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respectively. If 4 is a pseudo-differential operator in X of order u then the
product AK is in I™"* (X x Y, A) and the principal symbol is the product
of the principal symbol of K (considered as living on A’) by that of A4 lifted
from 7% (X) to A" by the projection A" — T* (X). If we multiply to the F
right instead the result is the same except that we shall use the projection
from A’ to T* (Y). If A and B are pseudo-differential operators in X and
in Y respectively and if AK = KB we conclude that for the principal symbols
a and b of A and B we must have

(2.3.8) a(y(v,m) = by, n l

if the principal symbol of K is not 0 at (x (v,#n), (», —n)). Conversely,
(2.3.8) implies that AK — KB is of lower order. We can therefore succes-
sively construct the symbol of B for a given 4 so that AK — KB is of order
— oo, provided that the wave front set of A is concentrated near a point
where K is elliptic. This argument often allows one to pass from one operator
to another with principal symbol modified by a homogenecous canonical
transformation. (See also Lemma 3.2.2 below.)

The operators in I™ (X x Y, A’) can be described by means of the
classical generating function: For any point (x,, &g, Vg, Ho) in the graph of
x one can choose local coordinates in neighborhoods of x, and y, so that
there is a function ¢ (x, ) in a conical neighborhood of (x,, 1,) which is
homogeneous of degree 1 with respect to #, such that y is given by ((p; , 1) —
- (x, ¢) and det ¢, # 0. The elements 4 in I™ (X x ¥, A) with wave
front set close to (xq, &y, Vo, —¥o) are then as operators of the form

Au(x) = Q0™ [ & a (e, )it () dy, a e S" (XX R,

when u is in C7 in a neighborhood of y, and x is in a neighborhood of x,.
The assertions made above are easy to prove directly from this rep-
resentation.

Chapter III

PSEUDO-DIFFERENTIAL OPERATORS WITH NON-SINGULAR CHARACTERISTICS

3.1. Preliminaries

Throughout this chapter X will denote a C* manifold (all manifolds are
tacitly assumed countable at infinity) and P a properly supported pseudo-
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differential operator in X of order y with homogeneous principal symbol p.
This means that p is a complex valued C” homogeneous function of degree u
on T* (X)\0 and that for every local coordinate system the full symbol
of P differs from p by a symbol in S*~!. We shall also require that the char-
acteristics are simple, that is,

(3.1.1) dp(x,&) #0 if (x,E)eT*(X)\0 and p(x,&) = 0.

The purpose is to give analogues of the existence theorems stated in Chapter I
for the case of differential operators with constant coefficients, in particular
part 111) of Theorem 1.4.6 and the related Theorems 1.5.1 and 1.5.2. This
will require further conditions on P which will be introduced later on.

We shall now recall some classical facts concerning the integration of the
first order differential equation

(3.1.2) p(x, gradu) = 0.

At first it will be assumed that p is real valued. If u e C* (Y) for an open
set ¥ < X and if u is real valued, then 4 = { (x, grad u (x)), xe Y} is a
section of T*(X) over Y on which (the restriction of’) the invariant symplectic
form oy = 2df; A dx; vanishes. In fact, the.pullback of o4 to Y by the
section 1is

d(Zoulox;dx;) = ddu = 0.

Conversely, if we have a C! section A of T* (X)) over Y on which ¢ vanishes,
we can define 4 in local coordinates by ¢ = ¢ (x), and 0¢;/0x; — 0, /0x; =
= 0 so & = du for some function u in Y (determined up to an additive
constant) if Y is simply connected. The (local) integration of (3.1.2) is
therefore equivalent to finding a (local) section A4 of 7* (X) such that

(1) 6 =0o0n4
(i1) p =0on 4.

In other words, A shall be a Lagrangean manifold (see section 2.3) contained
in p~' (0) such that the projection A — X is a diffeomorphism. Locally the
last condition means just that A is transversal to the fiber of the projection
T*(X) - X. In the local theory one can therefore concentrate on (i) and
(ii). |

The symplectic form ¢ is a non-degenerate skew symmetric bilinear
form on the tangent space of 7* (X). That a manifold A4 is Lagrangean
therefore means that at every point 4 € A the tangent space 7', (A) is its own
orthogonal complement with respect to o. If (ii) is valid we have dp = 0
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on T, (A). The tangent vector H, to T* (X) corresponding to the covector
dp by the definition

<t,dp> =0o(t,H,),teT(T* (X)),

is therefore tangential to A. One calls H, the Hamiltonian vector field
defined by p. In terms of local coordinates x in X and the corresponding
coordinates (x, &) in T* (X) the Hamiltonian vector is given by

If g is another C' function on 7% (X), then
Hgq = <H,dqg> =0(H,,H) = — c(H,H,) = — Hyp,
and in local coordinates

H,qg = {p,q} = 2(dp/0&;0q/0x;— dp|dx;0q[IE)) .

{ p, q} is called the Poisson bracket of p and q. For later reference we note
the Jacobi identity

(3.1.3) (p.{a.r}} +{a.{rp}} +{r.{p.a}} =0

or equivalently
H{p,q} = Hqu — HH, = [Hp’Hq] ¢

For the proof we first observe that [H,, H ] is a first order differential
operator. This implies that (3.1.3) is independent of the second order
derivatives of r, and similarly by the symmetry (3.1.3) is independent of the
second order derivatives of p and ¢. But if p, g, r are all linear functions it
is clear that all terms in (3.1.3) vanish so (3.1.3) must always be valid.
From the Jacobi identity it follows that the (local) group of transformations
defined by the vector field H, is canonical, that is, it preserves the symplectic
form. In fact, it suffices to note that if ¢4, ..., ¢,, are symplectic coordinates
at a point m and H, g; = constant then these functions remain symplectic
coordinates along the orbit of H, through m since H,{¢;, q,} = —
~{9{p9;}} —149p{qp}} =0.

We now return to the Cauchy problem for (3.1.2). Let M be a hyper-
surface in X and u, a C' function with no critical point on M. We want
to find u satisfying (3.1.2) and the Cauchy boundary condition u = u,
on M. In addition ¢, = grad u (x,) is prescribed for some x, € M in such
a way that ¢, restricted to T, (M) is equal to grad u,. We can then extend
Uy to a neighborhood of M so that grad u, = &, at x,. If M is defined by
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the equation p = 0 we shall then have grad u = grad u, + ¢ grad p on M,
t = 0at xy, so on M the equation (3.1.2) becomes p (x, grad u,+¢ grad p) =
= 0. The derivative with respect to ¢t when ¢t = 0 and x = x, becomes
{p,p} (x0, &o). If we assume that H, (or more precisely the projection
p'g d/0x of H, in T (X)) is transversal to M, it follows from the implicit
function theorem that this equation has a unique solution in a neighborhood
V of xo. With u; = u, + tp, the Cauchy problem is now to find a Lagran-
gean manifold contained in p~! (0) and including

Ay = {(x, grad uy (x)),xe My = M N V}.

We have already seen that A must contain the integral curves of the vector
field H, starting in A, and by assumption these are transversal to A4,. It
follows that there is a unique local solution of the Cauchy problem. In fact,
the local manifold generated by integral curves of H, through A4, is Lagran-
gean at A, since ¢ vanishes on A, and o (t, H,) = <t,dp> =0
if te T (A,). The fact that A is invariant under the canonical transforma-
tions exp (1H,) proves that A is Lagrangean everywhere.

