}}o.

We now return to the Cauchy problem for (3.1.2). Let be a hyper-
surface in X and u0 a C1 function with no critical point on M. We want
to find usatisfying (3.1.2) and the Cauchy boundary condition
on M.Inaddition <f0 grad u (x0) is prescribed for some in such
a way that t0 restricted to T'X(J (M) is equal to grad We can then extend
u0 to a neighborhood of M so that grad u0 £() at x0. If M is defined by
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the equation p 0 we shall then have grad u grad u0 + t grad p on M,
t 0 at x0, so on M the equation (3.1.2) becomes p (x, grad u0 +1 grad p)

0. The derivative with respect to t when t 0 and x x0 becomes

{p, p } (x0, £0). If we assume that Hp (or more precisely the projection
p^ d/dx of Hp in T (X)) is transversal to M, it follows from the implicit
function theorem that this equation has a unique solution in a neighborhood
V of x0. With u1 u0 + tp, the Cauchy problem is now to find a Lagran-
gean manifold contained in p~x (0) and including

A0 { (x, grad ut (x)), x e M0 M n V)

We have already seen that A must contain the integral curves of the vector
field Hp starting in A0 and by assumption these are transversal to A0. It
follows that there is a unique local solution of the Cauchy problem. In fact,
the local manifold generated by integral curves of Hp through A0 is Lagran-
gean at A0 since a vanishes on A0 and a (t, Hp) <t, dp > =0
if t e T (A0). The fact that A is invariant under the canonical transformations

exp (tHp) proves that A is Lagrangean everywhere.
When p or the Cauchy data are complex the preceding arguments break

down and there is in general no solution unless p and the data are analytic
(see section 3.3). However we always have an analogous result for formal

power series solutions at a point, and this can be applied when the data are
in C00 by considering the Taylor series expansions. We can say more if the

vector field Hp happens to have an integral curve r with initial data (x0, £0),

that is, if there exists a regular C00 curve t -» (x (t), Ç (t)) e T*(X) with
(x (0), £ (0)) (x0, f0) and

0 7^ (dx/dt, dÇ/dt) c(t)(p'ç, —px)

for some complex valued function c. Apart from the parametrization such

a curve is uniquely determined by (x0, £0) since it is an integral curve of any
one of the vector fields HKep and Hlmp which is A 0. If such a curve T exists

we can consider Taylor expansions on r instead. Even if the data on M
are complex valued we then obtain a complex valued function u such that
Im u vanishes to the second order on r, grad Re u (x (f £ (t), the restriction

of u to M has a given Taylor expansion at x0 and p (x, grad u) vanishes

of infinite order on r. The last statement makes sense although p (x, Ç)

is not defined for complex values of £, for the derivatives of p (x, grad u)

can still be computed formally on T.
For a more complete though less geometrical treatment of the topics

discussed here we refer to Carathéodory [1]. Since for us the equation p 0
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is the characteristic equation of the operator P, we shall use the terminology
bicharacteristic strip (resp. curve) for an integral curve of the Hamiltonian
field Hp contained in p~l (0) (resp. the projection of such a curve in X).
Note that whereas the bicharacteristic strip is non-degenerate or reduced to

a point, the bicharacteristic curve may have a cusp. A simple classical

example of this is given by the Tricomi equation for which p (x, £)

x2£i2 + £i2> With suitable normalization of the parameter the
bicharacteristic strips are given by jxq xfi — 2(ct)3/3, x2 — t2c2,

c A 0, £2 ~ tcl- The cusps of the bicharacteristic curves occur when

t 0. (Some authors use the term bicharacteristic strip for any integral
curve of Hp and null bicharacteristic strip for those on which p vanishes.)

3.2. Operators with real principal part

Let P be a properly supported pseudo-differential operator of order p
in a manifold X and assume that P has a real and homogeneous principal
part p satisfying (3.1.1). In this case rather complete results on the propagation

of singularities and existence theorems in @'/C°° have been obtained by
Duistermaat and Hörmander [1]. Complete proofs of all statements in this
section are given there. The following result should be compared with
Theorem 1.6.5.

Theorem 3.2.1. If ue LA' (X) and Pu f it follows that WF (u)\ WF (/)
is a subset ofp~ 1 (0) which is invariant under the flow defined by the Hamilton
vector field Hp in p-1 (0)\WF(f).

Proof That WF (u)\ WF (/) c p ~1 (0) is precisely the second part of
(2.2.2). To prove the other part of the theorem we consider a point
m e WF (w)\ WF (/). If Hp (jm) has the radial direction the bicharacteristic
curve through m is a ray, and since WF (u) is conic there is nothing to
prove then. Otherwise we can apply

Lemma 3.2.2. Let m e T*(X)\0, p (m) 0, and assume that Hp (m)
does not have the radial direction. Then there exist Fourier integral operators
A g (X x R", r), B g (R" x X, (T~x)') such that

(i) r is a closed conic subset of the graph of a homogeneous canonical
transformation y from a conic neighborhood U ofm onto a conic neighborhood
V of a point y (m) g r*(R")V0.
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(ii) (m, y (m)) and (y (m), m) are non-characteristic points for A and B
respectively.

(iii) p1 and p2 are given numbers with p2 + p + pi 1, full
symbol of the pseudo-differential operator BPA is equal to £n on a conic

neighborhood of % (m).

Proof Multiplication of P by an elliptic pseudo-differential operator of
order 1 — p reduces the proof to the case p 1. The hypothesis on Hp (m)
then makes it possible to introduce a system of canonical coordinates

xl9 xn, near m in T* (X), which are homogeneous of degree 0

and 1 respectively, so that Çn p. This gives the canonical transformation

y. Choosing B and A with reciprocal principal symbols we obtain that BPA
has the principal symbol Çn near y (m). By successive choice of the terms
of decreasing order in the symbols of B and A one can make the lower order
terms in BPA vanish near y (m).

End of proof of Theorem 3.2.1. With the notations of the lemma we
also choose B1erßi(R" x X, (T-1)') so that m $ WF(AB1 -/). Then

v B1 u e 9/ (R") and y fm) e WF (v) for against our assumption we
would otherwise obtain m £ WF (u) since u (.I—ABf) u + Av. (Here we

are using Theorems 2.2.8 and 2.2.9.) Since

Dnv (Dn-BPA)v + BP (AB1 -I)u + BPu

we have y (m) £ WF (Dnv). Thus we have reduced the proof to the case of
the operator Dn for which it follows by writing down a solution of the equation

Dnv f explicitly.
Remark. Using only pseudo-differential operators, we shall prove a

more general result in section 3.5 (see also Hörmander [13]).

