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ON THE EXISTENCE AND THE REGULARITY OF SOLUTIONS

OF LINEAR PSEUDO-DIFFERENTIAL EQUATIONS 1

by Lars Hörmander

Introduction

Let X be an open set in R" (or a C00 manifold) and let P be a differential

operator in X with C00 coefficients. Our purpose is to study the equation

Pu =f
where u and / are functions or distributions in X. Somewhat vaguely we

can state the questions to be considered as follows:

a) What are the conditions on P and on X for a local or a global
existence theorem to be valid

b) What are the relations between the singularities of u and those

of/ when X and P are given

In fact, these questions are so closely related that they can be considered

as different forms of the same problem.
We shall look for answers in terms of geometric properties of the

characteristics. These are defined as follows. If P is of order m and u,

cp e C°°(X), then

P 0eico(pu) eico(p (comp (x, grad 9) u + com "1 Lu +

where p is a homogeneous function of degree m on the cotangent bundle

P*(X), called the characteristic polynomial or principal part (symbol)
of P, and L is a first order differential operator depending on cp. The zeros
of p in P*(Y)\0 aie called (real) characteristics. The Hamilton-Jacobi
integration theory for the characteristic equation p (x, grad (p) — 0 also
introduces certain curves in the level surfaces of cp, the bicharacteristics
(see section 3.1). The classical methods used to relate geometrical and wave

1 Survey lectures given by invitation at the Institute for Advanced Study on March 22,
25, 29, April 1, 5 and 8, 1971, under the sponsorship of the International Mathematical
Union, while the author was supported in part by National Science Foundation grant
GP-7952X2.
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optics (or classical and wave mechanics) consist in first choosing a solution
of the equation p (x, grad cp) 0 and then determining u as a solution of
the (transport) equation Lu 0, which is a first order equation along the
bicharacteristics. This makes P (el(0(p u) of order com~2. There is also a

much more refined method due to Lüneburg (see Kline-Kay [1]), in which u
CO

is replaced by an asymptotic series £ Uj(o~j in co. By successive choice of
o

the functions Uj one can obtain an asymptotic solution of the equation
P (;uelco(p) 0. The importance of these expansions for the general theory of
partial differential equations has been realized for quite some time (see

Lax [1]) but it is only during the last few years that one has started to
exploit them systematically. An important step in this direction was taken
by Egorov [1] who also called attention to the results of Maslov [1]. A
rigorous and systematic exposition incorporating the theory of pseudo-
differential operators has been undertaken in Hörmander [6, 9, 10] and we
shall discuss some of the results in Chapter II. Related ideas will be applied
to differential equations with constant coefficients in Chapter I.

When discussing singularities we shall not only be concerned with their
location but also with their local harmonic analysis. For a distribution in X
this leads to a set in the cosphere bundle of X. In the case of hyperfunctions

the advantages of such a point of view were first pointed out by
Sato [1]. Many variations of this idea are possible, and we shall indicate

some (sections 1.6 and 2.2). The sets obtained by harmonic analysis of the

singularities will be called wave front sets here. Since the geometrical
objects associated with P, such as the characteristics, usually live in the

cotangent bundle of X, it is natural to expect that they can be more easily
related to the wave front set than to the set of singularities.

Since much work is in progress on the topics discussed in these lectures

it seems useless to try to give a complete picture of the present state of the

theory, but we do attempt to indicate the most important directions of this

work. For references to some topics not discussed at all here see also

Hörmander [13]. Originally we had planned to include a number of results

concerning operators with variable coefficients involving the principal and

the subprincipal part, that is, an invariantly defined function of degree one

less than the principal part. However, these were left out because of the

already excessive length of the survey, and we content ourselves with referring

to Hörmander [5] (second order hypoelliptic differential equations),
Radkevic [1], [2] (simplifications and extensions of these results), a

forthcoming book on hypoelliptic operators by O. A. Olejnik and E. V. Rad-
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kevic; Mizohata-Ohya [1] and Flaschka-Strang [1] (hyperbolic operators

with characteristics of constant multiplicity). The methods discussed in

Chapter III can obviously be used to push much further in this direction.

For the constant coefficient case a model result is given by Theorem 1.5.1.

Chapter I

Operators with constant coefficients

1.1. Fundamental solutions

A differential operator with constant coefficients in R" can be written
in the form P (D) where P is a polynomial in n variables with complex
coefficients and D — — id/dxl9 —id/dxn). Explicitly

P(D)

where a (a1? a„) is a multi-index and the sum is finite.

It is easy to show that the equation

(1.1.1) P(D)u =f
can always be solved locally. To do so we assume first that /gCq If u

is a solution of (1.1.1) with a well defined Fourier transform û, we must
have P (£) û (£) / (£), and so by Fourier's inversion formula

(1.1.2) u(x)(In)-" J ei<x,^(f)

However, P may have zeros in or near Rn and this makes it necessary to
deform the integration contour in order to obtain a well defined solution
from (1.1.2).

First note that if <P e (Cn) and

(1.1.3) 0(eie0<P (0 0eR, J $(QdA(0 1,

where dX is the Lebesgue measure in C", then

(1-1.4) JF(0*(0<U(0 =F(0)
for any entire analytic function F. In fact, by Cauchy's integral formula

J F (Çeie) dO(0),

and if we multiply by <P (Ç) and integrate, (1.1.3) gives (1.1.4).
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Let Pol (m) be the complex vector space of polynomials of degree :g m
and let Pol0 (m) be the vector space with the origin removed. If Q is a

neighborhood of 0 in Cn one can find a C00 map <P : Pol0 (m) -> CJ (Q)
which is homogeneous of degree zero, such that the range consists of functions

satisfying (1.1.3) and for some constant C

(1.1.5) y I ß(a)(0) I ^ C I ß (0 I, QÇesupp

Here Q(a) (£) (iD)a Q ; the left hand side is of course a norm in Pol (m).
For a fixed Q the existence of such a is quite obvious for we can find
Qe Rn such that Q(z9) ^ 0 when |z| 1, and (1.1.5) is then fulfilled if
the support of $ is near this circle. The same $ can be used for all Q near
by, and since functions satisfying (1.1.3) form a convex set the construction
of can be finished by means of a partition of unity in the set of all Q with

y I qm(0) I l.
We now replace (1.1.2) by the expression

(1.1.6) (Ef)(x)(271)-»JdïJc,<"-{+{>/U+0/P($+0 *(iVQdA(Q

where P% is the polynomial C -> P (£ + £)• Since some derivative of P is a

constant, the function

(1.1.7) p(£) yip(«>(£H

has a positive lower bound. Hence it follows from (1.1.5) that P is bounded

away from 0 in the support of the integrand, so (1.1.6) is well defined for

fe Cq Differentiation under the integral sign gives P (D) Ef f in view

of (1.1.4) and Fourier's inversion formula. Hence we have solved (1.1.1)
when fe Cq (Rn). The map /- Ef commutes with translations so there is

a distribution which we also denote by E for which Ef — E * f Since

(P (D) E) * / / for all fe Cq we have P (D) E — <5, the Dirac measure

at 0. To solve (1.1.1) for arbitrary fe S' (Rn), the space of distributions
with compact support, it is therefore sufficient to choose u E * f One

calls E a fundamental solution.
The preceding construction gives a fundamental solution with optimal

local regularity properties (cf. Hörmander [1, section 3.1] where references

to earlier literature are also given). The construction is clearly applicable
without change if P depends on parameters (cf. Trêves [8], [9]). Summing up:

Theorem 1.1.1. There exists a continuous map E\ Pol0 {m)-> $)'(R")
such that P (D) E(P) ô for every P e Pol0 (m).
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1.2. Global existence theorems

Let X be an open set in R" and let Cx (X), (X), (X) be the

set of all infinitely differentiable functions, distributions and distributions

of finite order in X. We shall consider the equation

(1.2.1) P(D)u =f
with u and / in one of these spaces. Since /may then be very large at the

boundary, conditions have to be imposed on X and on P.

Theorem 1.2.1. The following four conditions are equivalent :

(i) For every f e C00 (X) there is a solution u e C00 (X) of (1.2.1).

(ii) For every f e Q)'F (X) there is a solution u e Q)'F (X) of (1.2.1).

(iii) For every f e C00 (X) there is a solution u e Q)' (X) of (1.2.1).

(iv) For every compact set K cz X there is a compact set K' a X such that

(1.2.2) v e S' (X), supp P (—D)v cz K => supp?J cz Kr

The theorem is essentially due to Malgrange [1] (see also Hörmander
[1, section 3.5]). Since the proof just consists of abstract functional analysis
the equivalence of (i) and (iv) remains valid with minor changes of (iv) if
P is a differential operator with variable coefficients for which a semi-

global existence theory is established. The operator P — D) in (1.2.2) should
of course be replaced by the formal adjoint 'P then. When fe Q)' (X) we
have similar results:

Theorem 1.2.2. Suppose that P (D) defines a surjective map Q)' (X) -*
Q)' (Xj/C00 (X). For every compact set K a X there is then a compact

set K' cz X such that

(1.2.3) ve£'(X), sing supp P(-D)v c K => sing supp v cz K'

Here sing supp v denotes the smallest closed set such that v e C00 in
the complement. Although Theorem 1.2.2 is not formally identical to
Theorem 3.6.3 in Hörmander [1], the proof of that theorem is actually a

proof of Theorem 1.2.2 above. A similar result is sometimes but not always
valid for operators with variable coefficients.

Example 1.2.3. For the differential operator P sin nxd/dx on R
we have P@'(R) In fact, to solve the equation Pu / we have
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only to solve first a simple division problem and then an ordinary differential

equation. However, tPv 0 for all measures v supported by the integers
so the analogue of (1.2.3) would be false.

On the other hand, the converse of Theorem 1.2.2 is very general:

Theorem 1.2.4. Let X be a C00 manifold and P a continuous linear

map $)' (X) -> Q)' (20 whose restriction to Cco(X) is a (continuous) map
into Cco{X). Denote by (P the adjoint with respect to some positive density
in X, which is then a continuous operator in C %(X) and in S" (X). Assume

that to every compact set K in X there is another compact set K' in X, which

can be taken empty ifK is empty, such that

(1.2.3)' v e$" (X) sing supp fPv a K => sing supp v a K'

Then P defines a surjective map Q)' (X) -> & {X)/Cm(X).

From Theorems 1.2.1, 1.2.2 and 1.2.4 we obtain

Corollary 1.2.5. If X is an open set in Rn we have P (D) (X)
Q)' {X) if and only if to every compact set K ci X there is another compact
set K' c= X such that (1.2.2) and (1.2.3) are valid.

Corollary 1.2.5 was proved in section 3.6 of Hörmander [1]. A proof of
Theorem 1.2.4 is easily extracted from the proof of Theorem 3.6.4 there,
but we give it in full here as a typical case of the arguments relating theorems

on existence of solutions to theorems on regularity of solutions.

