
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1971)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ON THE EXISTENCE AND THE REGULARITY OF SOLUTIONS OF
LINEAR PSEUDO-DIFFERENTIAL EQUATIONS

Autor: Hörmander, Lars

Kapitel: Chapter II  Some spaces of distributions and operators

DOI: https://doi.org/10.5169/seals-44576

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44576
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 122 —

pactification for which Bx w has a unique minimal element. It may be possible
to obtain such results by arguments of the type used by Gabrielov [1] to

prove that for every P the closed union of all A' (Q), QeL (P), is a semi-

algebraic set of codimension at least one.
For other definitions of the wave front set we refer to Sato [1, 2], and

Sato and Kashiwara [1] for the case of hyperfunctions relative to real

analytic functions, and to Hörmander [11] for the case of Schwartz distributions

relative to any Denjoy-Carleman class of functions which is closed

under differentiation and contains the real analytic functions.

Chapter II

Some spaces of distributions and operators

2.1. Pseudo-differential operators

In Chapter I all results ultimately depended on the Fourier transformation.

When the coefficients are variable we need to have some substitute.
The simplest case occurs in the construction of fundamental solutions for
elliptic operators with variable coefficients. Classically this was done by
perturbation arguments (the E. E. Levi parametrix method, Korn's
approximation). These ideas are now embedded in a more manageable and precise
form in the theory of pseudo-differential operators.

Let us first note that for an elliptic operator P (D) with constant coefficients

of order m we have for some constant C,

Kr ^ c\p(o\, m > c,
if £ is real or belongs to a narrow cone in C" containing Rrt. Apart from
an integration over a compact set, which contributes an entire analytic
term, the fundamental solution constructed in section 1.1 is therefore

simply

Ef(x)(27t)-« J e'^xCÖ/P(£)/(£)

Here x *s a fixed C00 function which is 0 when | £ | < C and 1 for large
I £ |. Differentiation under the sign of integration gives, with E also denoting
the distribution such that Ef E * f,



— 123 —

(2.1.1) P(P)E 8 + Ä.

Here R % - 1 so that Re C00. One calls £ a parametrix. Outside the

origin we have E e C00, for if a is large then

(-x)aE (In)'» J *<*>*> DÏ(x(OIP(Ç))dÇ,

and the integrand decreases rapidly at infinity. For the study of regularity

properties it is as useful to have a parametrix as to have a fundamental

solution: If v e ê' we obtain v E * (P (D) v) — R * v. Here R * v e C00

and E * P (D) v e C00 outside sing supp P (D) ^ since E e C00 outside the

origin. This gives

sing supp v — sing supp P (D) v

when v has compact support and therefore for arbitrary v.

Consider now a differential operator P with variable coefficients,

P(x,D) X aa(x)D*
|a| ^ m

in an open set X c R". We assume that aa e C00 (X) and that P is elliptic
in X, that is,

Pm (.x, Ç) £ aa (x) £a 0 if x e X and 0 ^ (eR".
j a I =m

We want to construct a (right) parametrix E, that is, a linear map Cf (X)
-> C00 (X) such that P (x, D) E — I + P where P is an integral operator
with C00 kernel. The classical method of E. E. Levi is to take a fixed x0 e X
and try to find E as a perturbation of the known parametrix of the operator
P (x0, D), that is,

£/(x) (27t)-" J ef<^> x(QIP(x0,OmdZ

Naturally this must be a better approximation at x0 than elsewhere, so the

approximation is improved if one replaces P (x0, Ç) by P (x, £). Note that
p(x, O'1 — Pm(x> Ö"1 + ••• where dots indicate homogeneous terms of
order — m — 1, — m — 2, Thus we are led to consider operators of
he form

2.1.2) Ef(x)(27t)-" J e'^eix,
where e behaves asymptotically when £ — co as a sum of homogeneous
functions of (See Kohn-Nirenberg [1], Hörmander [2, 4] and the references
given there.) Actually it is preferable to make the somewhat less restrictive
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assumption that e e (X x R") and that for some fi and all multi-indices a
and ß

(2.1.3) \D'(Dßxe(x,0\ è +|£|)"-W,

The set of all such functions will be denoted by Sß (X x Rn). An operator of
the form (2.1.2) with e e is called a pseudo-differential operator of order \x

with symbol e. It is easy to see that E is a continuous map from Cq (X)
to C00 (X) and that E can be extended to a continuous map from ê' {X)
to Q)' (X). The diagonal in X x X contains all singularities of the kernel
of E (which is a distribution in X x X). Summing up these facts one finds
the pseudo-local property

(2.1.4) sing supp Eu c sing supp u, u e ê' (A).