When p or the Cauchy data are complex the preceding arguments break
down and there is in general no solution unless p and the data are analytic
(see section 3.3). However we always have an analogous result for formal
power series solutions at a point, and this can be applied when the data are
in C* by considering the Taylor series expansions. We can say more if the
vector field H, happens to have an integral curve I'" with initial data (x,, &),
that is, if there exists a regular C” curve 7 — (x (), £(¢)) € T*(X) with

()C (0)9 é (0)) = (an 60) and
0 # (dx/dt, d¢[df) = c(t)(ps, — Do)

for some complex valued function c¢. Apart from the parametrization such
a curve is uniquely determined by (x,, &,) since it is an integral curve of any
one of the vector fields Hg,, and Hy, which is # 0. If such acurve I exists
we can consider Taylor expansions on I' instead. Even if the data on M
are complex valued we then obtain a complex valued function u such that
Im u vanishes to the second order on I', grad Re u (x (¢)) = &(t), the restric-
tion of u to M has a given Taylor expansion at x, and p (x, grad u) vanishes
of infinite order on I'. The last statement makes sense although p (x, &)
is not defined for complex values of £, for the derivatives of p (x, grad u)
can still be computed formally on I.

For a more complete though less geometrical treatment of the topics

discussed here we refer to Carathéodory [1]. Since for us the equationp = 0
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is the characteristic equation of the operator P, we shall use the terminology
bicharacteristic strip (resp. curve) for an integral curve of the Hamiltonian
field H, contained in p~ ' (0) (resp. the projection of such a curve in X ).
Note that whereas the bicharacteristic strip is non-degenerate or reduced to
a point, the bicharacteristic curve may have a cusp. A simple classical
example of this is given by the Tricomi equation for which p (x, ) =
= x,&,% + &,2. With suitable normalization of the parameter the bichar-
acteristic strips are given by x; = x,° — 2(ct)/3, x, = — t?¢%, & =
—c # 0, &, = — tc*. The cusps of the bicharacteristic curves occur when
t = 0. (Some authors use the term bicharacteristic strip for any integral
curve of H, and null bicharacteristic strip for those on which p vanishes.)

3.2.  Operators with real principal part

Let P be a properly supported pseudo-differential operator of order u
in a manifold X and assume that P has a real and homogeneous principal
part p satisfying (3.1.1). In this case rather complete results on the propaga-
tion of singularities and existence theorems in &2'/C” have been obtained by
Duistermaat and Hormander [1]. Complete proofs of all statements in this

section are given there. The following result should be compared with
Theorem 1.6.5.

THEOREM 3.2.1. If ue 2’ (X) and Pu = f it follows that WF (u\WF (f)
is a subset of p~* (0) which is invariant under the flow defined by the Hamilton
vector field H, in p~ ' (ONWF (f).

Proof. That WF (u\WF (f) < p~'(0) is precisely the second part of
(2.2.2). To prove the other part of the theorem we consider a point
me WFu\WF(f). If H,(m) has the radial direction the bicharacteristic
curve through m is a ray, and since WF (u) is conic there is nothing to
prove then. Otherwise we can apply

LEMMA 3.2.2. Let meT*(XN0, p (m) = 0, and assume that H, (m)
does not have the radial direction. Then there exist Fourier integral operators
Ael™ (X x R, T"), BeI"™ R" x X,(I'" YY) such that

() I' is a closed conic subset of the graph of a homogeneous canonical
transformation y from a conic neighborhood U of m onto a conic neighborhood
V of a point y (m) e T* (R")\O.




140 —

(ii) (m, x (m)) and (y (m), m) are non-characteristic points for A and B
respectively.

(111) uy and p, are given numbers with u, + pu + uy = 1, and the full
symbol of the pseudo-differential operator BPA is equal to £, on a conic
neighborhood of y (m).

Proof. Multiplication of P by an elliptic pseudo-differential operator of
order 1 — p reduces the proof to the case u = 1. The hypothesis on H, (m)
then makes it possible to introduce a system of canonical coordinates
X1y ey Xpy €1, vy &, near m in T (X), which are homogeneous of degree O
and 1 respectively, so that &, = p. This gives the canonical transformation
y. Choosing B and A with reciprocal principal symbols we obtain that BPA
has the principal symbol &, near y (m). By successive choice of the terms
of decreasing order in the symbols of B and 4 one can make the lower order
terms in BPA vanish near y (m).

End of proof of Theorem 3.2.1. With the notations of the lemma we
also choose B, el " (R" x X,(I'"'Y) so that m¢ WF(AB,—1). Then
v =B, ue2' (R") and y (m)e WF (v) for against our assumption we
would otherwise obtain m ¢ WF (u) since u = (I—AB;)u + Av. (Here we
are using Theorems 2.2.8 and 2.2.9.) Since

Dy = (D,—BPA)v + BP(AB, —I)u + BPu

we have y (m)¢ WF (D,v). Thus we have reduced the proof to the case of
the operator D, for which it follows by writing down a solution of the equa-
tion D,v = f explicitly.

Remark. Using only pseudo-differential operators, we shall prove a
more general result in section 3.5 (see also Hormander [13]).

In the opposite direction we have

THEOREM 3.2.3. Let I = R be an open interval and vy : I - T*(X)\0O
be a map defining a bicharacteristic strip for P which is injective even after
composition with the projection to S*(X). Denote by I' the closed conic hull
of v(I) and by I'' the limit points, that is, the intersection of the closed
conic hull of v (I\I,) when I, runs over all compact intervals contained in 1.
For anyv = 0, 1, 2, ... one can then find ue C* (X) such that WF (u\l'" =
= I\NI"" and WF (Pu) < I'".

Note that I’ is empty precisely when y defines a proper map from [
into X. Then we have Pue C” (X) and WF(u) = I.




— 141 —

Proof. We shall just indicate a slightly weaker construction for a
compact subinterval I, of I, but the passage to the statement above is quite
easy from there. Assume for example that 0 € I,. There is nothing to prove
if H,(y (0)) has the radial direction so we exclude this case. We can then
choose a n — 1 dimensional conic submanifold N, of N = p~ ! (0) through
v (0) such that H, (y (0)) is not a tangent of N, and the symplectic form
vanishes in N,. If @ (¢, n) denotes the solution of the Hamilton-Jacobi
equations d (x, &)/dt = H, (x, &) at time ¢ which is n at time 0, then it is
clear that there is a closed conic neighborhood V, < N, of y (O) such that
the map

Iy x Voo (t,n) — @(t, n)

is injective. Hence it defines a closed conic subset 4 of a Lagrangean manifold
on which p = 0. (See the discussion of the Cauchy problem in section 3.1.)
One can now choose u e I* (X, A) with WF (Pu) close to @ ((01,) x V)
so that the principal symbol of u has a given restriction to N, with support
in a small conic neighborhood of y (0) in N,. The crucial point is that for
phase functions ¢ defining A locally we have p (x, ¢.) = 0 when ¢, = 0.
From this one concludes that to make the principal symbol of Pu vanish
except at @ (dl,xV,) means to solve differential equations along the
bicharacteristics of P contained in A. (See the remarks on geometrical optics
in the introduction.) As usual one can then successively determine terms of
decreasing order in the symbol of u so that the symbol of Pu is of order — oo
except at @ ((01y) x V,). If the order k is suitably chosen the desired
properties are obtained. (To see that WF (u) can be squeezed into I' and
not only a neighborhood one can either use functional analysis (see sec-
tion 3 in Hormander [7]) or more general symbols. A third possibility is
indicated in the proof of Theorem 3.4.1 below.)

