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pactification for which B, ., has a unique minimal element. It may be possible
to obtain such results by arguments of the type used by Gabrielov [1] to
prove that for every P the closed union of all A" (Q), Q € L (P), is a semi-
algebraic set of codimension at least one. _

For other definitions of the wave front set we refer to Sato [1, 2], and
Sato and Kashiwara [1] for the case of hyperfunctions relative to real
analytic functions, and to Hormander [11] for the case of Schwartz distribu-
tions relative to any Denjoy-Carleman class of functions which is closed
under differentiation and contains the real analytic functions.

Chapter 1II

SOME SPACES OF DISTRIBUTIONS AND OPERATORS

2.1. Pseudo-differential operators

In Chapter I all results ultimately depended on the Fourier transforma-
tion. When the coefficients are variable we need to have some substitute.
The simplest case occurs in the construction of fundamental solutions for
elliptic operators with variable coefficients. Classically this was done by
perturbation arguments (the E. E. Levi parametrix method, Korn’s approxi-
mation). These ideas are now embedded in a more manageable and precise
form in the theory of pseudo-differential operators.

Let us first note that for an elliptic operator P (D) with constant coeffi-
cients of order m we have for some constant C,

1S =ClPOI, <] >C,

if £ is real or belongs to a narrow cone in C" containing R". Apart from
an integration over a compact set, which contributes an entire analytic
term, the fundamental solution constructed in section 1.1 is therefore
simply

Ef(x) = 2n)™" | <% y (&P () f (&) dE.

Here y is a fixed C* function which is 0 when | ¢| < C and 1 for large
| 4 | Differentiation under the sign of integration gives, with E also denoting
the distribution such that Ef = E * f,
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(2.1.1) P(D)E = 5 + R.

Here R = y — 1 so that Re C”. One calls E a parametrix. Outside the
origin we have Ee C®, for if « is large then

(=x)*E = (2m)™" | =% D (1(O/P(&)d¢,

and the integrand decreases rapidly at infinity. For the study of regularity
properties it is as useful to have a parametrix as to have a fundamental
solution: If v e & we obtain v = E # (P (D)v) — R *v. Here R*ve C”
and E * P (D)ve C® outside sing supp P (D) v since Ee C” outside the
origin. This gives

sing supp v = sing supp P (D)v

when v has compact support and therefore for arbitrary v.
Consider now a differential operator P with variable coefficients,
P(x,D) = > a,(x)D*
lal=m

in an open set X ¢ R". We assume that a, € C* (X) and that P is elliptic
in X, that is,

P,(x,&) =Y a,(x)& #0 if xeX and 0 # £eR".
la|=m
We want to construct a (right) parametrix E, that is, a linear map C3 (X) —
— C” (X) such that P(x, D) E = [ + R where R is an integral operator
with C* kernel. The classical method of E. E. Levi is to take a fixed x, € X

and try to find E as a perturbation of the known parametrix of the operator
P (xq, D), that is,

Ef(x) = (20)7™" [ &< 3 ()P (x0,8) f (&) dE .

Naturally this must be a better approximation at x, than elsewhere, so the
approximation 1s improved if one replaces P (x,, &) by P (x, &). Note that
P(x, &)t = P, (x, &)~ + ... where dots indicate homogeneous terms of

order —m — 1, —m — 2, .... Thus we are led to consider operators of
the form
2.1.2) Ef(x) = 2m)7™" [ &< e(x, &) f (&) d¢

where e behaves asymptotically when ¢ - oo as a sum of homogeneous
functions of £. (See Kohn-Nirenberg [1], Hormander [2, 4] and the references
ziven there.) Actually it is preferable to make the somewhat less restrictive
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assumption that e e C” (X x R") and that for some p and all multi-indices o
and f§

(2.1.3)  |DiDhe(x, &) | £ Cupx(1+]EPH 1, xe K((X.

The set of all such functions will be denoted by S* (X x R"). An operator of
the form (2.1.2) with e € S* is called a pseudo-differential operator of order p
with symbol e. It is easy to see that E is a continuous map from C7 (X)
to C” (X) and that E can be extended to a continuous map from &’ (X)
to 2’ (X). The diagonal in X x X contains all singularities of the kernel
of E (which is a distribution in X x X). Summing up these facts one finds
the pseudo-local property

(2.1.4) sing supp Eu C sing suppu,uedé’ (X).