To complete the construction of a parametrix for the elliptic operator
P it suffices to choose e so that

P(x,D + 0e(x,0 - leS"00 n 5*.
ß

To do so we choose e asymptotic to a sum e0 + el + where ej is

homogeneous of degree — m — j with respect to £ and

P (x, D + f) (e0 -f + ej) — 1 e S J \ j 0,1,...

This means for j 0 that e0 1 jPm. Since P (x? D + Q ej — Pm (.x, Ç) ej e

e the conditions are recursively satisfied by a suitable choice of
This formal successive approximation is of course just a simpler way of
carrying out the classical iterative procedures for solving the integral equations

which occur in the E. E. Levi method. It is more appropriate though,
since it avoids strict convergence requirements which force one to work
locally only.

Pseudo-differential operators not only give a convenient framework for
the construction of parametrices for elliptic equations but they form a

natural extension of the class of differential operators. A differential operator
P (x, D) is obviously of the form (2.1.2) with e (x, Ç) P (x, £). It turns

out that also pseudo-differential operators form an algebra which is invariant
under passage to adjoints and changes of variables ; the latter fact immediately
allows an extension of the definition to manifolds. The usual formulas of
calculus remain valid with obvious modifications. For example, if P

P (x, D) and Q Q (x, D) are differential operators then the symbol
of the differential operator R QP is given by
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(2.1.5) R(x,0

If P and Q are pseudo-differential operators with symbols P (x, |), Q (x, £)

the product R QP is again a pseudo-differential operator and for the

symbol R (x, Ç) the formula (2.1.5) is valid mod Sß for every p, which makes

sense since all but a finite number of terms are in Sß. One precaution must
be made though, for to compose pseudo-differential operators we must

assume that they map Cq to C$, and preferably also C00 to C00. Since the

kernel of a pseudo-differential operator is in C00 outside the diagonal in

I x lit can be modified without changing the singularities to a kernel K
with support so close to the diagonal that the projections supp K -> X are

both proper. This implies the desired properties. We shall say that an

operator with such a kernel is properly supported. By Lß (X) we denote the

space of properly supported pseudo-differential operators of order p. The
definition is clearly valid also if X is a C00 manifold.

Generalizing a definition in section 1.3 for differential operators we
shall say that a pseudo-differential operator P of order m with symbol p
is characteristic at (x, Ç) e X x (RAO) if

lim I p(xXO\t~m 0.
+ 00

The characteristic points form a closed cone in X x (RAO) which regarded
as a subset of T*(X)\0 is invariant under a change of variables and therefore
well defined even if X is a manifold. If no characteristic exists, we say that P
is elliptic. The arguments above show that if P is elliptic of order m one can
find Q elliptic of order — m so that QP - / Rx and PQ — I R2
have C00 kernels. This shows that also for elliptic pseudo-differential
operators we have

sing supp u sing supp Pu, u e Q)' (X).

The construction of fundamental solutions in section 1.1 also simplifies
very much whenP is just hypoelliptic, that is, P satisfies (1.4.2). This
condition implies that P (£) ^0 for large £ and that for some p > 0

\d*sP(o\I\P(O \ s cKrpM,
One can still find a parametrix of the form (2.1.2), but e (x, Ç) l/P(0
satisfies a weaker condition than (2.1.3). One is therefore led to introduce
the set Sp ö of functions such that for all multi-indices

(2.1.3)' \DlDßxe(x,0\ S Ca>,>x(l + |£|)»-'W+«I»! xeK((I.
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When 0 g <5 < p ^ 1 one obtains again a self adjoint algebra of operators,
and it is invariant under a change of variables if in addition 1 — p ^ 5. If
for some ô < p

\D^DßxP(x,0\l\p(x>0\â<W1 + |£|

and 1/| /? (x, Ç) | ^ C | | |M for some M, one can as in the elliptic case

construct a parametrix of the same type and conclude that the operator with
symbol p is hypoelliptic. (See Hörmander [4] and for the case of systems
also Hörmander [8].) However, for the sake of brevity we shall ignore
extensions of this type in what follows.