Remark. Zerner [1] and Hormander [7] have given similar results
which are weaker in that they are local and that they require 4, not to be a
tangent to the fiber of 7* (X') so that the bicharacteristic curve is regular.
These constructions do not require the global definition of Fourier integral
operators as the proof of Theorem 3.2.3 does.

We can now give an analogue of part iii) of Theorem 1.4.6.

THEOREM 3.2.4.  Assume that no complete bicharacteristic strip of
P stays over a compact set in X. Then the following conditions are equivalent :

a) P defines a surjective map from 2' (X) to 9' (X)/C* (X).
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b) For every compact set K = X there is another compact set K' < X,
which can be taken empty when K is empty, such that ue &' (X) and
sing supp 'Pu < K implies sing supp u < K'.

c) For every compact set K <= X there is another compact set K' = X such
that any interval on a bicharacteristic curve with respect to P having
endpoints in K must belong to K'.

Proof. Db) implies a) by Theorem 1.2.4. Assume that c) is fulfilled, and
let uedé’ (X). It me WFu\WF (Pu) it follows from Theorem 3.2.1
that each bicharacteristic half strip through m must contain some point
in WF (Pu) unless it stays in WF (u) and therefore over a compact set.
However, if a bicharacteristic half strip stays over a compact set, then the
bicharacteristic strip through any one of its limit points in the sphere bundle
stays over this compact set in both directions which we have excluded by
hypothesis. Hence m lies on an interval of a bicharacteristic strip with end
points over K which proves that b) follows from c). By using a more precise
version of Theorems 3.2.1 and 3.2.3 and an argument close to the proof of
Theorem 3.6.3 in Hormander [1] one shows that a) implies c).

Assuming still that P has no bicharacteristic strip which stays over a
compact set in X, we set N = p~ 1 (0) <« T*(X)\0 and let C =« N x N
be the bicharacteristic relation of pairs of points in N which are on the same
bicharacteristic strip. It is then easy to verify that C is a homogeneous
canonical relation if and only if condition c¢) in Theorem 3.2.4 is fulfilled.
Let C* (resp. C7) be the subset of pairs (n, n,) with n, on the forward
(backward) bicharacteristic strip starting at n,. Using the calculus of
Fourier integral operators outlined in section 2.3 and Lemma 3.2.2 above
one can prove

THEOREM 3.2.5. Assume that no complete bicharacteristic strip of P
stays over a compact set in X and that condition c) in Theorem 3.2.4 is fulfilled.
Then there exist right parametrices E*™ and E~ for P, that is, operators such
that PEY — I and PE~ — I have C% kernels, with the following pro-
pertiest) : |

a) E* are continuous linear maps from H y N &' to H i,y for every s.

1) (Added in proof) In fact E* are also left parametrices and EfE- ¢
I'2=r(Xx X, C’). (See Duistermaat - Hormander [1])




— 143 —

by WF'(E™) (resp. WF'(E™)) is contained in A* L C™* (resp. A* 0 C7)
where A* is the diagonal in T*(X)\0 x T*(X))\O.

¢) Outside A* the kernels of E* and E~ are in I'*7* (X x X, C").

Condition b) determines E* uniquely mod C*.

A still better result, essentially due to Grusin [l] for operators with
constant coefficients, can be obtained in the following way. Let At and 4~
be properly supported pseudo-differential operators with A" + 4~ = I.
With E* and £~ asin Theorem 5.3.7 we obtain a new parametrix E if we set

E=E*A* +E A",
It will inherit the continuity properties of E¥ and E~ listed above, and
WF'(E) c 4* 0 {(m,n)e C*,ne WF(A%)}.

Using operators with symbols satisfying (2.1.3)" one can arrange that
WF(A*) = F* are any closed cones in 7*(X)\0 with union equal to
T*(X)\0. By condition c¢) in Theorem 3.2.4 one obtains for a suitable choice
of F* and F~ a parametrix which can be extended to a continuous map
from H, (X) to Hy 1) (X) for every s. This gives back parta) of Theo-
rem 3.2.4 in a more constructive way.

We have only given global existenice theorems here. However, local
results follow immediately and they require only that no bicharacteristic
strip for P stays forever over a fixed point in X. In the next section we shall
discuss some more serious obstacles to local solvability which may occur
when p is complex valued.

3.3, Necessary conditions for local solvability and hypoellipticity

We shall now allow the principal part p of the pseudo-differential
operator P to be complex valued. That this leads to a drastic change of the
situation discussed in section 3.2 was first realized by H. Lewy [1]. He
found that the equation

(0/0xy +10/0x; +2i (xy +ix,) 8]0x3)u = f

does not have a solution in any open set for suitably chosen fe C* (R?).
Starting from this example some necessary and some sufficient conditions
for existence of (local) solutions were given by the author (see Hormander
[1, Chap. VI, VIII] and for the case of pseudo-differential operators Hor-
mander [3]). Mizohata [1] observed that for the equation
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(3.3.1) (0/0x, +ix [ 0]0x,)u = f

there is an existence theorem for even k but no solutions near the x, axis for
suitable f if k& is odd. With this example as starting point more precise
conditions for local existence of solutions have been obtained by Nirenberg
and Treves [1], [2] (see also Treves [2], [3]) and by Egorov [2], [3]. We shall
discuss these results here in a somewhat more precise form made possible
by the notion of wave front sets.

DeriniTION 3.3.1. The operator P is said to be solvable at x, € X if
there is an open neighborhood V' of x, such that for every fe C” (X) one
can find ue &' (X) with Pu = fin V.

Introducing a positive C* density in X we can form the adjoint ‘P of
P and write the equation Pu = fin V as

<u,’Pv > = <f,u>,0veCq (V).
We may assume that V' (( X. Solvability implies that the bilinear form
C*(X)x Co(V)a(f,v) > <f,v>

is separately continuous if for f we take the C* topology and for v the
weakest topology which makes the mapping v — ‘Pv e C* (X) continuous.
Hence the form is continuous (Banach-Steinhaus), which means that for
some semi-norms N, N, in C* (X)

| <f,v>] = CN(f)N,(Pv), feCT(X),veC5 (V).

N, and N, are continuous semi-norms in C*( X) for some k. The estimate
is clearly valid also for fe C* (X), and an application of the Hahn-Banach
theorem to the map

‘Pv — < f,v >

shows that for every fe C*(X) one can find u € & (X) so that Pu = fin V.
We have therefore proved

PrROPOSITION 3.3.2. If P is solvable at x,, then there is a neighborhood
V of xo and an integer k such that for every fe C*(X) one can findu € & (X)
with Pu = fin V.

To prove that P is not solvable at x, it is therefore sufficient to exhibit
arbitrarily smooth functions f such that Pu — f is not smooth near x, for
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any distribution u. This property has the advantage that it can be localized
in the cotangent bundle as indicated in section 2.2:

DEFINITION 3.3.3. If (xo, &) € T* (X)\O and fe 2' (X), we shall say
that fe P9 (X) at (xo, &) if one can find ue 2’ (X) so that (xo, &o) ¢
¢ WF (Pu—f). We shall say that P is solvable at (xo, &o) if this is possible for

every f.

Solvability of P at a point (xo, &) € T* (X)\0 is closely related to
smoothness there of solutions of the adjoint equation P*u = f when f is
smooth and WF (u) is close to (x,, &o). Such existence and smoothness
questions will therefore be studied simultaneously in what follows. To trace
the origin of our arguments we first digress to discuss boundary problems
for elliptic operators briefly.