To complete the construction of a parametrix for the elliptic operator
P it suffices to choose e so that
P(x,D+&e(x,6) —1€S 7 = n S*.
u

To do so we choose e asymptotic to a sum e, + e; + ... where e; is homo-
genecous of degree — m — j with respect to ¢ and

P(x,D+&(eg+...4e) —1eS7, j=0,1,... .

This means for j = 0 that e, = 1/P,. Since P (x, D+¢&)e; — P, (x,&) e; €
e S7/7 ! the conditions are recursively satisfied by a suitable choice of e;.
This formal successive approximation is of course just a simpler way of
carrying out the classical iterative procedures for solving the integral equa-
tions which occur in the E. E. Levi method. It 1s more appropriate though,
since 1t avoids strict convergence requirements which force one to work
locally only.

Pseudo-differential operators not only give a convenient framework for
the construction of parametrices for elliptic equations but they form a
natural extension of the class of differential operators. A differential operator
P (x, D) is obviously of the form (2.1.2) with e (x, {) = P (x, ). It turns
out that also pseudo-differential operators form an algebra which is invariant
under passage to adjoints and changes of variables ; the latter fact immediately
allows an extension of the definition to manifolds. The usual formulas of
calculus remain valid with obvious modifications. For example, if P =
= P(x, D) and Q = Q (x, D) are differential operators then the symbol
of the differential operator R = QP is given by
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(2.1.5) R(x,&) = 2, ((iD)"Q(x, ) Dy P(x, ot

If P and Q are pseudo-differential operators with symbols P (x, £), O (x, <)
the product R = QP is again a pseudo-differential operator and for the
symbol R (x, &) the formula (2.1.5) is valid mod S* for every p, which makes
sense since all but a finite number of terms are in S*. One precaution must
be made though, for to compose pseudo-differential operators we must
assume that they map Cjg to C%, and preferably also C” to C*. Since the
kernel of a pseudo-differential operator is in C* outside the diagonal in
X x X it can be modified without changing the singularities to a kernel K
with support so close to the diagonal that the projections supp K — X are
both proper. This implies the desired properties. We shall say that an
operator with such a kernel is properly supported. By L* (X) we denote the
space of properly supported pseudo-differential operators of order p. The
definition is clearly valid also if X is a C* manifold.

Generalizing a definition in section 1.3 for differential operators we
shall say that a pseudo-differential operator P of order m with symbol p
is characteristic at (x, ) € X x (R™0) if

lim lp(x,t &t ™™ = 0.

t— + o0
The characteristic points form a closed cone in X x (R"™0) which regarded
as a subset of 7%(X)\0 is invariant under a change of variables and therefore
well defined even if X is a manifold. If no characteristic exists, we say that P
is elliptic. The arguments above show that if P is elliptic of order m one can
find Q elliptic of order — m so that QP — I = R, and PQ — I = R,
have C® kernels. This shows that also for elliptic pseudo-differential
operators we have

sing supp u = sing supp Pu,ue 2’ (X).

The construction of fundamental solutions in section 1.1 also simplifies
very much when P is just hypoelliptic, that is, P satisfies (1.4.2). This con-
dition implies that P (£) # O for large & and that for some p > 0

|IDeP(OI/IP) ] =ClE|riH,

One can still find a parametrix of the form (2.1.2), but e (x, &) = 1/P (&)
satisfies a weaker condition than (2.1.3). One is therefore led to introduce
the set S} 5 of functions such that for all multi-indices

(2.1.3)" [DEDfe(x, &) | < C,p (1 +|ENmrleirolbl xe K({(X.
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When O < 6 < p £ 1 one obtains again a self adjoint algebra of operators,

and it is invariant under a change of variables if in addition 1 — p < 6. If |

for some 0 < p

I DEDEp(x, O/ 1p(x, O] S Cpupr(l+[EN I xe K ((X,

and 1/|p(x, &) | < C|&|™ for some M, one can as in the elliptic case
construct a parametrix of the same type and conclude that the operator with
symbol p is hypoelliptic. (See Hormander [4] and for the case of systems
also Hormander [8].) However, for the sake of brevity we shall ignore
extensions of this type in what follows.