If L20C (X) is the set of functions in X which are square integrable on

compact subsets of every coordinate patch (with the obvious topology), then

every PeL°{X) is a continuous map Lfoc (X) -» Lfoc (X). If we define

H(S)(X) to be the set of all distributions such that Pu e L?oc (X) when

PeLs(X) it follows that H{0) (X) Lfoc (X), and that Lm (X) maps
H(s) (X) continuously into H(s_m) (X). Conversely Pu e (X) implies

ueH(s)(X) if P e Lm (X) is elliptic, so ueH{s){X) if (and only if)
Pu e L?oc (X) for some elliptic P of order Similar definitions can be made

with L2 replaced by Lp if 1 < p < oo.

2.2. The wave front set

If ue Q)' (X) we have by definition

* sing supp u n{x;(p(x) 0}

the intersection being taken over all cp e C00 (X) with cpu e C00 (X). Replac- j

ing the function cp by a pseudo-differential operator A we introduce |

(2.2.1) WF(u) n char (A)
AueC 00

where char (A) is the set of characteristics of A. It is clear that this is a y

closed cone in T (X)\0 with projection in X contained in sing supp u. In jj

fact, it is equal to sing supp u for if x is not in the projection of WF (it) |
we can find finitely many operators Aj e L° with AjUeC00 so that j

T*x n (n char (Af) 0. If A TAjAj we have Au e C00 and A is elliptic
at x so ue C00 there. Thus we have
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Theorem 2.2.1. The projection of WF (u) in X is equal to sing supp u.

We shall call WF (u) the wave front set of u. (The relation to the definitions

in section 1.6 will be discussed after Theorem 2.2.3.) Clearly it describes

the location of the singularities and the frequencies which occur in their
harmonic decomposition. The definition we have given leads immediately
to a regularity theorem for any pseudo-differential operator:

Theorem 2.2.2. If A is a pseudo-differential operator then

(2.2.2) WF(Au) c WF(u) C WF (Au) u char (A)

Proof The second part, extending the regularity theorem for elliptic
operators is obvious, but the first which improves the pseudolocal property
(2.1.4) may require some comment. We may assume that X c Rn since the

definition of WF (u) is local in X. For any (x0, £0) f WF (u) we can choose

a pseudo-differential operator B which is non-characteristic at (x0, £0) so

that Bu e C00. If C is a pseudo-differential operator whose symbol is of
order — go outside a small conic neighborhood of (x0, £0) we can find
another operator C1 such that CA CXB, by multiplying CA to the right
with the formal inverse of B which exists near (x0, £0). Thus CAu CxBue
g C00 and we conclude that (x0, £0) <£ WF(Au).

In the definition of the wave front set it is easily seen that one can
restrict oneself to operators A of order 0 and even operators of the form
b (D) a (x) where b (£) is a homogeneous function of degree 0 for large | £ |.

This leads to an equivalent definition which is more useful in many proofs :

Theorem 2.2.3. (x0, £0) <£ WF (u) ifand only iffor some coordinate patch
containing x0 one can find lef equal to u in a neighborhood of x0 and
with v (£) 0 (|£|_iV) for every N in a conic neighborhood of £0 independent
of N.

The theorem shows that WF (u) regarded as a subset of the sphere bundle
agrees with the set given by Definition 1.6.3 when X C R,x and W0 is the
compactification by a sphere. The definition used here has the advantage
that the invariance under a change of variables follows from the invariance
of pseudo-differential operators.

We shall now list a number of properties of wave front sets. Most of
them are due to Sato who considered hyperfunctions modulo real analytic
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functions. (See Sato [2], Sato-Kawai [1], and Sato-Kashiwara [1].) For
complete proofs using Theorem 2.2.3 see Hörmander [9, section 2.5].