In the opposite direction we have

Theorem 3.2.3. Fet I c R be an open interval and y : I-> T*(X)\0
be a map defining a bicharacteristic strip for P which is injective even after
composition with the projection to S*(X). Denote by T the closed conic hull

of y (/) and by T' the limit points, that is, the intersection of the closed

conic hull of y (A/o) when I0 runs over all compact intervals contained, in I.
For any v 0, 1, 2, one can then find ue Cv (X) such that WF (u)\T'

AT' and WF (Pu) c A.

Note that F' is empty precisely when y defines a proper map from I
into X. Then we have Pu e Cœ (X) and WF (u) f.
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Proof. We shall just indicate a slightly weaker construction for a

compact subinterval I0 of /, but the passage to the statement above is quite

easy from there. Assume for example that 0 e I0. There is nothing to prove
if Hp (y (0)) has the radial direction so we exclude this case. We can then

choose a n — 1 dimensional conic submanifold N0 of N p~1 (0) through

y (0) such that Hp (y (0)) is not a tangent of N0 and the symplectic form
vanishes in N0. If # (t, n) denotes the solution of the Hamilton-Jacobi

equations d (x, f)jdt Hp (x, Ç) at time t which is n at time 0, then it is

clear that there is a closed conic neighborhood V0 c= N0 of y (0) such that
the map

I0 x V03(t, n) -> n)

is injective. Hence it defines a closed conic subset A of a Lagrangean manifold

on which p 0. (See the discussion of the Cauchy problem in section 3.1.)

One can now choose uelk (X, A) with WF {Pu) close to <P ((dl0) x F0)

so that the principal symbol of u has a given restriction to N0 with support
in a small conic neighborhood of y (0) in N0. The crucial point is that for
phase functions (p defining A locally we have p (x, cp'fi 0 when cpd 0.

From this one concludes that to make the principal symbol of Pu vanish

except at <P (dl0 x V0) means to solve differential equations along the
bicharacteristics of P contained in A. (See the remarks on geometrical optics
in the introduction.) As usual one can then successively determine terms of
decreasing order in the symbol of u so that the symbol of Pu is of order — oo

except at $ ((d/0) x Vf). If the order k is suitably chosen the desired

properties are obtained. (To see that WF (u) can be squeezed into F and
not only a neighborhood one can either use functional analysis (see
section 3 in Hörmander [7]) or more general symbols. A third possibility is

indicated in the proof of Theorem 3.4.1 below.)
Remark. Zerner [1] and Hörmander [7] have given similar results

which are weaker in that they are local and that they require Hp not to be a

tangent to the fiber of F* (X) so that the bicharacteristic curve is regular.
These constructions do not require the global definition of Fourier integral
operators as the proof of Theorem 3.2.3 does.

We can now give an analogue of part iii) of Theorem 1.4.6.

Theorem 3.2.4. Assume that no complete bicharacteristic strip of
P stays over a compact set in X. Then the following conditions are equivalent :

a) P defines a surjective map from Q)' (X) to <£)' {X)/C°° {X).
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b) For every compact set K a X there is another compact set K' c X,
which can be taken empty when K is empty, such that u e #' (X)
sing supp tPu c X implies sing supp u cz Kr.

c) For every compact set K c X there is another compact set K' ci Xsuch
that any interval on a bicharacteristic curve with respect to P having
endpoints in K must belong to K'.

Proof, b) implies a) by Theorem 1.2.4. Assume that c) is fulfilled, and
let ueS'(X). If m e WF (u)\ WF (Pu) it follows from Theorem 3.2.1

that each bicharacteristic half strip through m must contain some point
in WF (Pu) unless it stays in WF (u) and therefore over a compact set.

However, if a bicharacteristic half strip stays over a compact set, then the

bicharacteristic strip through any one of its limit points in the sphere bundle

stays over this compact set in both directions which we have excluded by
hypothesis. Hence m lies on an interval of a bicharacteristic strip with end

points over K which proves that b) follows from c). By using a more precise
version of Theorems 3.2.1 and 3.2.3 and an argument close to the proof of
Theorem 3.6.3 in Hörmander [1] one shows that a) implies c).

Assuming still that P has no bicharacteristic strip which stays over a

compact set in X, we set N p~x (0) c X* (X)\0 and let C <= N x N
be the bicharacteristic relation of pairs of points in N which are on the same

bicharacteristic strip. It is then easy to verify that C is a homogeneous
canonical relation if and only if condition c) in Theorem 3.2.4 is fulfilled.
Let C+ (resp. C~) be the subset of pairs (nu n2) with n1 on the forward
(backward) bicharacteristic strip starting at n2. Using the calculus of
Fourier integral operators outlined in section 2.3 and Lemma 3.2.2 above

one can prove

Theorem 3.2.5. Assume that no complete bicharacteristic strip of P

stays over a compact set in X and that condition c) in Theorem 3.2.4 A fulfilled.
Then there exist right parametrices E + and E ~ for P, that is, operators such

that PE+ — I and PE~ — I have C00 kernels, with the following
properties1) :

a) E± are continuous linear maps from H(s)n S" to i/(s+At_ ^ for every s.

1) (Added in proof) In fact are also left parametrices and E±E~ e
IV2 - r (Xx X, C'). (See Duistermaat - Hörmander [1])
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b) WF'(E+) {resp. WF' (E~)) is contained in d*uC + {resp. A* U C

where A * is the diagonal in T*{X)\0 x T*(X)\Q.

c) Outside A * the kernels of E+ and E~ are in (X x X, C').

Condition b) determines E± uniquely mod C00.

A still better result, essentially due to Grusin [1] for operators with

constant coefficients, can be obtained in the following way. Let A+ and A

be properly supported pseudo-differential operators with A+ + A —I.
With E + and E~ as in Theorem 5.3.7 we obtain a new parametrix E if we set

E E+A+ + E~A~

It will inherit the continuity properties of E+ and E~ listed above, and

WF' (E) a A * u { (m, n e WF (A*) }

Using operators with symbols satisfying (2.1.3)' one can arrange that
WF (A*) F± are any closed cones in T*(A)\0 with union equal to

T*(X)\0. By condition c) in Theorem 3.2.4 one obtains for a suitable choice

of F+ and F~ a parametrix which can be extended to a continuous map
from H(s) (X) to H(s+ß__1) (A) for every s. This gives back part a) ofTheo-
rem 3.2.4 in a more constructive way.

We have only given global existence theorems here. However, local
results follow immediately and they require only that no bicharacteristic
strip for P stays forever over a fixed point in X. In the next section we shall
discuss some more serious obstacles to local solvability which may occur
when p is complex valued.