Proofof Theorem 1.2.4. It is sufficient to prove that for everyf e Q)' (X)
there is a continuous semi-norm q on Cq(X) and a sequence j/je Cq(X)
with locally finite supports such that

(1.2.4) I f(cp)Ig q C Pep)+ £ I < cp, ifjI

In fact, if we apply the Hahn-Banach theorem to extend the map

(' Pep,<(p,i//1>,<q>,\j/2> -/(<?)

to a linear form on Cq(X) © I1,weobtain an element tie 3/'(X) and a

bounded sequence a} such that

f{cp) u CPep) + X! aj < (p, il/j > epe Cq (X),

which means that / Pu + Yßj^j• Prove (1.2.4) we first replace

|/(c/?)j by an arbitrary continuous semi-norm F {cp) in Cj){X) which is
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stronger than the maximum norm for example. We want to prove that

(1.2.4)' F(cp) g C(q (tP(p) + Y\<(P^j>\) ,<?eC£(X).

Choose an increasing sequence Kj of compact sets in X with union X
and K0 0 and choose for every j a corresponding Kj according to the

hypothesis so that K0 0 and K] is in the interior of Kj+l. (Note that we

require manifolds to be countable at infinity.)

Lemma 1.2.6. Assume that (1.2.4)' is valid when cp e C o (Kj)- If s > 0

one can find another semi-norm q' on C o such that q'(ij/) — q (t/0 when

\jj e C o CKj-i) and (1.2.4)' is valid when cp e Cq (Kj + i) tf C L replaced by

(1+e) C, q is replaced by q' and the functions xj/j are supplemented by a

finite number offunctions in C% (CKj-i).

If we note that the hypothesis of the lemma is trivially fulfilled when

j 0 and if we iterate this conclusion with a sequence Sj with II (1 + sJ) < go,

we conclude from the lemma that (1.2.4)' is valid for suitable C, q and xf/j.

Proof of Lemma 1.2.6. Let F be the completion of Cq (Kj+1) in the
weakest topology in which F (cp) is continuous and the map from cp to the
restriction of tPcp to C KJ_1 is continuous with values in C00 (C Kj_ t). Then
F is contained in the space of continuous functions with support in Kj+1,
and for every cp e F we have tPcp e C00 (C K^fi, hence cp e C00 (CKj_x).
It follows that restricting functions in F to C Kj_1 gives a continuous map
from F to C00 (C Kj_1) so bounded sequences in F are also bounded in the
latter space.

Let Xu X2-> — Le a dense sequence in Co (C Kj_1), and let qu q2, be
semi-norms defining the topology in C00 (C For convenience we
choose these so that 2qj ^ qj+1 for every /. Then we claim that for some
integer N and all cp e Cq (Kj+1)

(1.2.5)
F(sp) g C(l+s)(q{,P(p)+YJ\<(p,^j>\+qN('P(p)+NE |<ç»,^>|).

k<N

This would prove the lemma. Now if (1.2.5) is not valid for any N we can
choose a sequence cpNeCq (K'j+1) such that

F(<Pn) C{\+s) q('P(pN) + £ I < I ^ 1

and 'Pep,y-> 0 in C°° (C <cpN,Xk^0for every as -> oo.
But then <pN is relatively compact in C°° (C and every limit is ortho-
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gonal to all Xk and therefore equal to 0. Thus cpN -» 0 in C°° (C^_i).
Choose now a function xj/ e C% (K]) which is 1 in a neighborhood of Kj_1.
Then it follows that (1 —\j/)(pN -> 0 in Cq. If cpN \j/(pN we obtain for
large N

F ((piv) > C (1 +2e/3), g ('P<pw) + £ | < \j/j | < .1 + e/3
j

Since (p'N e C q (Kfi, this contradicts the hypothesis that (1.2.4) is valid for
such functions. The proof is complete.

It is a simple exercise in Fredholm theory to show that the hypotheses
of Theorem 1.2.4 imply that for every compact set K a X the space N (K) of
all v e $' (K) with tPv 0 is finite dimensional, and that the equation
Pu — fe Q)' (X) can be fulfilled on a neighborhood of K with ueQ)' (X) if
(and only if) / is orthogonal to N (K). In fact, for this we only need that
sing supp fPv 0 implies sing supp v 0 when v e ê' (X). Thus results on
the regularity of solutions of differential equations imply theorems on the
existence of solutions, and for this reason we shall mainly pay attention to
the regularity of solutions in these lectures.

Returning to differential operators with constant coefficients we introduce
a slight modification of the terminology in Hörmander [1].

Definition 1.2.7. The open set X in Rn is called P-convex with respect
to supports (resp. singular supports) if for every compact set K c X there
is another compact set K' cz X such that (1.2.2) (resp. (1.2.3)) is valid.

The use of the term " convex " will be justified by the discussion of the

geometric meaning in sections 1.3 and 1.4. Here we just note that convex
sets are P-convex both with respect to supports and singular supports. An
elementary argument using the translation invariance of P — D) also gives

(see Theorem 3.5.2 in Hörmander [1]):

Theorem 1.2.8. Let x -» | x | denote any norm in Rn and set for closed

sets F in X
d (P, CX) inf I x — y |

xeF,y$X

Then X is P-convex with respect to supports if and only if
(1.2.6) d(suppP(-D)v, CX) d(sxxppv, CX),v ei' (X),

and with respect to singular supports if and only if
(1.2.7) d(sing supp P(—D)v, CX) d (sing supp v, CX) ,v eéf (X).
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The analogy of the notions of P-convexity in Definition 1.2.7 to holo-

morphic convexity in the theory of functions of several complex variables

is obvious. The purpose of the next two sections is to discuss some analogues

of pseudo-convexity.

1.3. Geometric conditions for P-convexity with respect to supports

Throughout this section we denote by A an open set in R" and by P (D)
a partial differential operator with constant coefficients. The following
two simple theorems describe the conditions for P-convexity of X which

involve only P or only X.

Theorem 1.3.1. X is P-convex with respect to supports for every P if
and only if every component of X is convex in the usual sense.

Theorem 1.3.2. Every X is P-convex with respect to supports if and

only if P is elliptic.

Ellipticity means, if P is of degree m and

P({) =pM(0 +pm_ ,(0 +

is the decomposition of P in a sum of homogeneous terms Pj of degree j,
that

1.3.1) Pm(0* 0 if O^gR".
Pm is called the principal part of P. Solutions of the equation Pm (£) 0

with £ # 0 (and £ e R") are called (real) characteristics. A hypersurface is

;aid to be characteristic when the normal is characteristic. A characteristic
ooint £ with dPm (£) ^ 0 is said to be simply characteristic, and the projec-
ion in R" of a complex line in Cn with direction (dPJôÇu dPJdft)

will then be called a bicharacteristic corresponding to It may be of dimension

1 or 2.

Now observe that X is not P-convex with respect to supports if for some

>pen set Y X (i.e. Y is relatively compact in X) there is a distribution
i e 9' (Y) with

1.3.2)
d (supp w, CX) < min (d (57 n supp u, CA), d (supp P( — D) m, CA)).

m fact, (1.2.6) is not valid if v (pu and cp e C% (7) is equal to 1 in a
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sufficiently large compact subset of Y. If P — D) u 0 in Y and u 0 at

a part of the boundary this leads to necessary conditions for P-convexity.
In particular one can use the fact that there is a solution of P — D) u 0

with support equal to any half space with characteristic boundary (Hör-
mander [1, Theorem 5.2.2]). In stating the result we shall say that a function/
in X satisfies the minimum principle in a closed set F if for every compact
set K c F n X we have

min /(x) min /(x)
xeK xedpK

where dFK is the boundary of K as a subset of P. We write dx (x)
d({x}9 C X).

Theorem 1.3.3. If X is P-convex with respect to supports, then dx (x)
satisfies the minimum principle in any characteristic hyperplane. When n 2

this means that every component of X is convex in the direction of any
characteristic line, and this condition is also sufficient for X to be P-convex with

respect to supports.

For the proof we refer to section 3.7 in Hörmander [1], where it is

also shown that Theorem 1.3.3 implies the necessity in Theorems 1.3.1 and
1.3.2. When n > 2 the necessary condition in Theorem 1.3.3 is far from
sufficient, however, for there are many characteristic surfaces which are not
planes and a classical theorem of Goursat allows one to construct local
solutions vanishing on one side of any simply characteristic surface. Thus

Malgrange [2] proved (see also Theorem 3.7.3 in Hörmander [1]):

Theorem 1.3.4. Let P (D) be a differential operator such that the

principal part Pm (D) has real coefficients and let X be P-convex with respect
to supports. At every simply characteristic C2 boundary point the normal

curvature of ÔX in the direction of the corresponding bicharacteristic must
then be non-negative.

Actually the proof of Malgrange gives somewhat more, namely that for
no boundary point x0 with simply characteristic normal N0 does there

exist a cylinder with C2 boundary and the corresponding bicharacteristic

as generator containing x0 and contained in X u { x0 } near x0. This

improvement is given in a different form in Trêves [1].

In the proof of Theorem 1.3.4 a simply characteristic surface is

constructed by means of the Hamilton-Jacobi integration theory. Using this
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theory for the system of equations Re Pm (grad cp) — 0, Im Pm (grad cp) 0

(see e.g. Carathéodory [1, Chapter IV]) one obtains

Theorem 1.3.5. Let X be P-convex with respect to supports and have a

C2 boundary. At every boundary point where the normal is simply characteristic

and the corresponding bicharacteristic is two dimensional the normal curvature

of dX in some direction in the bicharacteristic must then be non-negative.

So far we have only given necessary conditions for P-convexity. To

give sufficient conditions means to prove uniqueness theorems. For example,
the sufficiency in Theorem 1.3.2 follows from the fact that solutions of
homogeneous elliptic equations are real analytic and therefore have a

property of unique continuation. In general we have available the uniqueness
theorem of Holmgren (see Hörmander [1, section 5.3]) and variations of
it for continuation across characteristic surfaces. (See Trêves [1], Zachma-

noglou [1], Bony [1], Hörmander [11, 12].) From the results of
Hörmander [11] we obtain, for example, the following theorem which should
be compared with Theorem 1.3.4; it is clear that an analogous result can be

proved corresponding to Theorem 1.3.5.

Theorem 1.3.6. Let P (D) be a differential operator such that the principal

part Pm (D) has real coefficients, and let X be an open set in R" with
a C1 boundary. Then X is P-convex with respect to supports if every
characteristic boundary point x0 is simple and for every closed interval I on the

corresponding bicharacteristic with x0 e I C X at least one end point belongs
to dX.

The proof of Theorem 3.7.3 in Hörmander [1] gives the following partial
converse of Theorem 1.3.5 involving weaker conditions on P and stronger
conditions on X:

Theorem 1.3.7. Let X have a C2 boundary for which all characteristic
points with respect to P are simple. Assume that at every characteristic
boundary point the normal curvature ofdX in some direction in the corresponding

bicharacteristic is positive. Then it follows that X is P-convex with respect
to supports.

For later reference we give a simple modification of Theorem 1,3.2:
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Theorem 1.3.8. Let P (D) be a differential operator in R" which acts
along a linear subspace V and is elliptic as an operator in V. Then an open
set X in R" is P-convex with respect to supports if and only if dx (x) satisfies
the minimum principle in any affine space parallel to V.