Consider as an example the Laplace equation 4Au = 0 in an open set
X « R" with a differential boundary condition Bu = f on the smooth
boundary dX. If u, is the restriction of u to dX, then u is the Poisson integral
of u, and the boundary condition Bu = f can be written as a pseudo-

differential equation ]~3u0 = f where the principal symbol of B is easy to
compute. In this way the study of elliptic boundary problems (see Agmon-
Douglis-Nirenberg [1] or Hérmander [1, Chap. X]) can always be reduced
to the study of an elliptic system of pseudo-differential operators on the
compact manifold 0X. The reduction is possible quite generally, however.
In particular we can take B = 0/0v where v is a non-vanishing vector field
on 0X such that the equation <v, N> = 0 defines a non-singular sub-
manifold Y of 0X, if N is the interior normal of dX. From the results
related to Lewy’s equation referred to above it follows that there is (local)
solvability of the boundary problem if on Y the derivative of <v, N>
in the direction v (which is tangential to 0 X on Y) is negative whereas there
is a non-existence theorem if it is positive. For regularity of solutions the
opposite signs are required. (See Borelli [1], Hormander [3].) This strange
result was explained by Egorov and Kondrat’ev [1] who found that in the
two cases one should respectively introduce an additional boundary condi-
tion on Y or allow a discontinuity there. The problem then becomes well
posed and solutions are smooth apart from a smooth jump. The proof of
Egorov and Kondrat’ev attacked the boundary problem directly but their
result can be translated to a property of a certain pseudo-differential operator
which is elliptic outside a submanifold Y of codimension one. General
theorems of this type have been proved by EsSkin [1] and Sjostrand [1].
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Here we shall to a large extent follow Sjostrand but will only deal with the
situation corresponding to du/dv = 0 and given restriction of u to Y.

Let us first consider the typical example given by equation (3.3.1) with
f = 0. If it is possible to take Fourier transforms with respect to x,, the
equation becomes

(0/8x1—x1k52)1:t (x1,¢,) =0

with the solution u (xy, &) = C(&,) exp (&,x,* " /(k+1)). If k is odd we
set for v e C3 (R)

Ev(x) = Q2m)~* j CXp (52 (ix, +x1k+1/(k+1)))7)(52) dé, =
= 2n)~" || exp (fz (i (x2— y)—{—xlkﬂ/(k—l—l)))v(y) dyd¢, .

£2<0

From the results of section 2.3 it follows that £ maps C§ (R) to C* (R?)
and &’ (R) to 2’ (R?) continuously, and it is clear that PEv = 0 if P =
= (0/0x, +ix,*0/0x,). Let y :R3x, — (0, x,) be the inclusion of the
Xx,-axis. Since the x,-axis i1s non-characteristic with respect to P, it follows
from (2.2.2) and Theorem 2.2.5 that the restriction y*Fv (x,) is defined,
and clearly we have

0
V*Ev(xz) = (271)_1 j eix2§273(‘fz) dé, .

Using Theorem 2.3.1 we see that -
WF'(E) = {(xlr $15%2,82,V2,M2)5 X1 = &1 = 0,x, = 35,8 =1, <0}-

For suitable choice of v we obtain a solution u = Fv of Pu = 0 with
WF (u) equal to any closed subset of F = {(x, &, x,, &,); x; = & =
= 0, ¢, < 0} and conclude that P is not hypoelliptic. Moreover, if u e &’
and P*u = f, then E* f = 0 because E*P* = (PE)* = 0. In case we only
have (xq, o) ¢ WF (P*u— f) for some ue &’ we can still conclude that
WF'(E*) (xq, &) ¢ WF(E* f). For every point in F this is a non-trivial
necessary condition in order that fe P 2'(X) at (x,, &;). (By studying the
inhomogeneous equation Pu = f Sjostrand also obtains the sufficiency.)

Let us more generally consider a pseudo-differential operator such that
the principal symbol in a local coordinate system with coordinates varying
over R" is of the form

(3.3.2) p(x, &) =&, +ix q(x,

when €& is in a conic neighborhood of &, = (0,, 0) # 0 and x is near 0 R".
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PROPOSITION 3.3.4. Let p be of the form (3.3.2) with k odd and
Re g (0, &) < 0. If B is a pseudo-differential operator in R"~ Y with WF (B)
contained in a sufficiently small conic neighborhood of (0, 0,), there exists
a Fourier integral operator E :C% R"™') — Cg (R") with continuous
extension from & (R"™1) to & (R") such that

(i) PE has a C” kernel.
(H) WE' (E) = {(xla Xns é,a én; yl’ 77/)> Xy = 5n = 0 s
(x, &) =0.n)eWF(B)}
(iii) y*E = Bify(x) = (x,0)eR", x’ eR""*
Proof. Letbbe asymbol for B Vahishing outside a small conic neighbor-
hood of (0, 8,). In order to have (iii) we wish to write E in the form

(3.3.3) Ev(x) = Qu)' ™" [ ™D a(x,0)v(0)do =
= Qo)™ [[ 0EOT<02) g (x, O)v (y') dy’ dO
where

(3.3.4) o¢(x,0) = <x',0 >,a(x,0) = b(x’,0) when x, = 0,

In order to obtain (i) the rules of geometrical optics require that one first
solves the characteristic equation

(3.3.5) 0p/ox, + ix,* q(x, dp/ox) = 0

approximately with the initial data of (3.3.4). By the general remarks made
‘n section 3.1 or directly by just computing what ¢/¢/dx,” must be when

v, = 0 for every j, we obtain a solution ¢ of infinite order when x, = 0,
ind

p(x,0) = <x',0 > —ix* "1q(x,0,0,0)/(k+1) + O (x}"?).
Note that, in a neighborhood of (0, 6,) in which the support of a will lie,
'3.3.6) Imo(x,0) =cx " 1|0]

‘or some ¢ > 0, which gives (ii) in view of Theorem 2.3.1. Following the
rules of geometrical optics (see also the parametrix construction in sec-
tion 2.1) we determine successively the terms in an asymptotic series for a
such that (1) 1s fulfilled. In doing so we can let P act under the integral sign in
(3.3.3) and use the same formal expansion of P (e'”*% a (x, 6)) as if P

were a differential operator (cf. Hormander [3], Nirenberg-Tréves [2] and
Hormander [4, Theorem 2.6]).

L’Enseignement mathém,. t. XVII, fasc. 2. 11
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We can now continue the argument precisely as in the example above. It
follows that we can choose u with Pue C* and WF (1) equal to any closed
cone F in a sufficiently small neighborhood of (0, &) in p~* (0). We can
also choose f as smooth as we please so that £ is not in P*2’' (X) at any
point in F. Putting this conclusion in a form which is invariant under the
equivalence used in Lemma 3.2.2 we shall obtain the main results of this
section.

PrROPOSITION 3.3.5. Let N,,j = 1,2, 3, be the sets of all me T*(X)\0
with p (m) = 0 having the following properties

(N,) There exist Fourier integral operators A, B with the properties (i),
(i) in Lemma 3.2.2 such that the principal symbol of BPA satisfies
the conditions in Proposition 3.3.4 at y (m).

(NV,) HI{PpPz } (m) = 0, 1! < U; H' {p1=p2 } (m) = }LIC» II = u, for
some even integer i = 0, (A1, 1,) € R?\0, and real ¢ < 0; here we have
written p = p, + ip,, denoted by H' any product ofl 1| Hamiltonian
first order operators H, or H, and by Y the corresponding product
of Ay or Ay If  # 0 then A,H, (m) — A, H, (m) = 0.