First we consider the product of two distributions u1 and u2. Let

%eC o (R"), J %dx 1, and set xs(x) — s~n X (x/e)- Assuming that

Ujer (R") we wish to define u1u2 as the limit of (wi*Xe) (u2*Xc) as

a —> 0. In general this is not possible but the limit does exist if

(2.2.3) WF (Ml) + WF (u2) - {(x, + £2); (x, e WF (uj) } C T* (X)\0

It is then independent of the choice of coordinates and %. The situation is

summed up in

Theorem 2.2.4. If u1,u2e3' (X) and (2.2.3) is fulfilled, there is a

natural way of defining utu2 and we have

(2.2.4) WF (uyuf) C WF(ux)v WF (u2) u (WF (uf) + WF (u2)).

Here the right hand side is closed and X may be a manifold.

With suitable definitions the multiplication is continuous when
introduced in this way. In the following theorems the word " natural " will refer

to a definition by continuity as in Theorem 2.2.4.

Theorem 2.2.5. Let X and Y be manifolds and q> : Y -> X a C00 map.
Let u e FX)' (X) and assume that

<p* WF(u) >), } c 0.

Then there is a natural way of defining the composition (p*u of u with cp so

that it is the standard composition when u is a function. We have

(2.2.5) WF(q>*u) C q>*WF(u).

Note that the pullback (p*u is defined for all ue@' (X) precisely when

cp' is surjective, and then it is well known that such a definition is possible.

In particular we see that if Y C X is a submanifold, we can define the

restriction of u to Y if the normal bundle N Y) does not meet WF (u).

For example, if «ef (X) and Au e C00 for some pseudo-differential

operator A, we can define the restriction of u to Y if Y is non-characteristic,
that is, the normals to Y are non-characteristic with respect to A. This is

also a well known fact (partial hypoellipticity).
Let X and Y be two C00 manifolds with given positive C00 densities. By

the kernel theorem of Schwartz we can then identify *3' (X x Y) with the



— 129 —

space of continuous linear operators Cq(Y)-+ Q)' (X) by means ol the

formula

< Kcp, f > K (f ®(p); cp e Co (Y), \jj e Co (X);

on the right K denotes an element of $)' (X x Y) and on the left the

corresponding linear transformation. In terms of the wave front set of K we

can state useful sufficient conditions for regularity of K in the sense of
Schwartz [1]:

Theorem 2.2.6. For any u e Cq (Y) the set

(2.2.6) WFX(K) {(x9&;(x,Ç,y90)eWF(K)for$QmeyeY}

contains WF{Ku). Thus K maps C (Y) into C00 (X) if WFX (K) 0, that

is, if WF(K) contains no point which is normal to a manifold x constant.

Theorem 2.2.7. Ku can be defined in a natural way when ue $' (Y) and

WF (u) does not meet the set

(2.2.7) WFy (K) { (y, rj); (x, 0, y, —rj) e WF (K) for some xeX}
Thus K can be extended to a continuous map $' Y) -» Q)' (X) if WF Y (K)

0, that is, WF (K) contains no point which is normal to a manifold y
constant.

The proof of Theorem 2.2.6 follows easily from the description of the

wave front set given in Theorem 2.2.3. Theorem 2.2.7 follows by duality.
If we have three manifolds X, Y, Z and distributions K1 e $)' (X x Y),

K2e2)' (Y x Z) where for simplicity we assume that K1 and K2 are

properly supported, then K2ue S" (Y) and WF(K2u) C WFY (K2) when
u e Cq (Z). The composition Kx (K2u) is therefore defined if

(2.2.8) WFy(Kx) n WFY(K2) 0

and it is of the form (Kx o I<2) u where Kx o K2 e Q)' (X x Z). When
writing down an inclusion for the wave front set of Kx o K2 it is convenient
to introduce for example

WF' (KJ{(x, y, n y,(xÉ,y,-r,)e WF }

that is, multiply by - 1 in the fiber of the second tangent space involved.
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Theorem 2.2.8. When (2.2.8) is fulfilled we have

(2.2.9) WF' (K, o K2) c {WF' (Kfi o WF' (K2)) u (WFX (Kfi x Z)

u (Z x WFZ (K2)).

Here WF'(Kf) and WF' (K2) are composed as relations from T* (Y) to

T* (X) and from T* (Z) to T* (7). The right hand side of (2.2.9) is closed.

The special case when Z reduces to a point is worth special notice:

Theorem 2.2.9. Let Ke^'(XxY) and ueS"(Y), WF(u)n
n WFY (K) 0. Then we have

(2.2.10) WF(Ku) C (WF'(K) o WF(u))v WFX{K)

where again WF' (K) is interpreted as a relation mapping sets in T* Y) to

sets in T* (X).