3.3. Necessary conditions for local solvability and hypoellipticity

We shall now allow the principal part p of the pseudo-differential
operator P to be complex valued. That this leads to a drastic change of the
situation discussed in section 3.2 was first realized by H. Lewy [1]. He
found that the equation

(d/dx1 + id/dx2 + 2i (xx +ix2) d/dx3) u f
does not have a solution in any open set for suitably chosen /e C00 (R3).
Starting from this example some necessary and some sufficient conditions
for existence of (local) solutions were given by the author (see Hörmander
[1, Chap. VI, VIII] and for the case of pseudo-differential operators
Hörmander [3]). Mizohata [1] observed that for the equation
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(3.3.1) {ôjdx1Jtixfdlôx2)u =f
there is an existence theorem for even k but no solutions near the x2 axis for
suitable / if k is odd. With this example as starting point more precise
conditions for local existence of solutions have been obtained by Nirenberg
and Trêves [1], [2] (see also Trêves [2], [3]) and by Egorov [2], [3]. We shall
discuss these results here in a somewhat more precise form made possible
by the notion of wave front sets.

Definition 3.3.1. The operator P is said to be solvable at x0 e Z if
there is an open neighborhood V of x0 such that for every /e C00 (Z) one

can find u e Q)' (X) with Pu f in V.

Introducing a positive C00 density in X we can form the adjoint fP of
P and write the equation Pu — f in K as

<ufPv > <f,v > a veCS(V).
We may assume that V X. Solvability implies that the bilinear form

Cœ(Z) X C?(F)9C/>) <f,v >

is separately continuous if for / we take the C00 topology and for v the

weakest topology which makes the mapping v -» fPv e C00 (X) continuous.
Hence the form is continuous (Banach-Steinhaus), which means that for
some semi-norms Nx, N2 in C00 (Z)

I <f,v > i ^ C Nl (/) N2 (fPf), / g C00 (X), v e Cq {V).

Nt and N2 are continuous semi-norms in C\ X) for some k. The estimate
is clearly valid also for f e Ck (Z), and an application of the Hahn-Banach
theorem to the map

fPv -+ <f,v >

shows that for everyf e Ck (Z) one can find u e S'k (Z) so that Pu /in V.

We have therefore proved

Proposition 3.3.2. If P is solvable at x0, then there is a neighborhood
V ofx0 and an integer k such that for everyfe Ck (Z) one can find u e ê'k (Z)
with Pu f in V.

To prove that P is not solvable at x0 it is therefore sufficient to exhibit

arbitrarily smooth functions / such that Pu — f is not smooth near x0 for
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any distribution u.This property has the advantage that it can be localized

in the cotangent bundle as indicated in section 2.2:

Definition 3.3.3. If(x0,£0) e T* (*)\° and f6 & (Z)> we s°y
that fe PS;' (X) at (x0, £0) if onecan find (T) so that £0) £

£ WF(Pu-f).We shall say that P is solvable at £0) if this is possible for
every f.

Solvability of P at a point (x0, £0) e T* (X)\0 is closely related to

smoothness there of solutions of the adjoint equation P*u / when/ is

smooth and WF(u) is close to (x0, f0). Such existence and smoothness

questions will therefore be studied simultaneously in what follows. To trace

the origin of our arguments we first digress to discuss boundary problems

for elliptic operators briefly.
Consider as an example the Laplace equation Au 0 in an open set

IcR" with a differential boundary condition Bu / on the smooth

boundary dX. If u0 is the restriction of u to dX, then u is the Poisson integral
of u0 and the boundary condition Bu / can be written as a pseudo-

differential equation Bu0 f where the principal symbol of B is easy to

compute. In this way the study of elliptic boundary problems (see Agmon-
Douglis-Nirenberg [1] or Hörmander [1, Chap. X]) can always be reduced

to the study of an elliptic system of pseudo-differential operators on the

compact manifold dX. The reduction is possible quite generally, however.

In particular we can take B d/dv where v is a non-vanishing vector field

on dX such that the equation <v, N> =0 defines a non-singular sub-

manifold Y of dX, if N is the interior normal of dX. From the results

related to Lewy's equation referred to above it follows that there is (local)
solvability of the boundary problem if on Y the derivative of < v, N >
in the direction v (which is tangential to dX on Y) is negative whereas there
is a non-existence theorem if it is positive. For regularity of solutions the

opposite signs are required. (See Borelli [1], Hörmander [3].) This strange
result was explained by Egorov and Kondrat'ev [1] who found that in the
two cases one should respectively introduce an additional boundary condition

on Y or allow a discontinuity there. The problem then becomes well
posed and solutions are smooth apart from a smooth jump. The proof of
Egorov and Kondrat'ev attacked the boundary problem directly but their
result can be translated to a property of a certain pseudo-differential operator
which is elliptic outside a submanifold Y of codimension one. General
theorems of this type have been proved by Eskin [1] and Sjöstrand [1].
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Here we shall to a large extent follow Sjöstrand but will only deal with the
situation corresponding to du/dv 0 and given restriction of u to Y.

Let us first consider the typical example given by equation (3.3.1) with

/ 0. If it is possible to take Fourier transforms with respect to x2, the

equation becomes

(djdx1-xf^u (xj, £2) 0

with the solution u(x,.i2) C(<^2) exp (<^2x1i: + 1/(^+1))- If k isocWwe
set for v e Cq (R)

Ev(x)(2tt)_1 J exp (Ç2 (ix21))) v (£2)
— oo

(27t)"1 j| exp (Ç2(i(x2-y)+x1k+1l(k
«2<0

From the results of section 2.3 it follows that E maps Cq (R) to C00 (R2)
and ê' (R) to $)' (R2) continuously, and it is clear that PEv 0 if P

(d/dx1 + ix1kd/dx2). Let y : R 9 x2 (0, x2) be the inclusion of the

x2-axis. Since the x2-axis is non-characteristic with respect to P, it follows
from (2.2.2) and Theorem 2.2.5 that the restriction y*Ev(x2) is defined,
and clearly we have

y*Ev(x2)(271)_1 J
— od

Using Theorem 2.3.1 we see that

WF'(E) {(*!, Çux2, Ç2,y2, ï]2)-,Xj^ 0, x2 j>2, Ç2 <0}.