If L. (X) is the set of functions in X which are square integrable on
compact subsets of every coordinate patch (with the obvious topology), then
every Pe L% (X) is a continuous map L7, (X) — L., (X). If we define
H, (X) to be the set of all distributions such that Puel?, (X) when
PelL®(X) it follows that Hg, (X) = L;.(X), and that L™ (X) maps
H (X) continuously into H_,, (X). Conversely Pue H_,, (X) implies

ue Hi, (X) if PeL™(X) is elliptic, so ue H (X) if (and only if)

Pue L}, (X) for some elliptic P of order s. Similar definitions can be made
with L? replaced by L? if 1 < p < .
2.2. The wave front set

If ue 2’ (X) we have by definition

“sing suppu = n{x;9(x) =0}

the intersection being taken over all ¢ € C* (X)) with pue C” (X ). Replac- |

ing the function ¢ by a pseudo-differential operator 4 we introduce

(2.2.1) WF (u) = n char(A)

AueC ®©

where char (A) is the set of characteristics of 4. It is clear that this is a
closed cone in 7%(X)\0 with projection in X contained in sing supp u. In

fact, it is equal to sing supp u for if x is not in the projection of WF (u) i
we can find finitely many operators A;e L’ with 4;ue C” so that §
T* A (n char (4)) = @. If A = ZAA; we have due C* and A is elliptic |

at x so ue C® there. Thus we have

PRIV DG SN
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THEOREM 2.2.1. The projection of WF (u) in X is equal to sing supp u.

We shall call WF (1) the wave front set of u. (The relation to the defini-
tions in section 1.6 will be discussed after Theorem 2.2.3.) Clearly it describes
the location of the singularities and the frequencies which occur in their
harmonic decomposition. The definition we have given leads immediately
to a regularity theorem for any pseudo-differential operator:

THEOREM 2.2.2. If A is a pseudo-differential operator then

(2.2.2) WF (Au) ¢ WF(u) C WF (Au) U char (A).

Proof. The second part, extending the regularity theorem for elliptic
operators is obvious, but the first which improves the pseudolocal property
(2.1.4) may require some comment. We may assume that X ¢ R" since the
definition of WF (u) is local in X. For any (x,, &) ¢ WF (u) we can choose
a pseudo-differential operator B which is non-characteristic at (x,, &,) so
that Bue C”. If C is a pseudo-differential operator whose symbol is of
ordet — oo outside a small conic neighborhood of (x,, £&,) we can find
another operator C; such that C4 = C,B, by multiplying CA to the right
with the formal inverse of B which exists near (x,, &;). Thus CAu = C,Bue
e C* and we conclude that (x,, &) ¢ WF (Au).

In the definition of the wave front set it is easily seen that one can
restrict oneself to operators 4 of order 0 and even operators of the form
b (D) a (x) where b (£) is a homogeneous function of degree 0 for large ! & l
This leads to an equivalent definition which is more useful in many proofs:

THEOREM 2.2.3.  (x¢, &) ¢ WF (u) if and only if for some coordinate patch
containing x, one can find v e &' equal to u in a neighborhood of x, and

with v (€) = 0 (lfi_N) for every N in a conic neighborhood of &, independent
of N.

The theorem shows that WF (u) regarded as a subset of the sphere bundle
agrees with the set given by Definition 1.6.3 when X C R" and W, is the
compactification by a sphere. The definition used here has the advantage
that the invariance under a change of variables follows from the invariance
of pseudo-differential operators.

We shall now list a number of properties of wave front sets. Most of
them are due to Sato who considered hyperfunctions modulo real analytic
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functions. (See Sato [2], Sato-Kawai [1], and Sato-Kashiwara [1].) For
complete proofs using Theorem 2.2.3 see Hormander [9, section 2.5].

First we consider the product of two distributions u, and u,. Let
xeCy R, | ydx =1, and set y,(x) = ¢ "y (x/e). Assuming that
u;e & (R") we wish to define wyu, as the limit of (u;*y,) (uy*y.) as
¢ — 0. In general this is not possible but the limit does exist if

(2.2.3)  WF(u)+WF (uy) = {(x, &, +&); (x, E)e WF (u;)} ¢ T*(XN\O

It is then independent of the choice of coordinates and y. The situation is
summed up in

THEOREM 2.2.4. If u;,u, € 2' (X) and (2.2.3) is fulfilled, there is a
natural way of defining u,u, and we have

(2.2.4) WF (uu,) C WF (uy) U WF (uy) O (WF (uy) + WF(uy)) .
Here the right hand side is closed and X may be a manifold.