In section 2.3 we shall describe the wave front set for some important
classes of distributions. In preparation for this we shall now discuss how the

wave front set can be used to localize various spaces of distributions not
only in X but in T* (Z)\0 (or rather the cosphere bundle S* (Z) which is

the quotient by the multiplicative group of positive reals).
Let FT be a linear subspace of Q)' (X). If x0 e X we shall say that a

distribution u in X belongs to 3F at x0 if one can find v e FT so that v — u —

— 0 in a neighborhood of x0. We call local if every distribution which

belongs to at every x0 e I is in fact in (This means that is the

space of sections of the sheaf of germs of sections of #\)
If (x0, £0) e T*(X)\0 we shall say that u e 3F at (x0, £0) if one can find

ye#" so that (x0, £0) WF (u—v). Repeating the proof of Theorem 2.2.1

one shows that when C00 (X) C FT and SF is an L° module, then u e FF at

x0 if (and only if) wef at (x0, £0) for every Ç0 e T*o\0. If in addition 3F

is local we therefore conclude that wef if and only if u g JF at (x0, <^0)

for all (x0, ^o) G T* (^)\0. As an example of this we may take $F H{s) (X).
We can also piece together spaces of distributions from local data.

Let { Ut be a covering of T*(X)\0 by open cones and let $Fu iel,
be an L° submodule of <2)' (X) containing C00 (Z). Assume that if (x0, ^0) e

6 Ui n Uj then every element of is in at (x0, Ç0). If we set

$F {ue $)' (Z) juefj at every point in Uj for all j}
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we obtain a local L° module of distributions. If (x0, £0) e Uj we have

u e SF at (x0, £0) if and only if ue !Fj at (x0, £0).

2.3. Distributions defined by Fourier integrals

If in (2.1.2) we introduce the definition of the Fourier transformation

we see formally that the distribution kernel of the pseudo-differential

operator E is given by

(2.3.1) (x,y) ^{2nYn \ ei<x~y>6> e(x, 6) dQ

Similarly the fundamental solution of the wave equation d2u/dt2 — Au — 0

in n space variables (n> 1) with pole at (y, 0) is at time / > 0 given by

(2.3.2) (x,y)-+

(2n)-"ei(<x-y>6>+t{6l)(n^y1 de - J ei(<x~y,e>~t\°\)(nieiy1 de).

These examples suggest the importance of the classes of distributions which
we shall study now.

Let X C R" and let F be an open cone in X x (R^\0) for some N.
Assume given a function (p e C00 (T) satisfying the following conditions :

(i) (p is positively homogeneous with respect to the variables in RN.

(ii) Im cp ^0.
(iii) dcp ^ 0 everywhere in r.

Such a function will be called a phase function. Let S (T) be the set of all
a g Sm {X x (Rn\0)) (see section 2.1) vanishing in a conic neighborhood
of CT.
For a e S (F) we claim that the integral

(2.3.3) A (x) te J ei(p(x>6) a (x, 6) dO

can be defined, not necessarily as a function of x but as a distribution in X.
To do so we consider the linear form

(2.3.4) I (u) JJ a (x, 6) u (x) dxdO, u e ÇX).

In view of (iii) the fact that

ei<p D(ei(p)l(Di(p)

allows one, by successive (formal) partial integrations with no boundary
terms, to reduce the growth of the integrand at infinity until it becomes

L'Enseignement mathém,. t. XVII, fasc. 2. 10
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integrable. This gives a precise definition of I (u) and the linear form u -> / (w)

is then a distribution yl e Q)' (X). If % e (R^), X (0) 1, it is easily shown
that

(2.3.5) A lim \ ein-6) x(z9) affi) d9
£-+0

with the limit in the weak topology of 2' (X). Thus the definition of (2.3.4)
by partial integrations is quite independent of how these are carried out,
and (2.3.5) is independent of the choice of x- We shall call (2.3.3) an
oscillatory integral but use the standard notation. (For these facts as well as

most of this section we refer to Hörmander [9].) The integral (2.3.3) is

thus defined for a fixed x x0 if cp (x0, 0) has no critical point (x0, 9) e T
as a function of 6. In that case, A e Cœ near x0. Note that if (x0, 9) is a

critical point of cp as a function of 9, then cp (x0, 9) 0 by Euler's identity
for homogeneous functions. On the other hand, when cp (x0, 0) 0 it
follows from (ii) that d (Im cp (x, 9)) 0 so dx 0 Re cp (x, 0) # 0 by (iii).