For suitable choice of v we obtain a solution u Ev of Pu 0 with
WE(u) equal to any closed subset of F { (xl5 Çl9 x2, Ç2); xx ^

0, £2 < 0 } and conclude that P is not hypoelliptic. Moreover, if u e $'
and P*u /, then E*f 0 because E*P* (PE)* 0. In case we only
have (x0, £0) $ WF(P*u— f) for some wef we can still conclude that
WFr (E*) (x0, £0) $ WF(E*f). For every point in F this is a non-trivial

necessary condition in order that f e P Q)\X) at (x0, £0). (By studying the

inhomogeneous equation Pu f Sjöstrand also obtains the sufficiency.)
Let us more generally consider a pseudo-differential operator such that

the principal symbol in a local coordinate system with coordinates varying
over R" is of the form

(3.3.2) p(x, 0Çn + (x, O

when £ is in a conic neighborhood of £0 (0O, 0) # 0 and x is near 0 e R".
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Proposition 3.3.4. Letp be of the form (3.3.2) with k odd and

Re q (0, to)<0 IfBisa pseudo-differential operator in R"~1 with WF (B)

contained in a sufficiently small conic neighborhood of (0, there exists

a Fourier integral operator E : Cq (R" \) Co (R") continuous

extension from 6' (R" _1) to ß' (R") such that

(i) PE has a C"1 kernel.

(ii) 1 VF'(E) {(x',xnff'ffn;y',ri'),xn£„ 0,
(x'ff1)0>',ri')eWF(B)}

(iii) y* EB if y (x') (x', 0) e R", x' e R""1

Proof Let bbea symbol for B vanishing outside a small conic neighborhood

of (0, 0O). In or<ler to have (iii) we wish to write E in the form

(3.3.3) Ev(x)(27t)1 J ei9ix'9)a(x,e)i(e)dd

(27I)1"" |J ei(<Hx-e)-<3,'-e>) a

where

(3.3.4) <p(x,0) < x', 0 > ,a(x, 0) b(x',0) when xn 0

In order to obtain (i) the rules of geometrical optics require that one first
solves the characteristic equation

(3.3.5) d<p/dxn + ixnk q(x, dcp/dx) 0

approximately with the initial data of (3.3.4). By the general remarks made

in section 3.1 or directly by just computing what djcp/dxnj must be when

xn 0 for every /, we obtain a solution q> of infinite order when xn 0,

and

<p(x,0) <x',6> — ixnk+1 q (x', 0,0, 0)/(fc + 1) + O (xnk+2).

iVote that, in a neighborhood of (0, 0O) in which the support of a will lie,

3.3.6) Im cp(x, 9) ^ cxnk+1 \ 6 \

or some c > 0, which gives (ii) in view of Theorem 2.3.1. Following the
rules of geometrical optics (see also the parametrix construction in section

2.1) we determine successively the terms in an asymptotic series for a
such that (i) is fulfilled. In doing so we can let P act under the integral sign in
(3.3.3) and use the same formal expansion of p(eiq>(x>6) a (x, 0)) as if P
were a differential operator (cf. Hörmander [3], Nirenberg-Trèves [2] and
Hörmander [4, Theorem 2.6]).
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We can now continue the argument precisely as in the example above. It
follows that we can choose u with Pu e C00 and WF (u) equal to any closed

cone F in a sufficiently small neighborhood of (0, £0) in p-1 (0). We can
also choose / as smooth as we please so that / is not in P*^' (X) at any
point in F. Putting this conclusion in a form which is invariant under the

equivalence used in Lemma 3.2.2 we shall obtain the main results of this
section.

Proposition 3.3.5. Let Nj,j 1, 2, 3, be the sets of all m e T*(X)\0
with p (m) 0 having the following properties

(Nf) There exist Fourier integral operators A, B with the properties (i),
(ii) in Lemma 3.2.2 such that the principal symbol of BPA satisfies
the conditions in Proposition 3.3.4 at % (m).

(N2) H1 {pup2 } (m) 0, I 11 < p; H1 {pup2 } (m) XTc, | 11 pjor
some even integer p ^ 0, (Xl, X2) e R2\0, and real c < 0; here we have

written p p1 + ip2, denoted by H1 any product of | / | Ffamiltonian

first order operators HPi or HP2 and by A1 the corresponding product
of X1 or X2. If p A 0 then X2HPi (m) — 21LTpg (m) 0.

(N3) For some even integer /i| 0 and complex number z we have

(Re zHp)j {p>p} (m)/2i 0 for j < p and < 0 for j p

Then the closures of N±, N2, N3 in T*(X)\0 are equal.

Proof N1 cz N2. Since (N2) is invariant under canonical transformations

and multiplication ofp by a non-vanishing factor q (or even transformation

of (pi,p2) by a matrix with positive determinant) it suffices to check

(N2) when p1 (x, £) £„- xn feIm q (x, 0, Pi (x, 0 xn kRe q (x, Ç) and

Re q < 0. Then we have { pt, p2 } kxf~x Re^ (x, Ç) + O(xnk), HPi —

— d/dxn and HP2 vanish when xn 0 if k > 1. Since xn Owe obtain (N2)
with p k — 1, c kl Re q and X (1, 0) if k > 1. That N2 a N3 is

trivial. To show that N3 is in the closure of N1 it suffices to consider a point
in N3 such that z 1, that is,

HPlJ p2 (m)0 for j ^ (m) <0
Since p2 (m) 0 it follows that HPi (m) does not have the radial direction.

According to Lemma 3.2.2 we can therefore choose Fourier integral operators

A and B satisfying conditions (i), (ii) there so that the principal part of
BA is real and the real part of the principal symbol of BPA is £n near x 0*0-
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To economize notation we assume that already p1 (Ç) Çn. Then HPi

ô/ôxn and our hypotheses are now that m (0; 60, 0), dj/dxnJp2 (0; 0o,O)

0 for j ^ p and < 0 for j — p + 1. Hence p2 (0, xn ; 0O, 0) has the sign

of — xn for small x„. It follows that the equation p2 (x', xn; 0) 0 for
(x', <T) close to (0, 0o) has at least one zero where p2 for increasing xn

changes sign from plus to minus. If we choose such a zero close to m of
minimum multiplicity k, necessarily odd, we may conclude from the implicit
function theorem applied to dk~1 p2/dxk~1 that the zeros of p nearby are
defined by f?î 0 and an equation xn r (x', £') with r e C00 homogeneous
of degree 0 with respect to Noting that the Poisson bracket { xn —

— r (x', £') } is 1 it is easy to add further canonical coordinates to £n and

xn — r (x', £') to obtain a homogeneous canonical transformation changing
these functions to and xn. Implementing this by Fourier integral operators
as in Lemma 3.2.2 again we see that at some point corresponding to a point
arbitrarily close to m the transformed operator BPA will have a principal
part of the form Çn + iqx where qx (x, 0) x k

q (x, Ç') and q < 0.

Thus the principal part can be written £„ (1 +is) + ixkq where s is real.

Multiplication by an elliptic operator with symbol 1 + is) ~1 reduces it to
the desired form and completes the proof.