With suitable definitions the multiplication is continuous when intro-
duced in this way. In the following theorems the word “ natural ” will refer
to a definition by continuity as in Theorem 2.2.4.

THEOREM 2.2.5. Let X and Y be manifolds and ¢ : Y - X a C* map.
Let ue @' (X) and assume that

o* WF(u) = {(»,"0,(») &), (¢ (»), ) e WF(u)} C T*(Y)\O.

" Then there is a natural way of defining the composition ¢*u of u with ¢ so
that it is the standard composition when u is a function. We have

(2.2.5) . WF(0*u) C 0*WF(u).

Note that the pullback ¢ *u is defined for all u e &’ (X)) precisely when
¢’ is surjective, and then it is well known that such a definition is possible.
In particular we see that if ¥ C X is a submanifold, we can define the
restriction of u to Y if the normal bundle N (Y) does not meet WF (u).
For example, if ue 2'(X) and Aue C® for some pseudo-differential
operator A, we can define the restriction of u to Y if Y is non-characteristic,
that is, the normals to Y are non-characteristic with respect to 4. This is
also a well known fact (partial hypoellipticity).

Let X and Y be two C* manifolds with given positive C* densities. By
the kernel theorem of Schwartz we can then identify 2’ (X x Y) with the
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space of continuous linear operators Cg (Y) — 2 (X) by means of the
formula

< Ko,y > = KW ®¢); peCo(Y),yeCh(X);

on the right K denotes an element of 2’ (X x Y) and on the left the corres-
ponding linear transformation. In terms of the wave front set of K we
can state useful sufficient conditions for regularity of K in the sense of
Schwartz [1]:

THEOREM 2.2.6. For any ue Cq (Y) the set
(2.2.6) WF4x(K) = {(x,&); (x,&,y,0)e WF(K) for some ye Y}

contains WF (Ku). Thus K maps C% (Y) into C*(X) if WFx(K) = @, that
is, if WF (K) contains no point which is normal to a manifold x = constant.

THEOREM 2.2.7. Ku can be defined in a natural way when ue &' (Y') and
WEF (u) does not meet the set

(2.2.7) WFy(K) = {(y, n); (x,0,y, —n)e WF(K) for some xe X } .

Thus K can be extended to a continuous map &' (Y) = @' (X) if WFy (K) =
= @, that is, WF (K contains no point which is normal to a manifold y =
= constant.

The proof of Theorem 2.2.6 follows easily from the description of the
wave front set given in Theorem 2.2.3. Theorem 2.2.7 follows by duality.

If we have three manifolds X, Y, Z and distributions K; € 2’ (X x Y),
K,e2' (Y x Z) where for simplicity we assume that K; and K, are
properly supported, then K, ue &’ (Y) and WF (K,u) CWFy (K,) when
ue Cy (Z). The composition K, (K,u) is therefore defined if

(2.2.8) WFy(K)n WFy(K,) = o,

and 1t is of the form (K;oK,)u where K, 0K, e 2' (X x Z). When
writing down an inclusion for the wave front set of K, o K, it is convenient
to introduce for example

WF (K ={(x, &y, m; (x, &y, —meWF(K,)},

that is, multiply by — I in the fiber of the second tangent space involved.
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THEOREM 2.2.8. When (2.2.8) is fulfilled we have
(22.9) WF' (K, o K,) C (WF' (K,) o WF'(K,)) v (WFx (K;) x Z)
U (X x WF (K))).

Here WF'(K,) and WF’'(K,) are composed as relations from T* (Y) to
T* (X) and from T* (Z) to T* (Y). The right hand side of (2.2.9) is closed.

The special case when Z reduces to a point is worth special notice:

THEOREM 2.29. Let KeZ' (X x Y) and ueé' (YY), WF(u) n
N WFy (K) = @. Then we have

(2.2.10) WF (Ku) C (WF' (K)o WF (u))u WF(K)

where again WF’'(K) is interpreted as a relation mapping sets in T* (Y') to
sets in T* (X).