This ends our quite fragmentary list of results. It is clear that P-convexity
with respect to supports is insufficiently understood as yet. Further study
should lead to improved uniqueness theorems.

1.4. Geometric conditions for P-convexity with respect to singular supports

As in section 1.3 we denote throughout by X an open set in RM and by
P (D) a partial differential operator with constant coefficients. Again we

start by describing the convexity conditions which only involve P or X.

Theorem 1.4.1. X is P-convex with respect to singular supports for
every P if and only if every component of X is convex in the usual sense.

Theorem 1.4.2. Every X is P-convex with respect to singular supports

if and only if P is hypoelliptic.

Hypoellipticity means that for every distribution u

(1.4.1) sing suppu sing supp Pu

or equivalently that (Hörmander [1, section 4.1])

(1.4.2) Pia\0IP(0 0 when £ oo in Rn if | a | A 0

The sufficiency is well known (see section 3.7 in Hörmander [1]) in Theorem
1.4.1 and is trivial in Theorem 1.4.2. The necessity will follow from more
precise results below.

Necessary conditions for P-convexity with respect to singular supports
can be obtained by noting that X is not P-convex in this sense if (1.3.2) is

valid for some u and Y X with supports replaced by singular supports.
To use this remark we need to know solutions of the equation P — D)u 0

with small singular support. Starting from earlier constructions by Zerner [1]

and Hörmander [1, section 8.8] rather general results of this type were

proved in Hörmander [7]. A heuristic motivation for these is obtained by

noting that for functions represented as Fourier integrals it is the high
frequency components that may give rise to singularities. It is therefore
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natural to consider solutions of the equation 0 of the form

u _ e><x'i>v (x) where is large and a major part of v is composed of

exponentials with much smaller frequencies. We have

P(D)(ei<XÂ>v)ei<xA>Pç(D)v

where P^{D) P(D + Q. With P (ç) defined by (1.1.7) the normalized

polynomials PJP(c) belong to the unit sphere in Pol if m is the

degree of P.Denotethe set of limit points when £ -> co by (P). It is

then natural to expect connections between singular supports of solutions

of the equation P (D) u0 and supports of solutions of 0 (u
0, QeL(P).

Example 1.4.3. P is hypoelliptic, that is, P satisfies (1.4.2), if and only

if all elements of L(P) are constants (of modulus one).

Example 1.4.4. If rjisa simple characteristic of P, then the limits of

Pç/P (0 as £ -s- oo and £/| Ç| -* rj/\rj| are of the form

a X P(m' (l+ b
1

where a ^ 0 and | a |2 I | P(J} (rj) |2 + | b |2 1. Thus we have a first

order operator acting along the bicharacteristic corresponding to rj.

The preceding example suggests an extension of the notion of
bicharacteristic. If g is a polynomial, we write

A(Q) {?i e R"; g (£ + tri) Q (Q }

or the largest vector space in R" along which Q is constant, and we intro-
iuce the annihilator

A' (Q) { * e R"; < x, r\ > =0, rj e A (Q) }

vhich is the smallest subspace such that Q (D) operates along A' (Q).
This means that Q (D) u (0) is determined by the restriction of u to A' (Q)
ind that A' (Q) is the smallest subspace of Rn with this property. When

QeL(P) is not constant so that dim Ä (Q) > 0, the planes parallel to
r (Q) will be called bicharacteristic spaces for P. (These are the same for

P(Z)) and the adjoint For every such plane B the equation
0 (D) u 0 obviously has solutions with supp u — B. Arguing along the
lines familiar in geometrical optics one can make the heuristic arguments
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above precise and show that the equation P (D) u 0 has a solution with
sing supp u — B. This leads to

Theorem 1.4.5. If X is P-convex with respect to singular supports, it
follows that the minimum principle is valid for dx on all bicharacteristic

spaces for P.

When some QeL(P) is non-elliptic as an operator in A' (g), this
result can be improved (see e.g. Corollary 3.5 in Hörmander [7]). However,
Theorem 1.4.6 below indicates that it may well be that the condition in
Theorem 1.4.5 is sufficient if all g eL(P) are elliptic. In this situation we

see from Theorem 1.3.8 that the necessary condition in Theorem 1.4.5

means that X is g-convex with respect to supports for every QeL{P). It
may perhaps be true in more general circumstances that P-convexity with
respect to singular supports is equivalent to g-convexity with respect to
supports for all gel (P).

Theorem 1.4.6. X is P-convex with respect to singular supports if
either of the following conditions is fulfilled:

i) X n V is convex if V is any bicharacteristic space for P ;

ii) All bicharacteristic spaces are l-dimensional and dx satisfies the

minimum principle in all of them ;

iii) All Q e L(P) are of order f 1 and dx satisfies the minimum principle
in all bicharacteristic spaces.

For the cases i) and ii) proofs are given in Hörmander [7]. They depend

on modifications of the construction of fundamental solutions given in
section 1.1 above. The proof of iii) will be given in section 1.5.

1.5. Propagation of singularities for solutions of operators
with first order localizations at infinity

Let P (D) be a differential operator such that every QeL{P) is a first
order operator. Since P(D + Ç) I P(a) (Q fia/a • means that we

assume

(1.5.1) P(<xX0lP(0 0 when Ç -> go if | a | > 1

This condition is analogous to the condition (1.4.2) for hypoellipticity,
and it is fulfilled by any product of one hypoelliptic operator and one
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operator with simple characteristics. If x e Rn we denote by Bx the closure

of the set of bicharacteristic spaces for P containing x, Condition iii) in
Theorem 1.4.6 clearly does not change if in addition to bicharacteristic

spaces we consider limits of such spaces. (It may be appropriate to call
such limits also bicharacteristic.) The last part of Theorem 1.4.6 is therefore
a consequence of

Theorem 1.5.1. Let ue@'(X) where X c Rn is an open set, and
assume that P (D) u g C00 (X). If x e sing supp u it follows that for some
b e Bx the component of X n b containing x is a subset of sing supp u.

With X0 X\sing supp u there is an equivalent statement which is

more convenient in the proof :

Theorem 1.5.2. Let X0 c X be open, ueS)' (X), P(D)ue C°°(I)
and u g C00 (X0). IfxeX and the component of X n b containing x meets
X0for every b g Bx, it follows that u g C00 in a neighborhood of x.

Since Bx is compact the hypothesis will still be fulfilled if X is replaced
by a sufficiently large relatively compact subset. We may then assume
without restriction that u g ê' (R").

The first step in the proof is to localize the spectrum of u. Let p be

any number with 0 < p < 1. As in Hörmander [7] we can choose a partition

of unity 1 Lq ij/j in R" such that

I £ - 0 I <c\Ç;i" ifÇe supp ijfj;^ (0 1 K - 0 I < c | ^ |"

0 g 1l>je C100

0

and

for some constants c, C and a sequence e R".

ü)

Note that i) implies that

sup I g CJ 0 r"*1.

00

J ura^< 00 if a>n.
0 I«I>1

Condition ii) implies that for every positive integer N

(1.5.2) cQK-r (l+ixiioio-*.
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Lemma 1.5.3. If u e S' (R") is of order \x and ûj xj/jû, then

(1.5.3) sup \uj[<C \ Çj \p+np

For an open set Y we have u e C00 Y) if and only iffor every compact set

K C Y and every positive integer N

(1.5.4) sup I uj(x)I< I |-JV.
xeK

Proof (1.5.3) is obvious and so is (1.5.4) for every K if ue Co (R'O-

In view of (1.5.2) it is also clear that (1.5.4) is valid outside supp u. Combination

of these facts proves that (1.5.4) is valid if K does not meet sing supp u.

On the other hand, assume that (1.5.4) is valid in a neighborhood of K.
Since u is of exponential type at most C | | it follows from (1.5.3) that

I uj (z) I ^C\Çjf+np exp (C|£y||ImaJ), zeC".

Hence | Uj (z) | ^ C | f \ß + "p when | Im z | < 1/| ^ |. Using for example
the three lines theorem (cf. John [1]) we conclude that Uj (z) 0 (|^|_iV)
for every N in the set of points in Cn at distance at most 1/2n \ | from K.

But then Cauchy's inequality shows that Dccuj(x) 0 (\£j\~N) for all a

and N when x e K, which proves that I Da Uj (x) is uniformly convergent
in K for every a. Hence u e C°° in the interior of K which proves the lemma.

We shall apply Lemma 1.5.3 to the distributions u and / P (D) u

which occur in Theorem 1.5.2. Thus we define Uj and /} by ûj — xj/jû and

fj \jj .f Then we have (1.5.4) for compact subsets of Z0, and if u is replaced

by / we have (1.5.4) for compact subsets of X. The equation P (D) u=f
implies that P (D) Uj f. \

The spectrum of Uj is concentrated near so we introduce

Vj(x) Uj(x)e ' -, g/x) |

The equation P (D) Uj fj then becomes

(1.5.5) p (£,•)""1 Pçj(P) vj gj I

Here Vj and gj have the properties stated above for Uj and and they are |

of exponential type C | \p by the property i) of the partition of unity.
By Proposition 2.4 in Hörmander [7] we can for everyj choose Qj eL(P) i

so close to Pç./P (fj) that P^.(D)/P (f) Q} (D) - Rj (D) where j;

(1.5.6) Rj(0) ^C\Çj\-b I
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for some b > 0. We rewrite (1.5.5) in the form

(1.5.5)' (Qj(D)-Rj(D))vJ gj.

To take advantage of the fact that the coefficients of Rj are small we multiply
both sides by Q, (Df~1+ g, (D)k~ 2 R+ + Rj (Df' 1 and obtain

(1.5.7) gj (DfVjRj (D)k Vj + £ ~v (D ~1gj
V=1

The terms in the sum are 0(|£,|_iV) for all N on compact subsets of X.

Since Vj satisfies (1.5.3) and is of exponential type C| C;- \p, we have for

every a by Bernstein's inequality

I D* VjI <

where we have written a ju + zip. Using (1.5.6) we therefore obtain

I*7.(D)SI <c,i^..
If we choose p so small that mp < b, the right hand side will decrease like

any desired power of 1/| Çj | if k is large. To complete the proof of the

theorem it is therefore sufficient to show that for solutions of an equation
Q v h where Q e L (P), h is small in X, v is bounded in X and small
in X0, it is true uniformly with respect to k and Q that v is small near the

point x in Theorem 1.5.2. This is essentially a consequence of classical

convexity theorems but the uniformity needed here forces us to reconsider
these carefully.