Definition 3.3.6. The closure of any one of the sets Nu N2, N3 in
Proposition 3.3.5 will be denoted by 7VT (/?), and we write N+ (p) N_ (p)
which corresponds to changing the signs in the definition of Nl9 N2, N3.

Note that in the case of differential operators the fact that p (x, Ç)

(-l)ßp(x> ~0 implies that N+ (p) and N_ (p) differ by multiplication
with — 1 in the fibers of T* {X). Thus they are simultaneously empty. This
is not the case for pseudo-differential operators. For example, the study of
the oblique derivative problem mentioned above leads to

P(x> 0 Zn + icxn I (J I

where c g R\0. Then p 0 is equivalent to xn 0 and { Re p, Imp}
c I f I has the sign of c there, so either N+ or AL_ is empty but not both.
From Propositions 3.3.4 and 3.3.5 we obtain by simple functional

analysis :

Theorem 3.3.7. Let F+ and F_ be arbitrary closed cones contained
m N+(p) and AL (/?). For every k> 0 one can find f e Ck (X) with
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WF(f) F+ such that f is not in P <3'(X) at any point in F+. One can
also find u e (X) with WF(u) and Pu e C00 (A).

The theorem shows that every (local) existence theorem must assume
that N+ (p) 0 and that hypoellipticity requires that 7V_ (p) 0. The
first statement is the necessary condition of Egorov, Nirenberg and Trêves
referred to above.

In the notation of Proposition 3.3.5 Egorov's form of the condition
iV_ (p) 0 is N3 0. To arrive at the version of Nirenberg and Trêves

we consider a point meT* (X)\0 with p (m) 0 and d Re p (m) ^ 0. The

equation Re p 0 defines a smooth hypersurface S containing m, and

through each point in S there is an oriented integral curve of HRep which
stays in S. Since in condition (N2) we must have A1 ^ 0 if p > 0, it follows
from (N2) and (N3) that N_ (p) 0 if and only if in a neighborhood of m
in S the restriction of Im p to integral curves of HRep never has a zero of
finite order where the sign changes from positive to negative. This is the
condition of Nirenberg and Trêves. They conjectured that a necessary and
sufficient condition for solvability at m of the adjoint (if Hp does not have

the radial direction) is that such sign changes do not occur at any zeros (of
finite or infinite order). A proof of the invariance of this condition under

multiplication ofp by a non-vanishing factor was given in Nirenberg-Trèves
[2, appendix]. In fact, they discuss a semiglobal version of the same condition

but the statements are not precise in this respect. Note that solvability
of P at (x0, Ç0) for every to ^ 0 does not imply solvability at x0. An
example is the differential operator in R2

P x1 djdx2 — x2 d/dx1

which in view of Lemma 3.2.2 is locally solvable at any point (x0, to)
obviously not solvable at 0. In Theorem 3.2.4 such behavior is ruled out by
the assumption that bicharacteristic curves cannot lie in a compact set and

similar conditions should be imposed in general.

3.4. Further necessary conditions for hypoellipticity

The standard definition of hypoellipticity which we have used throughout
is that P is hypoelliptic if

(3.4.1) sing supp u sing supp Pu, ueS)' (A).

This means that for every open set Y c X
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(3.4.2) u e & (X), Pu e C00 (7) => u e C00 (7).

For operators with variable coefficients this condition may be fulfilled for a

fixed Y, for example Y X, while (3.4.1) is not valid. For example, if
X { x e R2, 1 < I x I < 2 } and P x1d/dx2 — x2ô/ôx1 + 1 then P is

not hypoelliptic but (3.4.2) is valid if Y — X. On the other hand, using the

notion of wave front sets we -can also consider a stronger property than

(3.4.1)

(3.4.3) WF (u) WF(Pu),ue@' (X).

Such operators will be called strictly hypoelliptic here. All hypoelliptic
differential operators with constant coefficients as well as the hypoelliptic
operators discussed in Hörmander [4] (see section 2.1) are strictly
hypoelliptic. (It seems quite clear that if wave front sets had been considered

some 15 to 20 years ago, then (3.4.3) rather than (3.4.1) would have been

taken as definition of hypoelliptic operators.)
An operator P e Lß (X) is called subelliptic. if for some ö > 0 and real s

(3.4.4) u e H(s) (X) n g' (X), Pu e H(s+l_ß)(X) => u e H(s+ô)(X).

Elliptic operators correspond to <5 1. From (3.4.4) it follows that we have
a seemingly much stronger property: For any te R

(3.4.5) u e Q)' (X), Pu e H(t) at m g T* (X)\0 H(t+fl_i+ô) at m

In particular, subellipticity implies strict hypoellipticity. To prove (3.4.5)
we choose a real number r so that u e H(r) at m. Assuming that r ^ t + ft — 1

we shall prove that u e H(r+Ö) at m; by iteration this gives (3.4.5). Choose a

pseudo-differential operator A of order r — s which is non-characteristic
at m so that Au e H(s) (X) n g' (X) and APu e H(t_r + s) (X). We have

PAu APu — [A, P] u

Here APu e H(t_r + s) a H(s+1_fl) and [A, P] is of order ^ r — s + jj, — 1

so [A, P]u eH(s_fl+1) also. It follows from (3.4.4) that Au e H(s+Ô) (X),
hence that u e H(r + Ô) at m.

Subelliptic operators were characterized by Hörmander [3] for <5 1/2
by means of a localization method which is also valid for arbitrary 5 > 0
(see Hörmander [4]). In a series of papers Yu. V. Egorov has analyzed the
localized estimates for arbitrary <5 > 0 ; their complexity increases very
much as <5 0. In Egorov [2] it was announced that (3.4.4) (or (3.4.5)) is
valid if and only if N_(p) 0 (see Definition 3.3.6) and
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(3.4.6) Hpjp(m) -0,0 Sj S Ji=> S ^ I/O + 2).

Here we have used the notations in Proposition 3.3.5 and p may be equal
to 0. However, according to the lecture by Egorov at the International
Congress in Nice there is a gap in his proof of sufficiency when HRep and

Hlmp are linearly dependent. (When they are linearly independent a proof
has been given in Egorov [3] and another is easily obtained by combination
of the results in Hörmander [3] and [5].)

In this section we shall derive other necessary conditions for hypo-
ellipticity from constructions of solutions with small singularities. These

are variants of Theorem 3.2.3. The first result is a more precise version of
one due to Trêves [5], [7].