In section 2.3 we shall describe the wave front set for some important
classes of distributions. In preparation for this we shall now discuss how the
wave front set can be used to localize various spaces of distributions not
only in X but in 7* (X)\O (or rather the cosphere bundle $* (X) which is
the quotient by the multiplicative group of positive reals).

Let & be a linear subspace of 2’ (X). If x, € X we shall say that a
distribution u in X belongs to & at x, if one can findv € # so thatv — u =
= 0 in a neighborhood of x,. We call & local if every distribution which
belongs to # at every x, € X is in fact in #. (This means that # is the
space of sections of the sheaf of germs of sections of #.)

If (xq, &o) € T*(X)\O we shall say that u e & at (x,, &,) if one can find

F so that (x,, &,) ¢ WF (u—v). Repeating the proof of Theorem 2.2.1
one shows that when C* (X) C & and & is an L° module, then ue & at
Xo if (and only if) ue & at (x,, &) for every &y € T*\O If in addition &
is local we therefore conclude that ue % if and only ifues at (YO, o)
for all (x,, &) € T*(X)\0. As an example of this we may take # = H, (X).

We can also piece together spaces of distributions from local data.
Let { U;},; be a covering of T*(X)\O by open cones and let &, iel,
be an L° submodule of 2’ (X) containing C°° (X). Assume that if (x,, &,) €
e U; n U, then every element of &, is in & ; at (x,, ¢o). If we set

= {ue 2 (X);ue Z; atevery point in U, for all j }
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we obtain a local L° module of distributions. If (x, &) € U; we have
ue F at (xq, &) if and only if u e F; at (xq, £o).

2.3. Distributions defined by Fourier integrals

If in (2.1.2) we introduce the definition of the Fourier transformation
we see formally that the distribution kernel of the pseudo-differential
operator E 1s given by

(2.3.1) (x,y) > 2n)™" [ =77 e(x, 0)dO .

Similarly the fundamental solution of the wave equation 9*u/dt* — Au = 0
in n space variables (n > 1) with pole at (y, 0) is at time # > 0 given by

[2.3.2] (x,y) =

(27T)_n(j ei(<x—y,0>+t|9[)(2”0')—1 do — j ei(<x—y,0> —tl()l)(2il0|)—l d@) '
These examples suggest the importance of the classes of distributions which
we shall study now.

Let X C R" and let I' be an open cone in X x (RMO0) for some N.
Assume given a function ¢ € C” (I') satisfying the following conditions:

(i) ¢ is positively homogeneous with respect to the variables in RY.
(i) Im¢e = 0.
(i) de # 0 everywhere in I,

Such a function will be called a phase function. Let S’y (I') be the set of all
aeS™(X X (RN\O)) (see section 2.1) vanishing in a conic neighborhood
of CI.

For a e S (I') we claim that the integral

(2.3.3) AX) = [P a(x, 0)do

can be defined, not necessarily as a function of x but as a distribution in X.
To do so we consider the linear form

(2.3.4) I(w) = [[e°CDa(x, 0)u(x)dxd,ue CZ(X).
In view of (iii) the fact that
e’ = D (e”)/(Dig)

allows one, by successive (formal) partial integrations with no boundary
terms, to reduce the growth of the integrand at infinity until it becomes

L’Enseignement mathém,. t. XVII, fasc. 2. 10
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integrable. This gives a precise definition of 7 (1) and the linear formu — 1 (u)
is then a distribution 4 € 2’ (X). If ye & (RY), x(0) = 1, it is easily shown
that

(2.3.5) A= lim [é&*CDy(e0)al(.,0)do

e—0

with the limit in the weak topology of 2’ (X). Thus the definition of (2.3.4)
by partial integrations is quite independent of how these are carried out,
and (2.3.5) is independent of the choice of y. We shall call (2.3.3) an oscil-
latory integral but use the standard notation. (For these facts as well as
most of this section we refer to Hormander [9].) The integral (2.3.3) is
thus defined for a fixed x = x, if ¢ (x,, 0) has no critical point (x,, 0) € I"
as a function of 6. In that case, 4 € C* near x,. Note that if (x,, 0) is a
critical point of ¢ as a function of 0, then ¢ (x,, 0) = 0 by Euler’s identity
for homogeneous functions. On the other hand, when ¢ (x,, 0) = 0 it
follows from (ii) that d (Im ¢ (x, 0)) = 0 so d, 4y Re ¢ (x, 0) # 0 by (iii).