1) Let I c R be an interval with 0 in its interior and let I0 be another
interval of positive length c L Then there exist constants C and <5, 0 < 3 <1,
such that

(1.5.8) I m (0)| ^ Ck (sup \u\)0 (sup lui)1"5 if (d/dx-Xfu 0.
io i

Here C and 3 depend on I and I0 but are independent of k and the complex
number 2. To prove (1.5.8) we note that u{x) ekx p (x) where p is a

polynomial of degree k — 1. Assuming for example that Re 2 ^ 0 we
choose a closed interval Ix c / in the open positive x-axis. For suitable
positive constants

SUp I U I Sg ^~coReA SUp |p j SUp I u j ^ ßClReA SUp | ^ |
^

10 Io I 11

By classical inequalities of Tschebyscheff we have for some constant C

L'Enseignement mathém., t. XVII, fasc. 2. 9
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|p(0)]< C*sup|p|, | p (0) | ^ Ck sup | p |

io ii
Hence we obtain (1.5.8) if ôc0 ^ (1 — (5) cu that is, if ô ^ c1/(c0 + c1).

2) Let X0 c be open sets in C such that some point of X0 is in
the component of 0 in Xt. Then one can find compact sets K} c Xj and

constants C, ô with 0 < <5 < 1 such that

(1.5.9) I u (0) I ^ Cfc(sup |u|)5(sup \u\y~0 if (ô/ôz-Xfu 0.

Here C is independent of k and of 2. A substitution u vel<x,^> where

(z^ —£2)/2 — 2 and Ç is real reduces the proof to the case 2 0. It is

sufficient to prove that if 0 < r < r1? 0 < r0 < rx then

(1.5.10) sup I u (z) I ^ (^(sup \u\)0 (sup \u\)1~ô if (ô/dz)ku 0
M<r lzl<ro \z\<ri
when I z I < rx

for if we join 0 to a point in X0 by a polygon, repeated use of (1.5.10) will
yield (1.5.9). For k 1 the inequality (1.5.10) is included in the three
circles theorem of Hadamard. In the general case we note that

k- 1

u(z) y
0

where Uj is analytic. When | z | R < rx we have z R2/z and therefore

k- 1

I Yj R2j zk~x~j Uj(z) I rg r^-1 sup | u (z) | when | z | ^ R < r1
0 \z\<rt

If I z I Û. r 'i < ri an(i ^ varies between r[ and it follows from the classical

estimates of Tschebyscheff for the coefficients of a polynomial (in R) that

sup I Uj (z) I ^ Ck sup I U (z) I

m«-; iz|<ri

A similar estimate is valid if we replace r1 by r0 and r[ by a positive number

r0 < r0, But this reduces the proof of (1.5.10) to the case k — 1 where as

already pointed out the inequality follows from the three circles theorem of
Hadamard.

We can now prove the main lemma. Let M be a family of first order

differential operators Q (D) with Q (0) 1. Assume that QeM implies

QJQ M e M for f] e RB and that M is closed in Pol (1). Denote by B the

closure of the set of all A' (Q) with QeM.
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Lemma 1.5.4. Assume that X0 c X are open sets in R" with Oel and

assume that for every b e B the component of 0 in b n X contains some

point in X0. Then one can find compact sets K0 C X0 and K c X such that

(1.5.11) I M (0)1 ^ Ck(sup \u\+Nk(u))s(sup \u\ + Nk(u
Ko K

Nk(u)£ sup kk~w\D*Q(
| a | fc + n + 1 K

if ue C00 (X), Q e M, and k is a positive integer. The constants C and S

do not depend on u, Q or k.

Proof We shall first verify (1.5.11) when Q (D)k u 0 in a neighborhood

of a sufficiently large compact set K c X. When Q (D) is any fixed
first order operator with A! (Q) e B this case of (1.5.11) is contained in
(1.5.8) and (1.5.9). When dim A' (Q) — 1 the same constants and compact
sets can be used for all Q with A' (Q) close to a fixed line in B so the

compactness of Sn~x shows that we can use the same constant for all Qe M
with dim A' (Q) 1. When dim A' (Q) 2 we first note as in the proof
of (1.5.9) that Q may be replaced by a real translate which contains no
term of order 0. Let M0 c M be the closure of the set of all Qe M with
dim A' (Q) 2 and Q (0) 0, 0(0) 1. It follows from (1.5.9) that
(1.5.11) is valid when Q (D)k u 0 on a large compact subset of X,
uniformly for all Q g M0 in a neighborhood of an element with dim A' (Q) 2.

The operators in M0 near an element Q0 with dim A' (Q0) 1 can after
•nultiplication by a factor of modulus 1 be written

Q(D)u < a, gradn > + i < b, grad u >

there a and b are real, a is orthogonal to b, |a|2 + |Z?|2 l and a is
.lose to a unit vector in A' (g0). Introducing a and b as basis vectors in
L (Ô) we obtain the homogeneous case of (1.5.11) from (1.5.9) with
contants and compact sets depending only on Q0.

It remains to extend (1.5.11) to the inhomogeneous case. Let/e Cq (Kt)
A'here Kx X is a neighborhood of the compact set K obtained in the
proof for the homogeneous case. We wish to solve the equation

L5.12) Q{Dfu =f
Ahen QeM. Since Q (0) 1 and 1 Q (0) ^ (1 + |£|) Q (0 we have

Q(0 ^ (1 + |£|)-1. With the notations of (1.1.6) it follows that

ie(£+oi ^c(i + i£ir* if $(qpo^o.
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Hence the solution of (1.5.12) given by

u(x)(271)-" J duJ ./'( Ç I Ç) 0 Ç (?.:•

has on every compact set an estimate of the form

(1.5.13) I u (x) I ^ Ck Y sup|Da/|.
\<x\ ^k+n+1

Here we have of course used the elementary and familiar fact that the

right hand side of (1.5.13) bounds (1 + \Ç\)k+n+1\f(0 |.

To prove (1.5.11) we just choose a function xE Co C^i) W]dh X 1

near K, | D*x | ^ (Ck)'a|, \ac\^k + n+ l (see e.g. Hörmander [11]),
and solve as just explained the equation

Q(Dfu0 =f xQiDfu.
(Since we only need to know that (1.5.11) is valid for some constant depending

on k instead of Ck it would be sufficient to use any fixed x) For u0 we
have the bound (1.5.13), and the estimate (1.5.11) is valid with u replaced
by u1 u — u0. Summing up, we obtain (1.5.11) with K1 instead of K.

End of proof of Theorem 1.5.2. We may assume that the point x in
the theorem is the origin. Then the hypotheses of Lemma 1.5.4 are fulfilled
with M L(P). In view of the translation invariance of (1.5.11) it follows
that if V is a compact connected neighborhood of 0 such that K0 + V
and K + V are contained in X0 and X respectively, then

(1.5.11)' sup Jv J g Ck( sup \v\ +Nf (sup \v\ +N)l~f v e C00, Q e L(P)
V Ko + V K+V

where we have written

N= Y sup /cfc_|a| I D«Q(D)kv I

|a| ^k + n+ 1 K + V

We shall apply this estimate with v Vj and Q Qj using (1.5.7). We

recall that v 0 (\f-\~N) in K0 + V for every N and that a similar estimate

is valid in K+V for any derivative of the sum in (1.5.7). Furthermore,
since Rj (.D)k Vj is of exponential type C | \p we obtain

Y sup I DaRj(D)kVj I \"i+m*n+i)p-b)
\a\^k + n+l K + V

where al a + (n+1) p. We choose p so small that (m+1) p —

— b < — b/2. Then (1.5.11)' gives for large enough k

sup I vj J < ck(\^rkb'2yoüjK"")1-0
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Since <5 > 0 is independent of k we obtain by choosing k large that Vj

0 (|£/|_iV) on V for all N. In view of Lemma 1.5.3 it follows that v e C00

in a neighborhood of 0, which completes the proof of Theorem 1.5.2.

Remark. The importance of " Holder estimates " for the study of

propagation of singularities has been emphasized by John [1]. He proved

results of the form (1.5.11) for a fixed Q which is elliptic as an operator in

A' (Q). However, no study has yet been made of the required uniformity
in QeL(P) for higher order elliptic operators Q.

A number of special cases of Theorem 1.5.1 occur in the literature;
see Hörmander [1, section 8.8], Grusin [1], Hörmander [7]. The corresponding

question has also been much studied for variable coefficients (see

Chapter III) and so has the analogous question with C00 replaced by real

analytic functions (and sometimes distributions replaced by hyperfunctions) ;

see Andersson [1], Kawai [1], [2], Hörmander [11].

1.6. General wave front sets

Additional information can be obtained from the proof of Theorem 1.5.2

if one considers not only where in X that the sequence Vj is not 0 (|£j|_iV)
for all A as j - oo but also for which subsequences of { </• } that this

occurs. We shall now introduce some concepts which allow us to state such

conclusions. The simplest and perhaps most natural one is the compactifica-
tion of R" by a sphere at infinity used by Sato [1, 2] and which we shall also

consider in Chapters II and III in connection with operators with variable
coefficients.

More generally, let / : R" - RN be a proper embedding of R" in some
bounded open set in RN. Explicitly this means that we assume that / is

bounded, continuous and injective, and that the range of/is disjoint from
the set of limit points of /(£) as £ - oo. The closure of /(R") is then a

compactification of R". We denote it by W and the subset of limit points
as £ -> oo by W0. Identifying Rn with/ (R") by means of the homeomorphism

f we can write W W0 u R" where the union is disjoint and R" is a dense

open subset.

We make the following important assumptions:

(i) /is semi-algebraic, that is, the graph of /is semi-algebraic;

(ii) f(£ + rj) — f(0 0 as | -> co if rj is fixed in R".

It is well known that (ii) must be valid uniformly when | rj | is bounded. In
fact, if e > 0 then
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en {rn\m + n) -/(Ol <e,\i\>N}
has positive measure for sufficiently large TV, and EN — EN is then a
neighborhood of 0. For rj in this neighborhood we have |/(£ + /) — /(O | < 2e

when I £ I > TV + C. In view of the assumed pointwise convergence we
conclude that (ii) is in fact uniform when rj is bounded. Using (i) and the

Tarski-Seidenberg theorem (see e.g. the appendix in Hörmander [1]) we
conclude that for a suitable K

\f(Ç +n)-/(£) I < 6 if I t]\and |£|^e~K.
Writing ô l/K we have therefore proved that (i) and (ii) imply

(1.6.1) \m+ri)-m\<\zra if M<kr
Example 1.6.1. If /(0 £ (1 +|£|2)~1/2 the compactification is the

unit ball, and W0 is the unit sphere.

All conditions on / are satisfied if we take the direct sum of this / with
another satisfying (i) and (ii) only. For /! we may for example take any

quotient Pj Q where Q is hypoelliptic and P is weaker than Q (see the proof
of Theorem 4.1.6 in Hörmander [1]). Example 1.6.1 is also essentially of
this form with P (£) 1 + | £ |2. Semi-elliptic operators give other useful

examples.
For distributions v e S' (R") we now introduce the set

W(v) W0 \ { w e W0;v (Ç) \ Ç\N is bounded for every TV in a

fixed neighborhood of w in R" u W0 }.
Note that if this set is empty, then v (£) is rapidly decreasing at infinity
so Cq.

Lemma 1.6.2. IfveS' and cpeCo, then W(cpv) c W(v).