Theorem 3.4.1. Let I be an interval c R and I b t -» y (t) e T*(X)\0
a bicharacteristic strip for P, that is, 0 ^ y' (0 is proportional to Hp (y (t))
for every tel. If I0 is a sufficiently small neighborhood of a point t0e I and

r (resp. r) is the closed conic hull of y (70) (resp. y (dl0)) one can for v —

0, 1, 2, find ueCv (X) so that WF(u) - T, WF{Pu) c r.
Proof There is nothing to prove if y (t has a constant projection on

the cosphere bundle. Otherwise we can after an application of Lemma 3.2.2

assume that (y (f0)) =£ 0. Let y (t0) — (x0, £0) and choose a function cp

so that

(i) cp (x) — <x — Xq, (^o > + i1 x — x0 12 in L where E is a plane in R"

through x0 which is transversal to p\ (y (t0)).

(ii) If y (,t) — (x (t), Ç then grad cp (x (t)) — £ (0) f°r t near and

p (x, grad cp) 0 of infinite order on the bicharacteristic curve { x (t)}.

By the remarks on first order differential equations given in section 3.1

it is possible to choose cp locally with these properties. Since Im cp vanishes

to the second order on { x (,t)} it follows from (i) that

(3.4.6) lmcp(x) ^ cd(x)2

where c > 0 and d (x) is the distance from x to the curve. One can now
repeat the proof of Theorem 3.2.3 to obtain u in the form of a Fourier
integral operator with phase function Ocp (x).

It seems difficult to improve Theorem 3.4.1 to a global result analogous
to Theorem 3.2.3 as one would like to do in order to study (3.4.2) for a

fixed Y. To do so we would first have to give a global definition of spaces of



Fourier integral operators which correspond locally to phase functions cp

such as the one just constructed. Besides the curve y (t), the most important
data contained in cp are the second order derivatives of (p along the curve.

Let V (t) be the tangent space of T(T*(X)) at y (t) reduced modulo / (t)
and restricted to the orthogonal space of y' (t). Then V (t) is symplectic,
and if Vc (t) is the complexification, the Hamiltonian field Hp gives

symplectic bijections %st : Vc (t) Vc (s). The Lagrangean plane defined

in local coordinates by 5Ç cp"xx ôx gives a Lagrangean plane A (t) in

Vc(t) with xstA{t) A (5). To have (3.4.6) we must require that A(t)
is positive in the sense that

Imcr(T, T) > 0 if 0 7^ TeA(t).

This condition is preserved by symplectic transformations which preserve
the real spaces V (t) but not by general complex symplectic transformations.
Thus positivity of A (t) does not imply positivity of A (s). This is why we
could make a global statement of Theorem 3.2.3 but not of Theorem 3.4.1.

However, we have no examples which prove that this global difficulty is not
merely due to the method of proof.

Next we consider a point m ep~x (0)\(N+(p) u 7V_ (p)) where HRep(m)
and Hlmp (m) are linearly independent. Then p~1 (0) is near m a manifold
of codimension 2 on which { Re p, Im p } 0 ; conversely, these conditions
imply that m<£ N+ (p) u 7V_ (p). By the Jacobi identity it follows that
L#Rep> #imp] H{Rep, imp} is a linear combination of HRep and Hlmp on
o~l (0). In view of the Frobenius theorem we conclude that through m
there passes a two dimensional local integral manifold of the vector fields

epj ^imcontained in p~1 (0) of course. This we call the bicharacteristic
strip through m. Combination of the proof of Theorem 8.3 in Hörmander [7]
with an analogue of Lemma 3.2.2 gives easily

Theorem 3.4.2. Let m ep~1 (0)\(N+(p)uN_(p)), and assume that
'/rc(: <'»). (m)andthe radial direction at m are linearly independent.

If V is a sufficiently small neighborhood of m in the two dimensional
bicharacteristic strip through m and T{resp. r') is the cone generated by V (resp.
cV), then one can for v 0, 1, find ue so that
IVF(Pu) c r.

It is easy to prove a global version of this result analogous to Theorem

3.2.3, at least when V is simply connected. (For more precise results
see Duistermaat-Hörmander [1]).
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When the radial direction lies in the bicharacteristic two plane it seems

hard to give simple general results. However, the following theorem contains
a case discussed by Trêves [5, 7]. For the sake of simplicity we assume that
the symbol of P is an asymptotic sum of homogeneous terms.

Theorem 3.4.3. Let A cz p"1 (0) be a conic Lagrangean manifold and

assume that on A the projection of Hp on the tangent space of S* (Z) is

proportional to a real vector and ^ 0. Let T be the cone generated by a finite
solution interval of this vector field which is not a closed curve in S * (X), and
let r be generated by the end points of the interval. Then one can for v

0, 1, find ueCv(Y) so that WF(u) F and WF(Pu) c r.
Note that Hp is tangential to A so the real vector field on S* (X) assumed

to exist must be tangential to the submanifold of S* (Z) induced by A.
The proof of Theorem 3.4.3 is a repetition of that of Theorem 3.2.3 if one
notes that for a homogeneous symbol differentiation in the radial direction
is equivalent to multiplication by the degree. The first order differential

equation in the direction Hp occurring in the recursive determination of
the amplitude can therefore be reduced to a differential equation with real
coefficients.

Assuming the conjecture stated at the end of section 3.3, Trêves [7]

deduced from the preceding results necessary conditions for hypoellipticity
of differential operators P with non-singular characteristics which were
also proved to be sufficient. If P is such an operator, the necessary conditions

are derived as follows:

a) By Theorem 3.3.7 we must have A_ (p) 0,
hence N+ (p) N_ (p)' 0.

b) By Theorem 3.4.2 the projection in T (Z) of Hp must have a real direction

if p 0. (If P is strictly hypoelliptic we conclude that Hp itself must
have a real direction modulo the radial direction. In view of Theorem

3.4.3 we then obtain a contradiction if Hp does not have a real

direction at some point.) Assuming from now on that p^ A 0 when

p 0 we obtain, if HK&p (m), Hlmp (m) are linearly independent for
some m with p (m) 0, that the projection p-1 (0) -> Z has rank

n — 1 at every point in some neighborhood of m. The projection is

therefore a hypersurface Y, defined by an equation p(x) 0 with
grad p A 0. Since p vanishes onp-1 (0) near m it follows that Hp is a

linear combination of HRep and Hlmp. Hence p (mj 0 implies
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p {m' + tHp(m')) 0 if t is small and m' is close to m. But p is a

polynomial in the fibers so this must be an identity in t. Thus p must vanish

in the normal bundle N(Y) of Y, which is a Lagrangean manifold.