To determine the wave front set of A we use Theorem 2.2.3. Thus we
take a function ue C% equal to 1 near x0 and with small support, and

study

< A,ue~i<x'?>>jj ei(<pi,x,e)adxd9

as ^ -> oo in a conic neighborhood of (oscillatory integral Î). Naturally
the main contributions come from critical points in the exponent, that is,

points where cpQ 0, cpx £. Indeed, we have

Theorem 2.3.1. If A is defined by (2.3.5) then

(2.3.6) WF (A) C {(x, cpx (x, 0)); (x, 9) e T and cpe (x, 0) 0} c T* (X)\0

In particular,

(2.3.7) sing supp A C {x;cpe (x, 0) 0 for some 0 with (x, 0) e F }

As an example we see from (2.3.1) that the wave front set of the kernel of
a pseudo-differential operator E lies in { (x, y ; £, rj); x y, £ — rj }
which is the normal bundle of the diagonal. Thus WF' (E) is in the diagonal
of T*(X) x T*(X), which allows us to identify the wave front set of a

pseudo-differential operator in X with a closed cone in F*(X)\0. In view

of Theorem 2.2.9 this result contains the left hand part of (2.2.2) (the

improved pseudo-local property).
As a second example we see that for the two terms in (2.3.2) the

wave front set lies in the set where x — y =+t9/\9 \ and £ — — rj 0.
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This corresponds to the two components of the normal bundle of

{(x,y)i\x-y\2 t2 }. In particular the singularities are carried by the

light cone.
The set of distributions which can be written in the form (2.3.5) with

a given cp and a e S (T) is always an L° (X) module. (For a proof when cp

is real see Theorem 2.12 in Hörmander [6].) We can therefore use the

remarks at the end of section 2.2 to define global spaces of distributions

which locally in T*(X)\0 have such representations.
We shall restrict ourselves in what follows to the case where cp is real

and non-degenerate, that is, the differentials of the functions dcp/dOj are

linearly independent in C { (x, 6) e f; cpe (x, 6) 0 }. The map

(2.3.8) Cb (x, 6) (x, cp'x)

to the wave front set has an injective differential then. The range A is

locally a conic manifold in T*(X)\0 of dimension dim X. Let (x, Ç) denote

the standard coordinates in T*(X) obtained from local coordinates x1? xn

in X by taking dxu dxn as basis for the cotangent vectors. The form
EÇj dxj is then invariantly defined, and the restriction to A is cpx dx

dcp — cp'0 dO 0. In view of the homogeneity this is equivalent to the

vanishing on A of the differential which is the symplectic form a

ZdÇj a dxj. Submanifolds of T*(X) of dimension dim X on which the

symplectic form vanishes also play a fundamental role in the classical

integration theory of first order differential equations (see section 3.1).

Following Maslov [1] we shall call them Lagrangean manifolds.
Locally the class of distributions which can be written in the form

(2.3.3) for some a e S+n/4~N/2 (f1), n dim X, and a non-degenerate real

phase function cp depends only on the Lagrangean manifold A corresponding

to cp and on no other properties of this function. Any closed conic
Lagrangean submanifold A C T*(X)\0 (or a closed conic subset of a

Lagrangean submanifold which is not necessarily closed) can locally be

represented as the range of a map (2.3.8). We can therefore define a space
Im (X, A) of distributions with wave front set in A which locally can be

written in the form (2.3.3) with a e Sq +n/4~N/2 and cp defining a part of A
according to (2.3.8). With the elements in Im (A, A) one can, as for pseudo-
differential operators, associate principal symbols on A, which are symbols
of order m + n/4 modulo symbols of order m + n/4 — 1 (with values in
certain line bundles). The notion of characteristic point can therefore be
defined as in section 2.1. For the kernels of pseudo-differential operators
in X which are associated with the normal bundle of the diagonal in X x X
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this agrees with the standard notion of principal symbol, (Note that the

normal bundle of any submanifold 7 of X is Lagrangean in T* (X) and

that the normal bundle of the diagonal in X x X can be identified with
T*(X).)