Proof. Assume that w $ W (<v). This means that for some e > 0 the

Fourier transform î) (Ç) is rapidly decreasing when \f(0 — w \ < e. We

claim that the Fourier transform of vt cpv is also rapidly decreasing when

\f (Ç) — w \ < a/2. Note that when |/(0 — w \ < s/2 and | Ç | is large we

have \f(Ç + ti) — wI < s if I rj I < I £ |^, by virtue of (1.6.1). Hence

1^(01 ^ I\viA-n )v(n)\dr1s cN\^\~N +

+ C I \v(Ç-ri)\\(p(ri)\dri

if I /(<J) — w I < e/2. In the last integral we estimate — by
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C (1 + \Ç\Y (1 4- \rj\)ß where p is the order of v, and conclude that it is

also 0 (|q N) for every N. The proof is complete.

We can now define the wave front set:

Definition 1.6.3. If u e 9' (X) we denote by WF(u) the complement

in X x W0 of the set of all (x, w) such that for some v e S' equal to u in a

neighborhood of x the Fourier transform of v is rapidly decreasing in

a neighborhood of w, that is, w $ W (v).

From the lemma it follows that the fiber of WF (u) over x is the limit
of W {cpu) when the support of cp converges to x while cp (x) # 0. The

projection in X of WF(u) is sing supp u. In fact, it is trivially included

in sing supp u. On the other hand, if x is not in the projection of WF (u)

it follows by the compactness of W0 and Lemma 1.6.2 that cpu e C00 for some

cp e Co with cp (x) # 0. Thus we have proved:

Theorem 1.6.4. The projection in X of WF (u) is equal to sing supp u.

If Fis any closed subset of X x W0 one can find ue C (X) with WF («)
F. In fact, since CF {ue C (X), WF (u) c F} is a Fréchet space it

suffices, in view of the closed graph theorem and Baire's theorem, to show

that when F1 % F2 the topologies in CFl and CFl are not identical. If (x0,w0) g

e F2 \F1 and f e R" is a sequence with /{jj w0, this follows if we
consider a sequence u (x) el<x,^> where u e Cq has support close to x0.

The results of section 1.5 can now be improved as follows. For every

w g W0 we introduce the set Lw (F) of all limits of FfiP (£) as ^ -> w. The

proof of Theorem 1.5.2 gives the following refinement of Theorem 1.5.1:

Theorem 1.6.5. Let ue@'(X) where X is an open set in R", and
let P (D) u =/eC°° (X). Assume that L{P) consists offirst order operators
and let Bx w

be the set of all limits of A' (Qfi + { x } with Qj e LWj(P) and

Wj -> w. If (x, w) g WF (u) it follows that for some b e Bx w the component
of (Xnb) x w containing (x, w) is also in WF (u).

The result is particularly satisfactory if Bx w has a unique minimal
element. (Note that Theorem 1.6.5 is then equivalent to its local form.) For
example, if P is an operator with simple characteristics and W0 is the unit
sphere, then Bx w is empty except when w is a characteristic, and Bx w then
consists of the corresponding bicharacteristic through x. (See example 1.4.4.)
It would be interesting to know if for every operator P there is some com-
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pactification for which Bx w has a unique minimal element. It may be possible
to obtain such results by arguments of the type used by Gabrielov [1] to

prove that for every P the closed union of all A' (Q), QeL (P), is a semi-

algebraic set of codimension at least one.
For other definitions of the wave front set we refer to Sato [1, 2], and

Sato and Kashiwara [1] for the case of hyperfunctions relative to real

analytic functions, and to Hörmander [11] for the case of Schwartz distributions

relative to any Denjoy-Carleman class of functions which is closed

under differentiation and contains the real analytic functions.

Chapter II

Some spaces of distributions and operators

2.1. Pseudo-differential operators

In Chapter I all results ultimately depended on the Fourier transformation.

When the coefficients are variable we need to have some substitute.
The simplest case occurs in the construction of fundamental solutions for
elliptic operators with variable coefficients. Classically this was done by
perturbation arguments (the E. E. Levi parametrix method, Korn's
approximation). These ideas are now embedded in a more manageable and precise
form in the theory of pseudo-differential operators.

Let us first note that for an elliptic operator P (D) with constant coefficients

of order m we have for some constant C,

Kr ^ c\p(o\, m > c,
if £ is real or belongs to a narrow cone in C" containing Rrt. Apart from
an integration over a compact set, which contributes an entire analytic
term, the fundamental solution constructed in section 1.1 is therefore

simply

Ef(x)(27t)-« J e'^xCÖ/P(£)/(£)

Here x *s a fixed C00 function which is 0 when | £ | < C and 1 for large
I £ |. Differentiation under the sign of integration gives, with E also denoting
the distribution such that Ef E * f,



— 123 —

(2.1.1) P(P)E 8 + Ä.

Here R % - 1 so that Re C00. One calls £ a parametrix. Outside the

origin we have E e C00, for if a is large then

(-x)aE (In)'» J *<*>*> DÏ(x(OIP(Ç))dÇ,

and the integrand decreases rapidly at infinity. For the study of regularity

properties it is as useful to have a parametrix as to have a fundamental

solution: If v e ê' we obtain v E * (P (D) v) — R * v. Here R * v e C00

and E * P (D) v e C00 outside sing supp P (D) ^ since E e C00 outside the

origin. This gives

sing supp v — sing supp P (D) v

when v has compact support and therefore for arbitrary v.

Consider now a differential operator P with variable coefficients,

P(x,D) X aa(x)D*
|a| ^ m

in an open set X c R". We assume that aa e C00 (X) and that P is elliptic
in X, that is,

Pm (.x, Ç) £ aa (x) £a 0 if x e X and 0 ^ (eR".
j a I =m

We want to construct a (right) parametrix E, that is, a linear map Cf (X)
-> C00 (X) such that P (x, D) E — I + P where P is an integral operator
with C00 kernel. The classical method of E. E. Levi is to take a fixed x0 e X
and try to find E as a perturbation of the known parametrix of the operator
P (x0, D), that is,

£/(x) (27t)-" J ef<^> x(QIP(x0,OmdZ

Naturally this must be a better approximation at x0 than elsewhere, so the

approximation is improved if one replaces P (x0, Ç) by P (x, £). Note that
p(x, O'1 — Pm(x> Ö"1 + ••• where dots indicate homogeneous terms of
order — m — 1, — m — 2, Thus we are led to consider operators of
he form

2.1.2) Ef(x)(27t)-" J e'^eix,
where e behaves asymptotically when £ — co as a sum of homogeneous
functions of (See Kohn-Nirenberg [1], Hörmander [2, 4] and the references
given there.) Actually it is preferable to make the somewhat less restrictive
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assumption that e e (X x R") and that for some fi and all multi-indices a
and ß

(2.1.3) \D'(Dßxe(x,0\ è +|£|)"-W,

The set of all such functions will be denoted by Sß (X x Rn). An operator of
the form (2.1.2) with e e is called a pseudo-differential operator of order \x

with symbol e. It is easy to see that E is a continuous map from Cq (X)
to C00 (X) and that E can be extended to a continuous map from ê' {X)
to Q)' (X). The diagonal in X x X contains all singularities of the kernel
of E (which is a distribution in X x X). Summing up these facts one finds
the pseudo-local property

(2.1.4) sing supp Eu c sing supp u, u e ê' (A).

To complete the construction of a parametrix for the elliptic operator
P it suffices to choose e so that

P(x,D + 0e(x,0 - leS"00 n 5*.
ß

To do so we choose e asymptotic to a sum e0 + el + where ej is

homogeneous of degree — m — j with respect to £ and

P (x, D + f) (e0 -f + ej) — 1 e S J \ j 0,1,...

This means for j 0 that e0 1 jPm. Since P (x? D + Q ej — Pm (.x, Ç) ej e

e the conditions are recursively satisfied by a suitable choice of
This formal successive approximation is of course just a simpler way of
carrying out the classical iterative procedures for solving the integral equations

which occur in the E. E. Levi method. It is more appropriate though,
since it avoids strict convergence requirements which force one to work
locally only.

Pseudo-differential operators not only give a convenient framework for
the construction of parametrices for elliptic equations but they form a

natural extension of the class of differential operators. A differential operator
P (x, D) is obviously of the form (2.1.2) with e (x, Ç) P (x, £). It turns

out that also pseudo-differential operators form an algebra which is invariant
under passage to adjoints and changes of variables ; the latter fact immediately
allows an extension of the definition to manifolds. The usual formulas of
calculus remain valid with obvious modifications. For example, if P

P (x, D) and Q Q (x, D) are differential operators then the symbol
of the differential operator R QP is given by
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(2.1.5) R(x,0

If P and Q are pseudo-differential operators with symbols P (x, |), Q (x, £)

the product R QP is again a pseudo-differential operator and for the

symbol R (x, Ç) the formula (2.1.5) is valid mod Sß for every p, which makes

sense since all but a finite number of terms are in Sß. One precaution must
be made though, for to compose pseudo-differential operators we must

assume that they map Cq to C$, and preferably also C00 to C00. Since the

kernel of a pseudo-differential operator is in C00 outside the diagonal in

I x lit can be modified without changing the singularities to a kernel K
with support so close to the diagonal that the projections supp K -> X are

both proper. This implies the desired properties. We shall say that an

operator with such a kernel is properly supported. By Lß (X) we denote the

space of properly supported pseudo-differential operators of order p. The
definition is clearly valid also if X is a C00 manifold.

Generalizing a definition in section 1.3 for differential operators we
shall say that a pseudo-differential operator P of order m with symbol p
is characteristic at (x, Ç) e X x (RAO) if

lim I p(xXO\t~m 0.
+ 00

The characteristic points form a closed cone in X x (RAO) which regarded
as a subset of T*(X)\0 is invariant under a change of variables and therefore
well defined even if X is a manifold. If no characteristic exists, we say that P
is elliptic. The arguments above show that if P is elliptic of order m one can
find Q elliptic of order — m so that QP - / Rx and PQ — I R2
have C00 kernels. This shows that also for elliptic pseudo-differential
operators we have

sing supp u sing supp Pu, u e Q)' (X).

The construction of fundamental solutions in section 1.1 also simplifies
very much whenP is just hypoelliptic, that is, P satisfies (1.4.2). This
condition implies that P (£) ^0 for large £ and that for some p > 0

\d*sP(o\I\P(O \ s cKrpM,
One can still find a parametrix of the form (2.1.2), but e (x, Ç) l/P(0
satisfies a weaker condition than (2.1.3). One is therefore led to introduce
the set Sp ö of functions such that for all multi-indices

(2.1.3)' \DlDßxe(x,0\ S Ca>,>x(l + |£|)»-'W+«I»! xeK((I.



— 126 —

When 0 g <5 < p ^ 1 one obtains again a self adjoint algebra of operators,
and it is invariant under a change of variables if in addition 1 — p ^ 5. If
for some ô < p

\D^DßxP(x,0\l\p(x>0\â<W1 + |£|

and 1/| /? (x, Ç) | ^ C | | |M for some M, one can as in the elliptic case

construct a parametrix of the same type and conclude that the operator with
symbol p is hypoelliptic. (See Hörmander [4] and for the case of systems
also Hörmander [8].) However, for the sake of brevity we shall ignore
extensions of this type in what follows.