On N(Y) we also obtain that Hp is a linear combination of HRep and

Hlmp which means that the hypotheses of Theorem 3.4.3 are fulfilled so

that P cannot be hypoelliptic. This contradiction shows that indeed Hp
must be proportional to a real vector.

c) By Theorem 3.4.1 there cannot exist any one dimensional bicharacteristic

strip for p. Hence it follows from b) that Im p cannot vanish on an
interval of a bicharacteristic strip for Re p.

d) Let p (m) 0 and assume that HRep (m) ^ 0. If the conjecture at the

end of section 3.3 is true, it follows that on each bicharacteristic strip
of Re p in a neighborhood of m the restriction of Im p is everywhere

^ 0 or everywhere ^ 0. Only one of the cases can occur for otherwise
there would exist a bicharacteristic strip for Re p on which Im p vanishes,
in contradiction with c). Hence we conclude that either Im p ^ 0 in a

neighborhood of m when Re p 0, or else the opposite inequality is

valid. Since we can choose a e C00 near m so that a Re p + Im p is

constant on a vector field transversal to (Re p)~1 (0), this means that m
belongs to the set Nv (p) introduced in

Definition 3.4.4. We shall denote by Nv (p) the set of all m g r*(X)\0
such that for some C00 function q in a neighborhood of m we have q (m) ^ 0

and Im qp ^ 0.

Naturally the function q can be chosen homogeneous. The set Nv (p)
is open and contains the complement of p~1 (0). Only the intersection with

~1 (0) is therefore interesting and it might have been more appropriate to
introduce only this set in the definition. Note that Nv (/?) n N+ (p)

Nu (p) n N_ (p) 0 for any p.
Modulo the truth of the conjecture at the end of section 3.3 it is therefore

proved that if p is hypoelliptic and p, # 0 when p 0 then Nv (p)
T* f 3f )\0 and there is no one dimensional bicharacteristic strip for p

(condition c) above). Conversely, Trêves [7] also proved that these conditions
imply hypoellipticity. We shall give a proof in the following section where
we also study the wave front set of solutions of Pu in (p).
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3.5. Sufficient conditions for solvability and hypoellipticity

Apart from the results of Hörmander [3] and Egorov [2] already referred

to, all such conditions given so far in the literature include the assumption

(3.5.1) N + (p) v AU (p) 0

This is a necessary condition in the case of differential operators but not in
general. (Cf. Definition 3.3.6 and Theorem 3.3.7.) When (3.5.1) is fulfilled,
p is real analytic, and p 0 implies p% A 0, Nirenberg and Trêves [2]
have proved that P is solvable at every point. In fact, they showed that for
every x0 e X and s e R there is an open neighborhood V of x0 such that for
every fe H(s) (X) one can find u e H(s+fl_l) {X) with Pu — f in V. The
analyticity assumption is needed to give control of the changes of signs in
say Im p when Re p 0. Unfortunately the proof which is based on an
abstract version of the energy integral method does not seem to lead to
information concerning the propagation of singularities. For this reason
we content ourselves here with a reference to part II of Nirenberg-Trèves [2]
and subsequent additions to appear in the same journal.

However, in Nv (p) the situation is not too different from the real case

studied in section 3.2. In fact, Trêves [7] has succeeded in extending the

geometrical optics constructions to operators with Nv (p) T* (X)\0.
The main point is that, although there may be no strict solutions to the
characteristic and transport equations, it is possible to find sufficiently good
approximate solutions. From his proof one can also obtain information
on the wave front sets. We shall indicate a different approach here based on
the energy integral method which gives a shorter though less constructive

proof.

Proposition 3.5.1. Let ue Q)' (X) and Pu f and consider a bichar-

acteristic strip 13 t -» y (t) e T* (X)\0 for Re p where I { t e R j h
^ t ^ t2 }. Assume that Im p U 0 in a neighborhood of y (I). If y (/) n
u WF (/) 0 and y (t2) WF (w), it follows that y (/) n WF (u) 0.
More precisely, iffe H(s) at y (/) and u e 1} at y (t2), then u e H(s+ß_ 1}

at y (/).

Proof The assertion about WF (w) follows from the last statement

applied not only to y (I) but also to bicharacteristic strips for Re p nearby.
In proving the last statement we may assume that MeF(s+/t_3/2) at y (/).
It is convenient to assume that \i — 1 which can be brought about by
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multiplication of P to the left by an elliptic operator of order 1 - p. Choose

a closed conic neighborhood F of y (I) such that Im p ^ 0 in a neighborhood

of r,feH(s) and u e {/2) in T. It is clearly enough to prove

Proposition 3.5.1 locally so we may assume that r has a compact projection
in a coordinate patch which is identified with R,T and that ue S" (R").

Let M cz Ss~1 (X x R") be a bounded subset of Ss (X x R") which

consists only of real valued functions with support in r. (We shall make an

explicit choice of M later where the closure in Ss (in a weak topology) can

contain symbols of order s.) With c e M we put C — c (x, D) and form

(3.5.2) (Cf, Cu) (CPu, Cu) (.PCu, Cu) + ([C, P] m, Cm)

Here denotes the usual sesquilinear scalar product. Write P A + iB
with A and B self-adjoint, that is, A (P+P*)/2, B — (P—P*)/2/. The

principal symbols a and b oï A and B are Re /? and Im p respectively. Taking
the imaginary part of (3.5.2) we obtain

(3.5.3) Im(C/, Ct/) (BCu, Cu) + Re([C,P] u, Cu) +

+ Im([C, Ä\ u, Cm)

We can write B B0 + Bl where the principal symbol of P0 is non-
negative everywhere and WF (Bx) does not meet P. By a well known
improvement of Gârding's inequality (Hörmander [3, Theorem 1.3.3]; see

also Lax-Nirenberg [1], Kumano-go [1], Vaillancourt [1], and for a still
more precise result Melin [1]) we have

(3.5.4) ReCB0v,v)Z - C, \\v \\(0)2,v e

where || |j(0) is the norm in L2 H{0). (We use here the more restrictive
definition of H(s)(Rn) as (1 —A)~s/2 L2 (R")0 Since BXC is of order - oo

we obtain with a constant C2 depending on u but not on C

(3.5.5) (BCu, Cu) ^ - Ci || Cu ||(0)2 - C2

Next we note that the symbol of C* [C, B] is ic { b, c } i { b, c2 }/2
apart from an error which belongs to a bounded set in S2s~ i. Since { b, c2 }
is real valued it follows that the symbol of the sum of C* [C, B] and its
adjoint is in a bounded set in S2^1, which shows that with another C2

depending on u

13.5.6) Re ([C, P] u, Cu) ^ - C2

In the same way we obtain
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(3.5.7) 2Im([C, Ä] u, Cu) ^ Re ({ a, c2 } (x, D) w, n) — C2