When we take a conic Lagrangean submanifold of T*(X x 7)\0
where X and Y are two manifolds we can interpret the distributions in
Im (X x Y, A) as maps from (Y) to & (X). When A C (7*(Z)\0) x
x (7*(7)\0) we have seen (Theorems 2.2.6 and 2.2.7) that they are actually
continuous operators from Cq (7) to C°° (X) and from S" (X) to 3' (7).
The set

A-' {(x>Ç,y, -ri); }

will then be called a homogeneous canonical relation ; it is Lagrangean with
respect to the symplectic form ox — oY• This is the set which occurs in the

multiplicative properties of wave front sets described in Theorem 2.2.8.

If we have three manifolds X, 7, Z and canonical relations Cl9 C2 from
7* 7) to 7* (X) resp. 7* (Z) to 7* 7) one can supplement Theorem 2.2.8

by proving that the composition Kl o K2 of properly supported operators

Kx g I1 (X x 7, C[) and K2eIm2(Y x Z, C2)

is in

jmi+m2 x z,{cxoc2y)

if the appropriate transversality and other conditions are fulfilled which

guarantee that Cx o C2 is a manifold. There is a simple formula giving the

principal symbol of Kx o K2 as a product of those of Kj. (The normalization
of the degree for operators in Im was chosen precisely to make the preceding
statement valid.) For complete statements and proofs we refer to Hör-
mander [9]; a summary is given in Hörmander [10]. However, we shall

consider an important special case due to Egorov [1] which gave rise to
much of the work described here.

Thus assume that X and 7 have the same dimension and that A' is

the graph of a homogeneous canonical transformation x from 7* (7) to

7* (X) (or only a local canonical transformation in which case we consider

a closed conic subset). That x is canonical means thatx*ö"z — aY 0 or
that ox — oY vanishes on A\ so we have a canonical relation in the sense

explained above. If K e lm (X x 7, Ä), then the adjoint 7* belongs to the

inverse transformation and the compositions KK* and K*K belong to the

identity, that is, they are pseudo-differential operators in X and in 7



— 135 —

respectively. If A is a pseudo-differential operator in X of order fi then the

product AK is in Im+ß (X x Y, A) and the principal symbol is the product
of the principal symbol of K (considered as living on A') by that of A lifted

from T* (X) to A' by the projection A' T* (X). If we multiply to the

right instead the result is the same except that we shall use the projection
from A! to I7* (7). If A and B are pseudo-differential operators in X and

in Y respectively and if AK KB we conclude that for the principal symbols

a and b of A and B we must have

(2.3.8) i)) b(y> n)

if the principal symbol of K is not 0 at (x Cl fl)> (y> d))- Conversely,

(2.3.8) implies that AK — KB is of lower order. We can therefore successively

construct the symbol of B for a given A so that AK — KB is of order
— oo, provided that the wave front set of A is concentrated near a point
where K is elliptic. This argument often allows one to pass from one operator
to another with principal symbol modified by a homogeneous canonical
transformation. (See also Lemma 3.2.2 below.)

The operators in lm (X x Y, A') can be described by means of the
classical generating function : For any point (x0, £0, y0, ri0) in the graph of
X one can choose local coordinates in neighborhoods of x0 and y0 so that
there is a function cp (x, rj) in a conical neighborhood of (x0, rj0) which is

homogeneous of degree 1 with respect to rj, such that x is given by (cpn rj)

-> (x, cp'x) and det cpxv # 0. The elements A in Im (X x Y, A) with wave
front set close to (x0, f0, y0, —rj0) are then as operators of the form

Au (x) (27i)~rt J ei(p(x^ a (x, rj) îi(rj)drj, a e Sm (X x R")

when u is in C q in a neighborhood of y0 and x is in a neighborhood of x0.
The assertions made above are easy to prove directly from this
representation.

Chapter III

Pseudo-differential operators with non-singular characteristics

3.1. Preliminaries

Throughout this chapter X will denote a C00 manifold (all manifolds are
tacitly assumed countable at infinity) and P a properly supported pseudo-
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