If L20C (X) is the set of functions in X which are square integrable on

compact subsets of every coordinate patch (with the obvious topology), then

every PeL°{X) is a continuous map Lfoc (X) -» Lfoc (X). If we define

H(S)(X) to be the set of all distributions such that Pu e L?oc (X) when

PeLs(X) it follows that H{0) (X) Lfoc (X), and that Lm (X) maps
H(s) (X) continuously into H(s_m) (X). Conversely Pu e (X) implies

ueH(s)(X) if P e Lm (X) is elliptic, so ueH{s){X) if (and only if)
Pu e L?oc (X) for some elliptic P of order Similar definitions can be made

with L2 replaced by Lp if 1 < p < oo.

2.2. The wave front set

If ue Q)' (X) we have by definition

* sing supp u n{x;(p(x) 0}

the intersection being taken over all cp e C00 (X) with cpu e C00 (X). Replac- j

ing the function cp by a pseudo-differential operator A we introduce |

(2.2.1) WF(u) n char (A)
AueC 00

where char (A) is the set of characteristics of A. It is clear that this is a y

closed cone in T (X)\0 with projection in X contained in sing supp u. In jj

fact, it is equal to sing supp u for if x is not in the projection of WF (it) |
we can find finitely many operators Aj e L° with AjUeC00 so that j

T*x n (n char (Af) 0. If A TAjAj we have Au e C00 and A is elliptic
at x so ue C00 there. Thus we have
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Theorem 2.2.1. The projection of WF (u) in X is equal to sing supp u.

We shall call WF (u) the wave front set of u. (The relation to the definitions

in section 1.6 will be discussed after Theorem 2.2.3.) Clearly it describes

the location of the singularities and the frequencies which occur in their
harmonic decomposition. The definition we have given leads immediately
to a regularity theorem for any pseudo-differential operator:

Theorem 2.2.2. If A is a pseudo-differential operator then

(2.2.2) WF(Au) c WF(u) C WF (Au) u char (A)

Proof The second part, extending the regularity theorem for elliptic
operators is obvious, but the first which improves the pseudolocal property
(2.1.4) may require some comment. We may assume that X c Rn since the

definition of WF (u) is local in X. For any (x0, £0) f WF (u) we can choose

a pseudo-differential operator B which is non-characteristic at (x0, £0) so

that Bu e C00. If C is a pseudo-differential operator whose symbol is of
order — go outside a small conic neighborhood of (x0, £0) we can find
another operator C1 such that CA CXB, by multiplying CA to the right
with the formal inverse of B which exists near (x0, £0). Thus CAu CxBue
g C00 and we conclude that (x0, £0) <£ WF(Au).

In the definition of the wave front set it is easily seen that one can
restrict oneself to operators A of order 0 and even operators of the form
b (D) a (x) where b (£) is a homogeneous function of degree 0 for large | £ |.

This leads to an equivalent definition which is more useful in many proofs :

Theorem 2.2.3. (x0, £0) <£ WF (u) ifand only iffor some coordinate patch
containing x0 one can find lef equal to u in a neighborhood of x0 and
with v (£) 0 (|£|_iV) for every N in a conic neighborhood of £0 independent
of N.

The theorem shows that WF (u) regarded as a subset of the sphere bundle
agrees with the set given by Definition 1.6.3 when X C R,x and W0 is the
compactification by a sphere. The definition used here has the advantage
that the invariance under a change of variables follows from the invariance
of pseudo-differential operators.

We shall now list a number of properties of wave front sets. Most of
them are due to Sato who considered hyperfunctions modulo real analytic
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functions. (See Sato [2], Sato-Kawai [1], and Sato-Kashiwara [1].) For
complete proofs using Theorem 2.2.3 see Hörmander [9, section 2.5].

First we consider the product of two distributions u1 and u2. Let

%eC o (R"), J %dx 1, and set xs(x) — s~n X (x/e)- Assuming that

Ujer (R") we wish to define u1u2 as the limit of (wi*Xe) (u2*Xc) as

a —> 0. In general this is not possible but the limit does exist if

(2.2.3) WF (Ml) + WF (u2) - {(x, + £2); (x, e WF (uj) } C T* (X)\0

It is then independent of the choice of coordinates and %. The situation is

summed up in

Theorem 2.2.4. If u1,u2e3' (X) and (2.2.3) is fulfilled, there is a

natural way of defining utu2 and we have

(2.2.4) WF (uyuf) C WF(ux)v WF (u2) u (WF (uf) + WF (u2)).

Here the right hand side is closed and X may be a manifold.

With suitable definitions the multiplication is continuous when
introduced in this way. In the following theorems the word " natural " will refer

to a definition by continuity as in Theorem 2.2.4.

Theorem 2.2.5. Let X and Y be manifolds and q> : Y -> X a C00 map.
Let u e FX)' (X) and assume that

<p* WF(u) >), } c 0.

Then there is a natural way of defining the composition (p*u of u with cp so

that it is the standard composition when u is a function. We have

(2.2.5) WF(q>*u) C q>*WF(u).

Note that the pullback (p*u is defined for all ue@' (X) precisely when

cp' is surjective, and then it is well known that such a definition is possible.

In particular we see that if Y C X is a submanifold, we can define the

restriction of u to Y if the normal bundle N Y) does not meet WF (u).

For example, if «ef (X) and Au e C00 for some pseudo-differential

operator A, we can define the restriction of u to Y if Y is non-characteristic,
that is, the normals to Y are non-characteristic with respect to A. This is

also a well known fact (partial hypoellipticity).
Let X and Y be two C00 manifolds with given positive C00 densities. By

the kernel theorem of Schwartz we can then identify *3' (X x Y) with the
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space of continuous linear operators Cq(Y)-+ Q)' (X) by means ol the

formula

< Kcp, f > K (f ®(p); cp e Co (Y), \jj e Co (X);

on the right K denotes an element of $)' (X x Y) and on the left the

corresponding linear transformation. In terms of the wave front set of K we

can state useful sufficient conditions for regularity of K in the sense of
Schwartz [1]:

Theorem 2.2.6. For any u e Cq (Y) the set

(2.2.6) WFX(K) {(x9&;(x,Ç,y90)eWF(K)for$QmeyeY}

contains WF{Ku). Thus K maps C (Y) into C00 (X) if WFX (K) 0, that

is, if WF(K) contains no point which is normal to a manifold x constant.

Theorem 2.2.7. Ku can be defined in a natural way when ue $' (Y) and

WF (u) does not meet the set

(2.2.7) WFy (K) { (y, rj); (x, 0, y, —rj) e WF (K) for some xeX}
Thus K can be extended to a continuous map $' Y) -» Q)' (X) if WF Y (K)

0, that is, WF (K) contains no point which is normal to a manifold y
constant.

The proof of Theorem 2.2.6 follows easily from the description of the

wave front set given in Theorem 2.2.3. Theorem 2.2.7 follows by duality.
If we have three manifolds X, Y, Z and distributions K1 e $)' (X x Y),

K2e2)' (Y x Z) where for simplicity we assume that K1 and K2 are

properly supported, then K2ue S" (Y) and WF(K2u) C WFY (K2) when
u e Cq (Z). The composition Kx (K2u) is therefore defined if

(2.2.8) WFy(Kx) n WFY(K2) 0

and it is of the form (Kx o I<2) u where Kx o K2 e Q)' (X x Z). When
writing down an inclusion for the wave front set of Kx o K2 it is convenient
to introduce for example

WF' (KJ{(x, y, n y,(xÉ,y,-r,)e WF }

that is, multiply by - 1 in the fiber of the second tangent space involved.



— 130 —

Theorem 2.2.8. When (2.2.8) is fulfilled we have

(2.2.9) WF' (K, o K2) c {WF' (Kfi o WF' (K2)) u (WFX (Kfi x Z)

u (Z x WFZ (K2)).

Here WF'(Kf) and WF' (K2) are composed as relations from T* (Y) to

T* (X) and from T* (Z) to T* (7). The right hand side of (2.2.9) is closed.

The special case when Z reduces to a point is worth special notice:

Theorem 2.2.9. Let Ke^'(XxY) and ueS"(Y), WF(u)n
n WFY (K) 0. Then we have

(2.2.10) WF(Ku) C (WF'(K) o WF(u))v WFX{K)

where again WF' (K) is interpreted as a relation mapping sets in T* Y) to

sets in T* (X).

In section 2.3 we shall describe the wave front set for some important
classes of distributions. In preparation for this we shall now discuss how the

wave front set can be used to localize various spaces of distributions not
only in X but in T* (Z)\0 (or rather the cosphere bundle S* (Z) which is

the quotient by the multiplicative group of positive reals).
Let FT be a linear subspace of Q)' (X). If x0 e X we shall say that a

distribution u in X belongs to 3F at x0 if one can find v e FT so that v — u —

— 0 in a neighborhood of x0. We call local if every distribution which

belongs to at every x0 e I is in fact in (This means that is the

space of sections of the sheaf of germs of sections of #\)
If (x0, £0) e T*(X)\0 we shall say that u e 3F at (x0, £0) if one can find

ye#" so that (x0, £0) WF (u—v). Repeating the proof of Theorem 2.2.1

one shows that when C00 (X) C FT and SF is an L° module, then u e FF at

x0 if (and only if) wef at (x0, £0) for every Ç0 e T*o\0. If in addition 3F

is local we therefore conclude that wef if and only if u g JF at (x0, <^0)

for all (x0, ^o) G T* (^)\0. As an example of this we may take $F H{s) (X).
We can also piece together spaces of distributions from local data.

Let { Ut be a covering of T*(X)\0 by open cones and let $Fu iel,
be an L° submodule of <2)' (X) containing C00 (Z). Assume that if (x0, ^0) e

6 Ui n Uj then every element of is in at (x0, Ç0). If we set

$F {ue $)' (Z) juefj at every point in Uj for all j}
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we obtain a local L° module of distributions. If (x0, £0) e Uj we have

u e SF at (x0, £0) if and only if ue !Fj at (x0, £0).

2.3. Distributions defined by Fourier integrals

If in (2.1.2) we introduce the definition of the Fourier transformation

we see formally that the distribution kernel of the pseudo-differential

operator E is given by

(2.3.1) (x,y) ^{2nYn \ ei<x~y>6> e(x, 6) dQ

Similarly the fundamental solution of the wave equation d2u/dt2 — Au — 0

in n space variables (n> 1) with pole at (y, 0) is at time / > 0 given by

(2.3.2) (x,y)-+

(2n)-"ei(<x-y>6>+t{6l)(n^y1 de - J ei(<x~y,e>~t\°\)(nieiy1 de).

These examples suggest the importance of the classes of distributions which
we shall study now.

Let X C R" and let F be an open cone in X x (R^\0) for some N.
Assume given a function (p e C00 (T) satisfying the following conditions :

(i) (p is positively homogeneous with respect to the variables in RN.

(ii) Im cp ^0.
(iii) dcp ^ 0 everywhere in r.