(N;) For some even integer u = 0 and complex number z we have

(RezH,Y {p,p}(m)/2i = 0 for j <pand <O forj = pu.
Then the closures of Ny, N,, N5 in T*(X)\0 are equal.

Proof. N, = N,. Since (N,) is invariant under canonical transforma-
tions and multiplication of p by a non-vanishing factor ¢ (or even transforma-
tion of (p,, p,) by a matrix with positive determinant) it suffices to check
(N,) when py (x, &) = &, — x," Imq (x, &), p, (x, &) = x,"Re g (x, &) and
Req < 0. Then we have {p;,p,} = kx "' Req(x, &) + O(x,), H, —
— 0/0x, and H, vanish when x, = 0if k£ > 1. Since x, = 0 we obtain (N,)
with u = k — 1, ¢c = k! Req and 4 = (1,0) if £k > 1. That N, = N; is
trivial. To show that N; is in the closure of N, it suffices to consider a point
in N; such that z = 1, that is,

H,/py(m) = 0 for j < p, H,*"*p,(m) <0.

Since p, (m) = 0 it follows that H, (m) does not have the radial direction.
According to Lemma 3.2.2 we can therefore choose Fourier integral opera-
tors 4 and B satisfying conditions (i), (i1) there so that the principal part of
BA is real and the real part of the principal symbol of BPA is &, near y (m).
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To economize notation we assume that already p, (£) = ¢,. Then H, =
= 0/0x, and our hypotheses are now that m = (0; 0, 0), &//0x,’ p, (0; 0,,0) =
= 0forj< pand <O forj= u+ 1. Hence p, (0, x,; 0,, 0) has the sign
of — x, for small x,. It follows that the equation p, (x', x,; &', 0) = 0 for
(x', &) close to (0, 8,) has at least one zero where p, for increasing x,
changes sign from plus to minus. If we choose such a zero close to m of
minimum multiplicity k, necessarily odd, we may conclude from the implicit
function theorem applied to 0~ ! p,/ox,*~! that the zeros of pnearbyare
defined by ¢, = 0 and an equation x, = r (x’, £’) with r € C* homogeneous
of degree 0 with respect to &’. Noting that the Poisson bracket { &,, x, —
—r(x’, &)} is 1 it is easy to add further canonical coordinates to ¢, and
x, — r(x’, ') to obtain a homogeneous canonical transformation changing
these functions to £, and x,. Implementing this by Fourier integral operators
as in Lemma 3.2.2 again we see that at some point corresponding to a point
arbitrarily close to m the transformed operator BPA will have a principal
part of the form &, + iq, where g, (x, &,0) = x,*q (x, &) and ¢ < 0.
Thus the principal part can be written ¢, (1+is) + ix,*q where s is real.
Multiplication by an elliptic operator with symbol (14is)~* reduces it to
the desired form and completes the proof.

DEerINITION 3.3.6. The closure of any one of the sets N;, N,, N5 in
Proposition 3.3.5 will be denoted by N_ (p), and we write N, (p) = N_ (p)
which corresponds to changing the signs in the definition of N, N,, N,.

Note that in the case of differential operators the fact that p (x, &) =
= (= D" p(x, —¢) implies that N, (p) and N_ (p) differ by multiplication
with — 1 in the fibers of T* (X'). Thus they are simultaneously empty. This
is not the case for pseudo-differential operators. For example, the study of
the oblique derivative problem mentioned above leads to

p(x,¢) =&, +iex, | ]

where ¢ € R\0. Thenp = Oisequivalenttox, = &, = Oand { Re p, Im p )=
= ¢ | £| has the sign of ¢ there, so either N, or N_ is empty but not both.

From Propositions 3.3.4 and 3.3.5 we obtain by simple functional
analysis:

THEOREM 3.3.7. Let F. and F_ be arbitrary closed cones contained
in N, (p) and N_(p). For every k >0 one can find fe C* (X) with
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WF(f) = F, such that f is not in P 2'(X) at any point in F,.. One can
also find u e 9' (X) with WF(u) = F_ and Pue C* (X).

The theorem shows that every (local) existence theorem must assume
that N, (p) = @ and that hypoellipticity requires that N_ (p) = @. The
first statement is the necessary condition of Egorov, Nirenberg and Treves
referred to above.

In the notation of Proposition 3.3.5 Egorov’s form of the condition
N_(p) = @ is N; = @. To arrive at the version of Nirenberg and Tréves
we consider a point m e T* (X)\0 with p (m) = 0 and d Re p (m) # 0. The
equation Re p = 0 defines a smooth hypersurface S containing m, and
through each point in § there is an oriented integral curve of Hy., which
stays in S. Since in condition (N,) we must have 4, # 0if u > 0, it follows
from (N,) and (N5) that N_ (p) = @ if and only if in a neighborhood of m
in § the restriction of Im p to integral curves of Hy,, never has a zero of
finite order where the sign changes from positive to negative. This is the
condition of Nirenberg and Tréves. They conjectured that a necessary and
sufficient condition for solvability at m of the adjoint (if H, does not have
the radial direction) is that such sign changes do not occur at any zeros (of
finite or infinite order). A proof of the invariance of this condition under
multiplication of p by a non-vanishing factor was given in Nirenberg-Tréves
[2, appendix]. In fact, they discuss a semiglobal version of the same condi-
tion but the statements are not precise in this respect. Note that solvability
of P at (x,, ¢,) for every ¢, # 0 does not imply solvability at x,. An
example is the differential operator in R?

P = x, 0/0x, — x, 0/0x,

which in view of Lemma 3.2.2 is locally solvable at any point (x,, &,) but is
obviously not solvable at 0. In Theorem 3.2.4 such behavior is ruled out by
the assumption that bicharacteristic curves cannot lie in a compact set and
similar conditions should be imposed in general.

3.4. Further necessary conditions for hypoellipticity

The standard definition of hypoellipticity which we have used throughout
is that P is hypoelliptic if

(3.4.1) sing supp u = sing supp Pu,ue 2'(X).

This means that for every open set ¥ < X
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(3.4.2) ue?' (X),PueC?(Y)=>ueC”(Y).

For operators with variable coefficients this condition may be fulfilled for a
fixed Y, for example Y = X, while (3.4.1) is not valid. For example, if
X={xeR*’1<|x|<2}and P = x,0/0x, — x,0/0x; + 1 then P is
not hypoelliptic but (3.4.2) is valid if ¥ = X. On the other hand, using the
notion of wave front sets we:can also consider a stronger property than
(3.4.1)

(3.4.3) WF (u) = WF (Pu),ue 2'(X).

Such operators will be called strictly hypoelliptic here. All hypoelliptic
differential operators with constant coefficients as well as the hypoelliptic
operators discussed in Hormander [4] (see section 2.1) are strictly hypo-
elliptic. (It seems quite clear that if wave front sets had been considered
some 15 to 20 years ago, then (3.4.3) rather than (3.4.1) would have been
taken as definition of hypoelliptic operators.)

An operator P e L* (X) is called subelliptic if for some 6 > 0 and real s

(3.44) ue H(S) (X)n&' (X),Puce H(s+1—u)(X) = U EH(S+5)(X) .