To determine the wave front set of 4 we use Theorem 2.2.3. Thus we
take a function ue Cj equal to 1 near x, and with small support, and
study

< Ayue T > = [ £OEOT0) y (x) g (x, 0) dxdO

as £ — oo In a conic neighborhood of &, (oscillatory integral !). Naturally
the main contributions come from critical points in the exponent, that is,
points where @, = 0, ¢, = . Indeed, we have

THEOREM 2.3.1. If A is defined by (2.3.5) then
(2.3.6) WF(A) C{(x,0.(x,0);(x,0) el and ¢,(x,0) =0} ¢ T*(X)\0
In particular,
(2.3.7) sing supp A C {x; @y(x, 0) = 0 for some 6 with (x,0) e I'}.

As an example we see from (2.3.1) that the wave front set of the kernel of
a pseudo-differential operator E lies in { (x,y; &, n);x =y, &= — 15}
which is the normal bundle of the diagonal. Thus WF’ (E) is in the diagonal
of T*(X) x T*(X), which allows us to identify the wave front set of a
pseudo-diﬁerentialioperator in X with a closed cone in 7*(X)\0. In view
of Theorem 2.2.9 this result contains the left hand part of (2.2.2) (the
improved pseudo-local property).

As a second example we see that for the two terms in (2.3.2) the
wave front set lies in the set where x —y = F #0/| 0| and & = — n = 0.

i
1
|
1
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i
g
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B |
|
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|
3
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This corresponds to the two components of the normal bundle of
{(x,9);]|x — y|* = t*}. In particular the singularities are carried by the
light cone.

The set of distributions which can be written in the form (2.3.5) with
a given @ and a e S§ (I') is always an L° (X)) module. (For a proof when ¢
is real see Theorem 2.12 in Hérmander [6].) We can therefore use the
remarks at the end of section 2.2 to define global spaces of distributions
which locally in T*(X)\0 have such representations.

We shall restrict ourselves in what follows to the case where ¢ is real
and non-degenerate, that is, the differentials of the functions d¢/d0; are
linearly independent in C = { (x, 0) e I'; ¢y (x, 0) = 0 }. The map

(2.3.8) Cs(x,0) - (x, 0.

to the wave front set has an injective differential then. The range A is
locally a conic manifold in 7*(X)\0 of dimension dim X. Let (x, £) denote
the standard coordinates in 7*(X) obtained from local coordinates x4, ..., x,
in X by taking dx,, ..., dx, as basis for the cotangent vectors. The form
2¢, dx; is then invariantly defined, and the restriction to A is 0. dx =
= dp — @,d0 = 0. In view of the homogeneity this is equivalent to the
vanishing on A of the differential which is the symplectic form ¢ =
= 2d&; A dx;. Submanifolds of 7*(X') of dimension dim X on which the
symplectic form vanishes also play a fundamental role in the classical
integration theory of first order differential equations (see section 3.1).
Following Maslov [1] we shall call them Lagrangean manifolds.

Locally the class of distributions which can be written in the form
(2.3.3) for some ae Sy "+ N2(I), n = dim X, and anon-degenerate real
phase function ¢ depends only on the Lagrangean manifold A correspond-
ing to @ and on no other properties of this function. Any closed conic
Lagrangean submanifold A C 7*(X)\0 (or a closed conic subset of a
Lagrangean submanifold which is not necessarily closed) can locally be
represented as the range of a map (2.3.8). We can therefore define a space
I" (X, A) of distributions with wave front set in A which locally can be
written in the form (2.3.3) with ae S§""*~"? and ¢ defininga part of A
according to (2.3.8). With the elements in I™ (X, A) one can, as for pseudo-
differential operators, associate principal symbols on A, which are symbols
of order m + n/4 modulo symbols of order m + n/4 — 1 (with values in
certain line bundles). The notion of characteristic point can therefore be
defined as in section 2.1. For the kernels of pseudo-differential operators
in X which are associated with the normal bundle of the diagonal in X x X
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this agrees with the standard notion of principal symbol. (Note that the
normal bundle of any submanifold Y of X is Lagrangean in 7* (X) and
that the normal bundle of the diagonal in X x X can be identified with
T*(X).)