Such a function will be called a phase function. Let S (T) be the set of all
a g Sm {X x (Rn\0)) (see section 2.1) vanishing in a conic neighborhood
of CT.
For a e S (F) we claim that the integral

(2.3.3) A (x) te J ei(p(x>6) a (x, 6) dO

can be defined, not necessarily as a function of x but as a distribution in X.
To do so we consider the linear form

(2.3.4) I (u) JJ a (x, 6) u (x) dxdO, u e ÇX).

In view of (iii) the fact that

ei<p D(ei(p)l(Di(p)

allows one, by successive (formal) partial integrations with no boundary
terms, to reduce the growth of the integrand at infinity until it becomes

L'Enseignement mathém,. t. XVII, fasc. 2. 10



— 132 —

integrable. This gives a precise definition of I (u) and the linear form u -> / (w)

is then a distribution yl e Q)' (X). If % e (R^), X (0) 1, it is easily shown
that

(2.3.5) A lim \ ein-6) x(z9) affi) d9
£-+0

with the limit in the weak topology of 2' (X). Thus the definition of (2.3.4)
by partial integrations is quite independent of how these are carried out,
and (2.3.5) is independent of the choice of x- We shall call (2.3.3) an
oscillatory integral but use the standard notation. (For these facts as well as

most of this section we refer to Hörmander [9].) The integral (2.3.3) is

thus defined for a fixed x x0 if cp (x0, 0) has no critical point (x0, 9) e T
as a function of 6. In that case, A e Cœ near x0. Note that if (x0, 9) is a

critical point of cp as a function of 9, then cp (x0, 9) 0 by Euler's identity
for homogeneous functions. On the other hand, when cp (x0, 0) 0 it
follows from (ii) that d (Im cp (x, 9)) 0 so dx 0 Re cp (x, 0) # 0 by (iii).

To determine the wave front set of A we use Theorem 2.2.3. Thus we
take a function ue C% equal to 1 near x0 and with small support, and

study

< A,ue~i<x'?>>jj ei(<pi,x,e)adxd9

as ^ -> oo in a conic neighborhood of (oscillatory integral Î). Naturally
the main contributions come from critical points in the exponent, that is,

points where cpQ 0, cpx £. Indeed, we have

Theorem 2.3.1. If A is defined by (2.3.5) then

(2.3.6) WF (A) C {(x, cpx (x, 0)); (x, 9) e T and cpe (x, 0) 0} c T* (X)\0

In particular,

(2.3.7) sing supp A C {x;cpe (x, 0) 0 for some 0 with (x, 0) e F }

As an example we see from (2.3.1) that the wave front set of the kernel of
a pseudo-differential operator E lies in { (x, y ; £, rj); x y, £ — rj }
which is the normal bundle of the diagonal. Thus WF' (E) is in the diagonal
of T*(X) x T*(X), which allows us to identify the wave front set of a

pseudo-differential operator in X with a closed cone in F*(X)\0. In view

of Theorem 2.2.9 this result contains the left hand part of (2.2.2) (the

improved pseudo-local property).
As a second example we see that for the two terms in (2.3.2) the

wave front set lies in the set where x — y =+t9/\9 \ and £ — — rj 0.
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This corresponds to the two components of the normal bundle of

{(x,y)i\x-y\2 t2 }. In particular the singularities are carried by the

light cone.
The set of distributions which can be written in the form (2.3.5) with

a given cp and a e S (T) is always an L° (X) module. (For a proof when cp

is real see Theorem 2.12 in Hörmander [6].) We can therefore use the

remarks at the end of section 2.2 to define global spaces of distributions

which locally in T*(X)\0 have such representations.
We shall restrict ourselves in what follows to the case where cp is real

and non-degenerate, that is, the differentials of the functions dcp/dOj are

linearly independent in C { (x, 6) e f; cpe (x, 6) 0 }. The map

(2.3.8) Cb (x, 6) (x, cp'x)

to the wave front set has an injective differential then. The range A is

locally a conic manifold in T*(X)\0 of dimension dim X. Let (x, Ç) denote

the standard coordinates in T*(X) obtained from local coordinates x1? xn

in X by taking dxu dxn as basis for the cotangent vectors. The form
EÇj dxj is then invariantly defined, and the restriction to A is cpx dx

dcp — cp'0 dO 0. In view of the homogeneity this is equivalent to the

vanishing on A of the differential which is the symplectic form a

ZdÇj a dxj. Submanifolds of T*(X) of dimension dim X on which the

symplectic form vanishes also play a fundamental role in the classical

integration theory of first order differential equations (see section 3.1).

Following Maslov [1] we shall call them Lagrangean manifolds.
Locally the class of distributions which can be written in the form

(2.3.3) for some a e S+n/4~N/2 (f1), n dim X, and a non-degenerate real

phase function cp depends only on the Lagrangean manifold A corresponding

to cp and on no other properties of this function. Any closed conic
Lagrangean submanifold A C T*(X)\0 (or a closed conic subset of a

Lagrangean submanifold which is not necessarily closed) can locally be

represented as the range of a map (2.3.8). We can therefore define a space
Im (X, A) of distributions with wave front set in A which locally can be

written in the form (2.3.3) with a e Sq +n/4~N/2 and cp defining a part of A
according to (2.3.8). With the elements in Im (A, A) one can, as for pseudo-
differential operators, associate principal symbols on A, which are symbols
of order m + n/4 modulo symbols of order m + n/4 — 1 (with values in
certain line bundles). The notion of characteristic point can therefore be
defined as in section 2.1. For the kernels of pseudo-differential operators
in X which are associated with the normal bundle of the diagonal in X x X
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this agrees with the standard notion of principal symbol, (Note that the

normal bundle of any submanifold 7 of X is Lagrangean in T* (X) and

that the normal bundle of the diagonal in X x X can be identified with
T*(X).)

When we take a conic Lagrangean submanifold of T*(X x 7)\0
where X and Y are two manifolds we can interpret the distributions in
Im (X x Y, A) as maps from (Y) to & (X). When A C (7*(Z)\0) x
x (7*(7)\0) we have seen (Theorems 2.2.6 and 2.2.7) that they are actually
continuous operators from Cq (7) to C°° (X) and from S" (X) to 3' (7).
The set

A-' {(x>Ç,y, -ri); }

will then be called a homogeneous canonical relation ; it is Lagrangean with
respect to the symplectic form ox — oY• This is the set which occurs in the

multiplicative properties of wave front sets described in Theorem 2.2.8.

If we have three manifolds X, 7, Z and canonical relations Cl9 C2 from
7* 7) to 7* (X) resp. 7* (Z) to 7* 7) one can supplement Theorem 2.2.8

by proving that the composition Kl o K2 of properly supported operators

Kx g I1 (X x 7, C[) and K2eIm2(Y x Z, C2)

is in

jmi+m2 x z,{cxoc2y)

if the appropriate transversality and other conditions are fulfilled which

guarantee that Cx o C2 is a manifold. There is a simple formula giving the

principal symbol of Kx o K2 as a product of those of Kj. (The normalization
of the degree for operators in Im was chosen precisely to make the preceding
statement valid.) For complete statements and proofs we refer to Hör-
mander [9]; a summary is given in Hörmander [10]. However, we shall

consider an important special case due to Egorov [1] which gave rise to
much of the work described here.

Thus assume that X and 7 have the same dimension and that A' is

the graph of a homogeneous canonical transformation x from 7* (7) to

7* (X) (or only a local canonical transformation in which case we consider

a closed conic subset). That x is canonical means thatx*ö"z — aY 0 or
that ox — oY vanishes on A\ so we have a canonical relation in the sense

explained above. If K e lm (X x 7, Ä), then the adjoint 7* belongs to the

inverse transformation and the compositions KK* and K*K belong to the

identity, that is, they are pseudo-differential operators in X and in 7
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respectively. If A is a pseudo-differential operator in X of order fi then the

product AK is in Im+ß (X x Y, A) and the principal symbol is the product
of the principal symbol of K (considered as living on A') by that of A lifted

from T* (X) to A' by the projection A' T* (X). If we multiply to the

right instead the result is the same except that we shall use the projection
from A! to I7* (7). If A and B are pseudo-differential operators in X and

in Y respectively and if AK KB we conclude that for the principal symbols

a and b of A and B we must have

(2.3.8) i)) b(y> n)

if the principal symbol of K is not 0 at (x Cl fl)> (y> d))- Conversely,

(2.3.8) implies that AK — KB is of lower order. We can therefore successively

construct the symbol of B for a given A so that AK — KB is of order
— oo, provided that the wave front set of A is concentrated near a point
where K is elliptic. This argument often allows one to pass from one operator
to another with principal symbol modified by a homogeneous canonical
transformation. (See also Lemma 3.2.2 below.)

The operators in lm (X x Y, A') can be described by means of the
classical generating function : For any point (x0, £0, y0, ri0) in the graph of
X one can choose local coordinates in neighborhoods of x0 and y0 so that
there is a function cp (x, rj) in a conical neighborhood of (x0, rj0) which is

homogeneous of degree 1 with respect to rj, such that x is given by (cpn rj)

-> (x, cp'x) and det cpxv # 0. The elements A in Im (X x Y, A) with wave
front set close to (x0, f0, y0, —rj0) are then as operators of the form

Au (x) (27i)~rt J ei(p(x^ a (x, rj) îi(rj)drj, a e Sm (X x R")

when u is in C q in a neighborhood of y0 and x is in a neighborhood of x0.
The assertions made above are easy to prove directly from this
representation.

Chapter III

Pseudo-differential operators with non-singular characteristics

3.1. Preliminaries

Throughout this chapter X will denote a C00 manifold (all manifolds are
tacitly assumed countable at infinity) and P a properly supported pseudo-
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differential operator in X of order p with homogeneous principal symbol p.
This means that p is a complex valued C°° homogeneous function of degree p
on T* (X)\0 and that for every local coordinate system the full symbol
of P differs from p by a symbol in S^'1. We shall also require that the
characteristics are simple, that is,

(3.1.1) dp(x, f) A 0 if (x, 0 e T*(X)\0 and p(x,£) 0

The purpose is to give analogues of the existence theorems stated in Chapter I
for the case of differential operators with constant coefficients, in particular
part iii) of Theorem 1.4.6 and the related Theorems 1.5.1 and 1.5.2. This
will require further conditions on P which will be introduced later on.

We shall now recall some classical facts concerning the integration of the

first order differential equation

(3.1.2) p(x, gradw) 0.

At first it will be assumed that p is real valued. If u e C2 (Y) for an open
set Y c X and if u is real valued, then A {(x, grad u (x)), xe 7} is a

section of T* (X) over Y on which (the restriction of) the invariant symplectic
form <7X ZdÇj a dx} vanishes. In fact, the^pullback of gx to Y by the

section is

d (Zdu/dXjdXj) — d du =0.
Conversely, if we have a C1 section A of T* (X) over Y on which ax vanishes,

we can define A in local coordinates by £ £ (x), and dÇj/dxk — dÇJdxj
0 so I du for some function u in Y (determined up to an additive

constant) if Y is simply connected. The (local) integration of (3.1.2) is

therefore equivalent to finding a (local) section A of J1* (X) such that

(i) a 0 on A

(ii) p 0 on A

In other words, A shall be a Lagrangean manifold (see section 2.3) contained
in p~1 (0) such that the projection A -> X is a diffeomorphism. Locally the

last condition means just that A is transversal to the fiber of the projection
T7* (X) -> X. In the local theory one can therefore concentrate on (i) and

(Ü).