Elliptic operators correspond to 6 = 1. From (3.4.4) it follows that we have
a seemingly much stronger property: For any € R

(345 ue?2' (X),PueHyatmeT* (XN\O=>ueHg,,, (s atm.

In particular, subellipticity implies strict hypoellipticity. To prove (3.4.5)
we choose a real number 7 so that u € H,,, at m. Assuming thatr < ¢ + u —1
we shall prove that u e H,, ;) at m; by iteration this gives(3.4.5). Choose a
pseudo-differential operator 4 of order r — s which is non-characteristic
at m so that Aue H (X)) n & (X) and APue Hqy 15 (X). We have

PAu = APu — [A, P]u.

Here APue Hy, .1y < H41-,) and [4, Plis of order < r — 5 + pu — 1
so [4, Plue H,_ .4y also. It follows from (3.4.4) that Aue H 1 5(X),
hence that u e H .5 at m.

Subelliptic operators were characterized by Hormander [3] for § = 1 /2
by means of a localization method which is also valid for arbitrary 6 > 0
(see Hormander [4]). In a series of papers Yu. V. Egorov has analyzed the
localized estimates for arbitrary & > 0; their complexity increases very
much as 6 — 0. In Egorov [2] it was announced that (3.4.4) (or (3.4.5)) is
valid if and only if N_(p) = @ (see Definition 3.3.6) and
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(3.4.6) . Hip(m) =0,0<j<u=0<1/(u+2).

Here we have used the notations in Proposition 3.3.5 and u may be equal
to 0. However, according to the lecture by Egorov at the International
Congress in Nice there is a gap in his proof of sufficiency when Hy,, and
Hy,,, are linearly dependent. (When they are linearly independent a proof
has been given in Egorov [3] and another is easily obtained by combination
of the results in Hormander [3] and [5].)

In this section we shall derive other necessary conditions for hypo-
ellipticity from constructions of solutions with small singularities. These
are variants of Theorem 3.2.3. The first result is a more precise version of
one due to Tréves [5], [7].

THEOREM 3.4.1. Let I be an interval < R and I3t — y(t)e T*(X)\0
a bicharacteristic strip for P, that is, 0 # 7' (t) is proportional to H, (y (1))
for every te l. If 1, is a sufficiently small neighborhood of a point t, € I and
I' (resp. I'") is the closed conic hull of y (I,) (resp. y (0l,)) one can for v =
=0,1,2, ... findue C*(X) so that WF(u) = I'y WF (Pu) < I'".

Proof. There is nothing to prove if y (¢ ) has a constant projection on
the cosphere bundle. Otherwise we can after an application of Lemma 3.2.2
assume that pé (v (to)) # 0. Let y (t,) = (xo, &o) and choose a function ¢
so that

(D) @ (x) = <x—xp, &> + i|x — x,|%in X where X is a plane in R
through x, which is transversal to p:: (v (10))-

(i) If y(z) = (x(2), & (1)) then grad ¢ (x (1)) = & (7)) for ¢ near t,, and
p (x, grad ¢) = 0 of infinite order on the bicharacteristic curve { x () }.

By the remarks on first order differential equations given in section 3.1
it is possible to choose ¢ locally with these properties. Since Im ¢ vanishes
to the second order on { x (¢) } it follows from (i) that

(3.4.6) Im o (x) = cd (x)?

where ¢ > 0 and d(x) is the distance from x to the curve. One can now
repeat the proof of Theorem 3.2.3 to obtain u in the form of a Fourier
integral operator with phase function 0¢ (x).

It seems difficult to improve Theorem 3.4.1 to a global result analogous
to Theorem 3.2.3 as one would like to do in order to study (3.4.2) for a
fixed Y. To do so we would first have to give a global definition of spaces of
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Fourier integral operators which correspond locally to phase functions ¢
such as the one just constructed. Besides the curve y (¢), the most important
data contained in ¢ are the second order derivatives of ¢ along the curve.
Let V/ (¢) be the tangent space of T (T* (X)) at y (t) reduced modulo " (¢)
and restricted to the orthogonal space of y’ (¢). Then V (¢) is symplectic,
and if V¢ (¢) is the complexification, the Hamiltonian field H, gives
symplectic bijections x,, : V¢ (¢) = V¢ (s). The Lagrangean plane defined
in local coordinates by 8¢ = @, dx gives a Lagrangean plane 1 (¢) in
Ve (2) with g, A (f) = A(s). To have (3.4.6) we must require that A(7)
is positive in the sense that

Imo(T,T) > 0if 0 # Te ().

This condition is preserved by symplectic transformations which preserve
the real spaces V (¢) but not by general complex symplectic transformations.
Thus positivity of A (¢) does not imply positivity of A(s). This is why we
could make a global statement of Theorem 3.2.3 but not of Theorem 3.4.1.
However, we have no examples which prove that this global difficulty is not
merely due to the method of proof.

Next we consider a point me p~* (0)\(N,(p) U N_ ( p)) where Hy,,(m)
and Hy,, (m) are linearly independent. Then p~' (0) is near m a manifold
of codimension 2 on which { Re p, Im p } = 0; conversely, these conditions
imply that m¢ N, (p) v N_ (p). By the Jacobi identity it follows that
Hreps Himpl = Hrep, 1mp, 1S @ linear combination of Hy,, and Hp,, on
271 (0). In view of the Frobenius theorem we conclude that through m
there passes a two dimensional local integral manifold of the vector fields
Hyep> Hymp> contained in p~* (0) of course. This we call the bicharacteristic
strip through m. Combination of the proof of Theorem 8.3 in Hérmander [7]
with an analogue of Lemma 3.2.2 gives easily

THEOREM 3.4.2. Let mep™ ' (O\(N.(p)UN_(p)), and assume that
Hgep (M), Hy,, (m) and the radial direction at m are linearly independent.
ItV is a sufficiently small neighborhood of m in the two dimensional bichar-
acteristic strip through m and I'(resp. I'") is the cone generated by V (resp.
V), then one can for v = 0,1, ... find ue C*(X) so that WF(u) = T,
WE(Pu) < I,

It is easy to prove a global version of this result analogous to Theo-
rem 3.2.3, at least when V is simply connected. (For more precise results
see Duistermaat - Hérmander [17).
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When the radial direction lies in the bicharacteristic two plane it seems
hard to give simple general results. However, the following theorem contains
a case discussed by Tréves [5, 7]. For the sake of simplicity we assume that
the symbol of P is an asymptotic sum of homogeneous terms.

THEOREM 3.4.3. Let A < p~1(0) be a conic Lagrangean manifold and
assume that on A the projection of H, on the tangent space of S* (X) is pro-
portional to a real vector and # 0. Let I' be the cone generated by a finite
solution interval of this vector field which is not a closed curve in S* (X)), and
let T be generated by the end points of the interval. Then one can for v =
=0,1,.. find ue C*(Y) so that WFu) = I and WF (Pu) < I'".

Note that H, is tangential to A so the real vector field on §* (X') assumed
to exist must be tangential to the submanifold of S* (X) induced by A.
The proof of Theorem 3.4.3 is a repetition of that of Theorem 3.2.3 if one
notes that for a homogeneous symbol differentiation in the radial direction
is equivalent to multiplication by the degree. The first order differential
equation in the direction H, occurring in the recursive determination of
the amplitude can therefore be reduced to a differential equation with real
coefficients.