Summing up (3.5.3)-(3.5.7) we obtain with still another C2

(3.5.8) Re(e(x,D)w,n) ^ || Cf ||(0)2 + C2,Ce M

where

(3.5.9) e (x, 0 { a, c2 } (x, 0 - (2C1 + 1 )c (x, £)2 •

Clearly || C/||(0) is bounded when CeM. Note that while C2 and this
bound may depend on M, the constant Cx comes from (3.5.5) and is

completely independent of the choice of M.
We may assume that the map from I to the cosphere bundle defined by

y is injective. Let T0 be an open conic neighborhood of y (t2) where u e H(s)
and choose a non-negative C00 homogeneous function c of degree s with
support in F such that {a, c2} HRep c2 ^ 0 in T\r0 with strict inequality
in y (I)\r0. That this is possible is seen immediately if we first define c (x, Ç)

for |^| 1 using a norm in T7* (X) which is constant on the integral curves
of HR&p. Also choose C00 functions a0 and a1 homogeneous of degree 0

and 1 respectively so that Haa0 — 1, Haa1 0 and a1 is different from 0

in the support of c. This is also possible if the support of c is a sufficiently
small neighborhood of y (I). Now M will consist of the functions

CÄ,e — ceÀa°( 1 + s2a12)~1/2, 0<8^1,
where X is fixed Cx + 1. If c is replaced by &

the function e in (3.5.9)
becomes

eA,e ({a>c2} + (2/1 — 2Cx — 1) c2) e2Xa° (1 +s2a12)~i

Since ex>e ^ 0 outside T0 with strict inequality on y (/)\T0 we can choose a

non-negative homogeneous function r of degree s which is positive on y (I),
and a real valued homogeneous function q of order s with support in T0,
thus q (x, D)ue L2, such that

(3.5.10) r2 S({a,c2} + (2Â - 2C1 - 1) c2) e2Aa° + q2

Let rE r (l+e2a*)~1/2 and qE ~ q (1 +e2a12)~1/2. An application of
(3.5.4) to the operator with principal symbol equal to the difference of the

two sides in (3.5.10) multiplied by | £ |1_2s leads to the estimate

\\rs(x,D)u||(0)2 ^ Re(eAi£(x,D)M,u) + ||(0)2 + C3

since u e 77(s_1/2) in T. (Here we rely on the uniformity of (3.5.4) when the

symbol of B0 is bounded in S1.) In view of (3.5.8) we conclude that
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II rE (x, D) u ||(0) is bounded when s -> 0, which proves that the limit

r (x, D) u of re (x, D) u in Q)' must belong to L2. Hence ueH(s) at y (/),
which proves the proposition.

Another way of stating the proposition is that if y (/) n WF (/) 0
and y (tx) e WF (u), then y (/) c= WF(u). In view of Theorem 2.2.2 it follows

that y (I) c= p~1 (0), which implies that TTImp 0 on y (/) since Im p ^ 0.

Thus y (/) is a bicharacteristic strip for p. This gives the following extension

of a result of Trêves [7] mentioned above:

Theorem 3.5.2. If F is an open cone c= Nv(p) containing no
bicharacteristic strip for p, then

(3.5.10) WF (Pu) n T WF (u) n T,u g (X).

If F ZD p'1 (0) it follows that P is strictly hypoelliptic.

We can also obtain conclusions concerning the global existence of solutions

and the global regularity question (3.4.2). To state them we first
have to discuss the orientation of the Hamilton field Hp (m) when

m e Njj (p) n p~
1

(0). According to Definition 3.4.4 we can choose q so that

q (m) A 0 and Im qp ^ 0 near m. With p1 qp we have then d Re px (m) #
^ 0, d Im px (m) 0. If for another function r with r (m) A 0 we have

Im rpl 0 0 near then r (m) is either positive or negative. In the latter case

we obtain Im/71 ^0 near m when Repx 0, and since Im px ^0 it follows
that lm/?1 0 near m when Re px 0. Hence lmpx s Repx for some
smooth which means that px (1+A) Re px is real apart from a non-
vanishing factor. Ifp is not of this special form we conclude that r (m) > 0,
hence that Hrpi (m) r (m) Hp± (m) has the same direction as HPi (m).

Definition 3.5.3. By NR(p) we denote the set of all meP (I)\0
such that there is a C00 function q in a neighborhood of m with q(m) ^ 0
and qp real.

Nr (p) is of course an open subset of Nv (p) containing the complement
of /?-1(0). In NR(p) n p'1 (0) there is no natural way of choosing a

complex number z such that zHp is real, but if me Nv (p)\NR (p) we choose
as positive the direction of q (m) Hp (m) when q (m) ^ 0 and Im qp 0

in a neighborhood of m. The arguments preceding Definition 3.5.3 proved
precisely that this definition is unique.
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In Nr (p) we have the situation studied in section 3.2. However, the
orientation of the Hamiltonian field in Nv (p)\NR (p) enters the analogue of
Theorem 3.2.1 there.

Theorem 3.5.4. Let u e (X) and Pu /.
Ifme(WF(u)\WF(f))r\ Nv(p), then there exists a bicharacteristic strip
iDt y (t)e Nv (p)\WF (/) for p with me y (/) c= WF (u) such that I is a

(finite) interval on R and, if t0 is a boundary point of 7,

(0 y (*o) e (p)\Nr (p) and the positive direction of Hp (y (£0)) points
towards y (7) if t0 e 7.

(ii) y (t) does not converge to a limit in Nv (p)\WF(/) as 13 t t0 if t0£ /.

The proof follows from Proposition 3.5.1.

We can now give a partial extension of Theorem 3.2.4. Assume that
Nu (P) T* (X)\0- We shall say that a curve Id t - y (t) ep~* (0) is a

complete bicharacteristic strip for p if / is a finite interval in R and

(i) dyjdt is proportional to Hp (y (/)), tel,
(ii) y (f0) e A# (/?)\AÄ (/>) and the positive direction of Hp (y (f0)) points

towards y (I) if t0 is a boundary point of I belonging to 7.

(iii) y (t) does not converge to a limit in Nv (p) as Id t -> t0 if t0 $ /.

Theorem 3.5.5. Assume that Nv (p) — T* (!")\0 and that no complete
bicharacteristic strip for p stays over a compact set in X. Every ue S' (X)
with P*ue C00 (X) is then in Cq (X), which implies that the equation Pu — f
can be solved in a neighborhood ofany compact set K c X whenf is orthogonal
to the finite dimensional vector space offunctions v e C q (K) with P*v — 0.

The map from Fl' (X) to Q)' (A)\CG0 (X) defined by P is surjective if in

addition for every compact set Kcz X there is another compact set K' c X
such that K' contains the projection of any compact interval I on a complete
bicharacteristic strip J for p with the projection of the boundary of I relative

to J contained in K.

The proof is a repetition of part of the proof of Theorem 3.2.4 with
Theorem 3.2.1 replaced by Theorem 3.5.4.
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