When we take a conic Lagrangean submanifold of 7*(X x Y)\O
where X and Y are two manifolds we can interpret the distributions in
I" (X x Y, A) as maps from Cg (Y) to &' (X). When 4 C (T*(X)N\0) x
x (T*( Y)\0) we have seen (Theorems 2.2.6 and 2.2.7) that they are actually
continuous operators from C3 (Y) to C* (X) and from &’ (X) to 2’ (Y).
The set

A= {0, &y, —n); (x, &y, med}

will then be called a homogeneous canonical relation; it is Lagrangean with
respect to the symplectic form oy — ay. This is the set which occurs in the
multiplicative properties of wave front sets described in Theorem 2.2.8.
If we have three manifolds X, Y, Z and canonical relations C,, C, from
T*(Y)toT* (X)resp. T* (Z) to T* (Y) one can supplement Theorem 2.2.8
by proving that the composition K; o K, of properly supported operators

K el™(X x Y,Cy) and K, eI"*(Y x Z, C))
1S 1n
IM*™ (X x Z,(Cy0C,))

if the appropriate transversality and other conditions are fulfilled which
guarantee that C; o C, is a manifold. There is a simple formula giving the
principal symbol of K; o K, as a product of those of K. (The normalization
of the degree for operators in I™ was chosen precisely to make the preceding
statement valid.) For complete statements and proofs we refer to Hor-
mander [9]; a summary is given in Hormander [10]. However, we shall
consider an important special case due to Egorov [1] which gave rise to
much of the work described here.

Thus assume that X and Y have the same dimension and that A’ is
the graph of a homogeneous canonical transformation y from T* (Y) to
T* (X) (or only a local canonical transformation in which case we consider
a closed conic subset). That y is canonical means thaty*cy — oy = O or
that oy — oy vanishes on A’, so we have a canonical relation in the sense
explained above. If Ke I™ (X x Y, A), then the adjoint K* belongs to the
inverse transformation and the compositions KK* and K*K belong to the
identity, that is, they are pseudo-differential operators in X and in Y
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respectively. If 4 is a pseudo-differential operator in X of order u then the
product AK is in I™"* (X x Y, A) and the principal symbol is the product
of the principal symbol of K (considered as living on A’) by that of A4 lifted
from 7% (X) to A" by the projection A" — T* (X). If we multiply to the F
right instead the result is the same except that we shall use the projection
from A’ to T* (Y). If A and B are pseudo-differential operators in X and
in Y respectively and if AK = KB we conclude that for the principal symbols
a and b of A and B we must have

(2.3.8) a(y(v,m) = by, n l

if the principal symbol of K is not 0 at (x (v,#n), (», —n)). Conversely,
(2.3.8) implies that AK — KB is of lower order. We can therefore succes-
sively construct the symbol of B for a given 4 so that AK — KB is of order
— oo, provided that the wave front set of A is concentrated near a point
where K is elliptic. This argument often allows one to pass from one operator
to another with principal symbol modified by a homogenecous canonical
transformation. (See also Lemma 3.2.2 below.)

The operators in I™ (X x Y, A’) can be described by means of the
classical generating function: For any point (x,, &g, Vg, Ho) in the graph of
x one can choose local coordinates in neighborhoods of x, and y, so that
there is a function ¢ (x, ) in a conical neighborhood of (x,, 1,) which is
homogeneous of degree 1 with respect to #, such that y is given by ((p; , 1) —
- (x, ¢) and det ¢, # 0. The elements 4 in I™ (X x ¥, A) with wave
front set close to (xq, &y, Vo, —¥o) are then as operators of the form

Au(x) = Q0™ [ & a (e, )it () dy, a e S" (XX R,

when u is in C7 in a neighborhood of y, and x is in a neighborhood of x,.
The assertions made above are easy to prove directly from this rep-
resentation.

Chapter III

PSEUDO-DIFFERENTIAL OPERATORS WITH NON-SINGULAR CHARACTERISTICS

3.1. Preliminaries

Throughout this chapter X will denote a C* manifold (all manifolds are
tacitly assumed countable at infinity) and P a properly supported pseudo-
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