Assuming the conjecture stated at the end of section 3.3, Tréves [7]
deduced from the preceding results necessary conditions for hypoellipticity
of differential operators P with non-singular characteristics which were
also proved to be sufficient. If P is such an operator, the necessary condi-
tions are derived as follows:

a) By Theorem 3.3.7 we must have N_ (p) = &,
hence N, (p) = N_ (p) = <.

b) By Theorem 3.4.2 the projection in T (X) of H, must have a real direction
if p = 0. (If P is strictly hypoelliptic we conclude that H, itself must
have a real direction modulo the radial direction. In view of Theo-
rem 3.4.3 we then obtain a contradiction if H, does not have a real
direction at some point.) Assuming from now on that pé # 0 when
p = 0 we obtain, if Hy,, (m), Hy,, (m) are linearly independent for
some m with p (m) = 0, that the projection p~' (0) » X has rank
n — 1 at every point in some neighborhood of m. The projection is
therefore a hypersurface Y, defined by an equation p(x) = 0 with
grad p # 0. Since p vanishes on p~ ' (0) near m it follows that H, is a
linear combination of Hy,, and Hy,, Hence p(m’) = 0 implies
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p (m'+tH,(m") = 0if ¢ is small and m' is close to m. But p is a poly-
nomial in the fibers so this must be an identity in ¢. Thus p must vanish
in the normal bundle N (Y) of Y, which is a Lagrangean manifold.
On N (Y) we also obtain that H, is a linear combination of Hg,, and
Hy,, which means that the hypotheses of Theorem 3.4.3 are fulfilled so
that P cannot be hypoelliptic. This contradiction shows that indeed H,
must be proportional to a real vector.

¢) By Theorem 3.4.1 there cannot exist any one dimensional bicharacteristic
strip for p. Hence it follows from b) that Im p cannot vanish on an
interval of a bicharacteristic strip for Re p.

d) Let p (m) = 0 and assume that Hy,, (m) # 0. If the conjecture at the
end of section 3.3 is true, it follows that on each bicharacteristic strip
of Re p in a neighborhood of m the restriction of Im p is everywhere
< 0 or everywhere = 0. Only one of the cases can occur for otherwise
there would exist a bicharacteristic strip for Re p on which Im p vanishes,
in contradiction with c). Hence we conclude that either Imp > 0 in a
neighborhood of m when Re p = 0, or else the opposite inequality is
valid. Since we can choose ae C* near m so that aRep + Im p is
constant on a vector field transversal to (Re p)~ ! (0), this means that m
belongs to the set Ny (p) introduced in

DermNiTION 3.4.4.  We shall denote by Ny (p) the set of all m e T*(X)\0
such that for some C* function ¢ in a neighborhood of m we have g (m) # 0
and Im gp = 0.

Naturally the function g can be chosen homogeneous. The set Ny (p)
is open and contains the complement of p~! (0). Only the intersection with
p~ ' (0) is therefore interesting and it might have been more appropriate to
introduce only this set in the definition. Note that Ny (p) n N, (p) =
= Ny(p) n N_(p) = @ for any p.

Modulo the truth of the conjecture at the end of section 3.3 it is therefore
proved that if p is hypoelliptic and pé # 0 when p = 0 then Ny (p) =
= T*(X)\0 and there is no one dimensional bicharacteristic strip for p
(condition c) above). Conversely, Tréves [7] also proved that these conditions
imply hypoellipticity. We shall give a proof in the following section where
we also study the wave front set of solutions of Pu = fin Ny (p).
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3.5.  Sufficient conditions for solvability and hypoellipticity

Apart from the results of Hérmander [3] and Egorov [2] already referred
to, all such conditions given so far in the literature include the assumption

(3.5.1) N,(p)UN_(p) = & .

This is a necessary condition in the case of differential operators but not in
general. (Cf. Definition 3.3.6 and Theorem 3.3.7.) When (3.5.1) is fulfilled,
p 1s real analytic, and p = 0 implies p'é # 0, Nirenberg and Treves [2]
have proved that P is solvable at every point. In fact, they showed that for
every x, € X and s € R there is an open neighborhood V of x, such that for
every f€e H, (X) one can find ue H ;) (X) with Pu = fin V. The
analyticity assumption is needed to give control of the changes of signs in
say Im p when Re p = 0. Unfortunately the proof which is based on an
abstract version of the energy integral method does not seem to lead to
information concerning the propagation of singularities. For this reason
we content ourselves here with a reference to part II of Nirenberg-Tréves [2]
and subsequent additions to appear in the same journal.

However, in Ny (p) the situation is not too different from the real case
studied in section 3.2. In fact, Tréves [7] has succeeded in extending the
geometrical optics constructions to operators with Ny (p) = T* (X)\0.
The main point is that, although there may be no strict solutions to the
characteristic and transport equations, it is possible to find sufficiently good
approximate solutions. From his proof one can also obtain information
on the wave front sets. We shall indicate a different approach here based on
the energy integral method which gives a shorter though less constructive
proof.

PROPOSITION 3.5.1. Let ue @' (X) and Pu = f, and consider a bichar-
acteristic strip I3t — y(t)eT* (X)\O for Repwhere I = {teR;t; <
St=t,}. Assume that Imp = 0 in a neighborhood of y(I). If y(I) n
UWF(f) =@ and y(t,)¢ WF (), it follows that y(I)n WF(u) = .
More precisely,if fe Hzaty(I)andue H ., _1yaty (L), thenue H ;.\ ,_q,
at y (I). '

Proof. The assertion about WF (u) follows from the last statement
applied not only to y (Z) but also to bicharacteristic strips for Re p nearby.
In proving the last statement we may assume that ue H 4,3/, at y (I).
It is convenient to assume that g = 1 which can be brought about by
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multiplication of P to the left by an elliptic operator of order I — u. Choose
a closed conic neighborhood I' of y (1) such that Im p = 0 in a neighbor-
hood of I', fe Hi,, and ue H,_yy in T'. It is clearly enough to prove
Proposition 3.5.1 locally so we may assume that I" has a compact projection
in a coordinate patch which is identified with R" and that u e &’ (R").
Let M = $* ' (X x R") be a bounded subset of S°(X x R") which
consists only of real valued functions with support in I". (We shall make an
explicit choice of M later where the closure in S* (in a weak topology) can
contain symbols of order s.) With ¢ e M we put C = ¢ (x, D) and form

(3.5.2) (Cf, Cu) = (CPu, Cu) = (PCu, Cu) + ([C, P]u, Cu).

Here ( , ) denotes the usual sesquilinear scalar product. Write P = 4 + iB
with 4 and B self-adjoint, that is, 4 = (P+P*)/2, B = (P—P%*)/2i. The
principal symbols @ and b of 4 and B are Re p and Im p respectively. Taking
the imaginary part of (3.5.2) we obtain

(3.5.3)  Im(Cf, Cu) = (BCu, Cu) + Re([C, B]u, Cu) +
+ Im([C, A] u, Cu).

We can write B = B, + B, where the principal symbol of B, is non-
negative everywhere and WF (B,) does not meet I'. By a well known
improvement of Garding’s inequality (Hormander [3, Theorem 1.3.3]; see
also Lax-Nirenberg [1], Kumano-go [1], Vaillancourt [1], and for a still
more precise result Melin [1]) we have

(3.5.4) Re (Byw,1) = — Cy |10 []0)2. v .

where || |0, is the norm in L? = H,,. (We use here the more restrictive
definition of Hi, (R") as (1—4)7*/? L* (R").) Since B,C is of order — o
we obtain with a constant C, depending on u but not on C

13.5.5) (BCu, Cu) = — Cy || Cu||¢0y” — C, .

Next we note that the symbol of C* [C, B]is ic {b,c} = i{b, c*}/2
apart from an error which belongs to a bounded set in $?*~ . Since { b, ¢* }
is real valued it follows that the symbol of the sum of C* [C, B] and its
adjoint is in a bounded set in S**~!, which shows that with another C,

B Jdepending on u

(3.5.6) Re([C,Blu,Cu) 2 -- C, .

In the same way we obtain
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(3.5.7)  2Im([C, AJu, Cu) 2 Re({a,c*}(x,D)u,u) — C,.
Summing up (3.5.3)-(3.5.7) we obtain with still another C,
(3.5.8) Re(e(x,D)u,u) < || Cfllo)” + C,,CeM,
where

(3.5.9) | e(x,8) ={a,c®}(x,&) —2C+Dc(x, &>

Clearly || Cf||o) is bounded when Ce M. Note that while C, and this
bound may depend on M, the constant C; comes from (3.5.5) and is com-
pletely independent of the choice of M.

We may assume that the map from 7 to the cosphere bundle defined by
7 is Iinjective. Let I'y, be an open conic neighborhood of y (¢,) where u € H,
and choose a non-negative C* homogeneous function ¢ of degree s with
support in I' such that { a, ¢* } = Hg,,c¢> = 0in I'\I'y with strict inequality
in y (I)\I',. That this is possible is seen immediately if we first define ¢ (x, &)
for | ¢ | = ] using a norm in 7* (X') which is constant on the integral curves
of Hg., Also choose C” functions a, and a; homogeneous of degree 0
and 1 respectively so that H,a, = 1, H,a;, = 0 and a, is different from 0
in the support of ¢. This is also possible if the support of c¢ is a sufficiently
small neighborhood of y (/). Now M will consist of the functions

Cre = ce’ (1 +e*a )", 0<e =1,

where A 1s fixed =z C; + 1. If c 1s replaced by ¢, , the function e in (3.5.9)
becomes

e,. = ({a,?} +(21-2C, —1)c?) ™ (1 +6%a,®) "

Since e, , = 0 outside I, with strict inequality on y (/)\I'y we can choose a
non-negative homogeneous function r of degree s which is positive on y (1),
and a real valued homogeneous function g of order s with support in I,
thus ¢ (x, D) u e L?, such that

(3.5.10) r* <({a,c®} +(22-2C; —1)c?) e + ¢*.

Let r, = r(l+¢%a®)~ "% and ¢, = g(1+¢°a?)~ "%, An application of
(3.5.4) to the operator with principal symbol equal to the difference of the 4
two sides in (3.5.10) multiplied by | & |'~?* leads to the estimate

|| r.(x,D)u H(O)2 < Re (el,e(xa D)”»“) + |1 g.(x,D)u H(O)2 + C;

since u € H;_, 5, in I'. (Here we rely on the uniformity of (3.5.4) when the
symbol of B, is bounded in S'.) In view of (3.5.8) we conclude that |
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| 7, Gx, D) u ||, is bounded when e — O, which proves that the limit
r(x, D)u of r,(x, D) u in 2" must belong to L?. Hence ue H, at y (),
which proves the proposition.

Another way of stating the proposition is that if y (/) n WF(f) = &
and y (t,) € WF (u), then y (I) = WF (u). In view of Theorem 2.2.2 it follows
that y (I) < p~*(0), which implies that Hy,,, = 0 on y (/) since Im p = 0.
Thus v () is a bicharacteristic strip for p. This gives the following extension
of a result of Tréves [7] mentioned above:

THEOREM 3.5.2. If I' is an open cone < Ny(p) containing no bichar-
acteristic strip for p, then

(3.5.10) WF@Pu)nT = WF@) nT,ue9 (X).
If I' > p~1(0) it follows that P is strictly hypoelliptic.

We can also obtain conclusions concerning the global existence of solu-
tions and the global regularity question (3.4.2). To state them we first
have to discuss the orientation of the Hamilton field H,(m) when
me Ny (p) n p~ ' (0). According to Definition 3.4.4 we can choose ¢ so that
g (m) # 0 and Im gp = 0 near m. With p, = gp we have then d Re p; (m) #
# 0, dIm p; (m) = 0. If for another function r with r (m) # 0 we have
Imrp, =0 near m, then r (m) is either positive or negative. In the latter case
we obtain Im p; < 0 near m when Re p; = 0, and since Im p, = 0 it follows
that Im p; = O near m when Re p; = 0. Hence Im p; = s Re p; for some
smooth s, which means that p, = (1+1is) Re p, is real apart from a non-
vanishing factor. If p is not of this special form we conclude that r (m) > 0,
hence that H,, (m) = r (m) H, (m) has the same direction as H, (m).

DerINITION 3.5.3. By Ny (p) we denote the set of all me T* (X)\0
such that there is a C” function ¢ in a neighborhood of m with g (m) # 0
and gp real.

Ny (p) is of course an open subset of Ny (p) containing the complement
of p71(0). In Ng(p) np~'(0) there is no natural way of choosing a
i complex number z such that zH , is real, but if m € Ny (p)\Ng (p) we choose
@ as positive the direction of g (m) H, (m) when q(m) # 0 and Im gp = 0
B n a neighborhood of m. The arguments preceding Definition 3.5.3 proved
| precisely that this definition is unique.
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In N (p) we have the situation studied in section 3.2. However, the
orientation of the Hamiltonian field in N, (p)\N (p) enters the analogue of
Theorem 3.2.1 there.

THEOREM 3.54. Let ue ' (X) and Pu = f.
Ifme(WF W\WF(f ) 0 Ny (p), then there exists a bicharacteristic strip
Ist—vy(t)e Ny(pD\WF (f) for p with me y(I) = WF (u) such that1 is a
( finite) interval on R and, if t, is a boundary point of I,

(1) 7 (to) € Ny (P)\Ng (p) and the positive direction of H,(y (t9)) points
towards y(I) if ty e I

(11) 7y (¢) does not converge to a limit in Ny (p)\WF (f)as I3t — tyifty¢ 1.
The proof follows from Proposition 3.5.1.

We can now give a partial extension of Theorem 3.2.4. Assume that
Ny (p) = T* (X)\0. We shall say that a curve Isat— y(t)ep 1 (0) is a
complete bicharacteristic strip for p if 7 is a finite interval in R and

(i) dy/dt is proportional to H, (y (1)), t €1,

(i) y (t5) € Ny (p)\Ng (p) and the positive direction of H, (y (1)) points
towards y (/) if ¢, is a boundary point of I belonging to I

(1i1) y (¢) does not converge to a limitin Ny (p)as It — tyif ty, ¢ I.

THEOREM 3.5.5. Assume that Ny (p) = T* (X)\0 and that no complete
bicharacteristic strip for p stays over a compact set in X. Every ue &’ (X)
with P*ue C* (X) is then in Cy (X), which implies that the equation Pu = f
can be solved in a neighborhood of any compact set K < X when f is orthogonal
to the finite dimensional vector space of functions v e Cy (K) with P*v = 0.
The map from 2'(X) to 9" (X)\C® (X) defined by P is surjective if in
addition for every compact set K< X there is another compact set K' = X
such that K’ contains the projection of any compact interval I on a complete
bicharacteristic strip J for p with the projection of the boundary of I relative
to J contained in K.

The proof is a repetition of part of the proof of Theorem 3.2.4 with
Theorem 3.2.1 replaced by Theorem 3.5.4.
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