The symplectic form a is a non-degenerate skew symmetric bilinear
form on the tangent space of T* (X). That a manifold A is Lagrangean
therefore means that at every point X e A the tangent space Tx (A) is its own
orthogonal complement with respect to a. If (ii) is valid we have dp 0
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ori Tx (A). The tangent vector Hp to T* (X) corresponding to the covector

dp by the definition

<t,dp> a (t,Hp),teT(T*(X)),
is therefore tangential to A. One calls Hp the Hamiltonian vector field

defined by p. In terms of local coordinates x in X and the corresponding

coordinates (x, Ç) in T* (X) the Hamiltonian vector is given by

Hp Z (dp/dÇjdldXj-dpIdXjdldÇj)

If q is another C1 function on T* (X), then

Hpq < Hp, dq > a (Hp,Hq) - a (Hq,Hp) - Hqp

and in local coordinates

Hpq {p,q} Z(dpldÇjdqldxj-dpldXjdqldÇj)

{p, q} is called the Poisson bracket of p and q. For later reference we note
the Jacobi identity

(3.1.3) {p,{q,r}} + {q,{r,p}} + {r, {p,q}}0

or equivalently

H{Ptq) HpHq - HqHp [Hp, HJ

For the proof we first observe that [Hp, Hq] is a first order differential

operator. This implies that (3.1.3) is independent of the second order
derivatives of r, and similarly by the symmetry (3.1.3) is independent of the
second order derivatives of p and q. But if p, q, r are all linear functions it
is clear that all terms in (3.1.3) vanish so (3.1.3) must always be valid.
From the Jacobi identity it follows that the (local) group of transformations
defined by the vector field Hp is canonical, that is, it preserves the symplectic
form. In fact, it suffices to note that if qu q2n are symplectic coordinates
at a point m and Hp qj constant then these functions remain symplectic
coordinates along the orbit of Hp through m since Hp { q}, qk } —

- {ik, {p, ij}}- { ij,{qk,p}}o.

We now return to the Cauchy problem for (3.1.2). Let be a hyper-
surface in X and u0 a C1 function with no critical point on M. We want
to find usatisfying (3.1.2) and the Cauchy boundary condition
on M.Inaddition <f0 grad u (x0) is prescribed for some in such
a way that t0 restricted to T'X(J (M) is equal to grad We can then extend
u0 to a neighborhood of M so that grad u0 £() at x0. If M is defined by
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the equation p 0 we shall then have grad u grad u0 + t grad p on M,
t 0 at x0, so on M the equation (3.1.2) becomes p (x, grad u0 +1 grad p)

0. The derivative with respect to t when t 0 and x x0 becomes

{p, p } (x0, £0). If we assume that Hp (or more precisely the projection
p^ d/dx of Hp in T (X)) is transversal to M, it follows from the implicit
function theorem that this equation has a unique solution in a neighborhood
V of x0. With u1 u0 + tp, the Cauchy problem is now to find a Lagran-
gean manifold contained in p~x (0) and including

A0 { (x, grad ut (x)), x e M0 M n V)

We have already seen that A must contain the integral curves of the vector
field Hp starting in A0 and by assumption these are transversal to A0. It
follows that there is a unique local solution of the Cauchy problem. In fact,
the local manifold generated by integral curves of Hp through A0 is Lagran-
gean at A0 since a vanishes on A0 and a (t, Hp) <t, dp > =0
if t e T (A0). The fact that A is invariant under the canonical transformations

exp (tHp) proves that A is Lagrangean everywhere.
When p or the Cauchy data are complex the preceding arguments break

down and there is in general no solution unless p and the data are analytic
(see section 3.3). However we always have an analogous result for formal

power series solutions at a point, and this can be applied when the data are
in C00 by considering the Taylor series expansions. We can say more if the

vector field Hp happens to have an integral curve r with initial data (x0, £0),

that is, if there exists a regular C00 curve t -» (x (t), Ç (t)) e T*(X) with
(x (0), £ (0)) (x0, f0) and

0 7^ (dx/dt, dÇ/dt) c(t)(p'ç, —px)

for some complex valued function c. Apart from the parametrization such

a curve is uniquely determined by (x0, £0) since it is an integral curve of any
one of the vector fields HKep and Hlmp which is A 0. If such a curve T exists

we can consider Taylor expansions on r instead. Even if the data on M
are complex valued we then obtain a complex valued function u such that
Im u vanishes to the second order on r, grad Re u (x (f £ (t), the restriction

of u to M has a given Taylor expansion at x0 and p (x, grad u) vanishes

of infinite order on r. The last statement makes sense although p (x, Ç)

is not defined for complex values of £, for the derivatives of p (x, grad u)

can still be computed formally on T.
For a more complete though less geometrical treatment of the topics

discussed here we refer to Carathéodory [1]. Since for us the equation p 0
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is the characteristic equation of the operator P, we shall use the terminology
bicharacteristic strip (resp. curve) for an integral curve of the Hamiltonian
field Hp contained in p~l (0) (resp. the projection of such a curve in X).
Note that whereas the bicharacteristic strip is non-degenerate or reduced to

a point, the bicharacteristic curve may have a cusp. A simple classical

example of this is given by the Tricomi equation for which p (x, £)

x2£i2 + £i2> With suitable normalization of the parameter the
bicharacteristic strips are given by jxq xfi — 2(ct)3/3, x2 — t2c2,

c A 0, £2 ~ tcl- The cusps of the bicharacteristic curves occur when

t 0. (Some authors use the term bicharacteristic strip for any integral
curve of Hp and null bicharacteristic strip for those on which p vanishes.)

3.2. Operators with real principal part

Let P be a properly supported pseudo-differential operator of order p
in a manifold X and assume that P has a real and homogeneous principal
part p satisfying (3.1.1). In this case rather complete results on the propagation

of singularities and existence theorems in @'/C°° have been obtained by
Duistermaat and Hörmander [1]. Complete proofs of all statements in this
section are given there. The following result should be compared with
Theorem 1.6.5.

Theorem 3.2.1. If ue LA' (X) and Pu f it follows that WF (u)\ WF (/)
is a subset ofp~ 1 (0) which is invariant under the flow defined by the Hamilton
vector field Hp in p-1 (0)\WF(f).

Proof That WF (u)\ WF (/) c p ~1 (0) is precisely the second part of
(2.2.2). To prove the other part of the theorem we consider a point
m e WF (w)\ WF (/). If Hp (jm) has the radial direction the bicharacteristic
curve through m is a ray, and since WF (u) is conic there is nothing to
prove then. Otherwise we can apply

Lemma 3.2.2. Let m e T*(X)\0, p (m) 0, and assume that Hp (m)
does not have the radial direction. Then there exist Fourier integral operators
A g (X x R", r), B g (R" x X, (T~x)') such that

(i) r is a closed conic subset of the graph of a homogeneous canonical
transformation y from a conic neighborhood U ofm onto a conic neighborhood
V of a point y (m) g r*(R")V0.
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(ii) (m, y (m)) and (y (m), m) are non-characteristic points for A and B
respectively.

(iii) p1 and p2 are given numbers with p2 + p + pi 1, full
symbol of the pseudo-differential operator BPA is equal to £n on a conic

neighborhood of % (m).

Proof Multiplication of P by an elliptic pseudo-differential operator of
order 1 — p reduces the proof to the case p 1. The hypothesis on Hp (m)
then makes it possible to introduce a system of canonical coordinates

xl9 xn, near m in T* (X), which are homogeneous of degree 0

and 1 respectively, so that Çn p. This gives the canonical transformation

y. Choosing B and A with reciprocal principal symbols we obtain that BPA
has the principal symbol Çn near y (m). By successive choice of the terms
of decreasing order in the symbols of B and A one can make the lower order
terms in BPA vanish near y (m).

End of proof of Theorem 3.2.1. With the notations of the lemma we
also choose B1erßi(R" x X, (T-1)') so that m $ WF(AB1 -/). Then

v B1 u e 9/ (R") and y fm) e WF (v) for against our assumption we
would otherwise obtain m £ WF (u) since u (.I—ABf) u + Av. (Here we

are using Theorems 2.2.8 and 2.2.9.) Since

Dnv (Dn-BPA)v + BP (AB1 -I)u + BPu

we have y (m) £ WF (Dnv). Thus we have reduced the proof to the case of
the operator Dn for which it follows by writing down a solution of the equation

Dnv f explicitly.
Remark. Using only pseudo-differential operators, we shall prove a

more general result in section 3.5 (see also Hörmander [13]).

In the opposite direction we have

Theorem 3.2.3. Fet I c R be an open interval and y : I-> T*(X)\0
be a map defining a bicharacteristic strip for P which is injective even after
composition with the projection to S*(X). Denote by T the closed conic hull

of y (/) and by T' the limit points, that is, the intersection of the closed

conic hull of y (A/o) when I0 runs over all compact intervals contained, in I.
For any v 0, 1, 2, one can then find ue Cv (X) such that WF (u)\T'

AT' and WF (Pu) c A.

Note that F' is empty precisely when y defines a proper map from I
into X. Then we have Pu e Cœ (X) and WF (u) f.
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Proof. We shall just indicate a slightly weaker construction for a

compact subinterval I0 of /, but the passage to the statement above is quite

easy from there. Assume for example that 0 e I0. There is nothing to prove
if Hp (y (0)) has the radial direction so we exclude this case. We can then

choose a n — 1 dimensional conic submanifold N0 of N p~1 (0) through

y (0) such that Hp (y (0)) is not a tangent of N0 and the symplectic form
vanishes in N0. If # (t, n) denotes the solution of the Hamilton-Jacobi

equations d (x, f)jdt Hp (x, Ç) at time t which is n at time 0, then it is

clear that there is a closed conic neighborhood V0 c= N0 of y (0) such that
the map

I0 x V03(t, n) -> n)

is injective. Hence it defines a closed conic subset A of a Lagrangean manifold

on which p 0. (See the discussion of the Cauchy problem in section 3.1.)

One can now choose uelk (X, A) with WF {Pu) close to <P ((dl0) x F0)

so that the principal symbol of u has a given restriction to N0 with support
in a small conic neighborhood of y (0) in N0. The crucial point is that for
phase functions (p defining A locally we have p (x, cp'fi 0 when cpd 0.

From this one concludes that to make the principal symbol of Pu vanish

except at <P (dl0 x V0) means to solve differential equations along the
bicharacteristics of P contained in A. (See the remarks on geometrical optics
in the introduction.) As usual one can then successively determine terms of
decreasing order in the symbol of u so that the symbol of Pu is of order — oo

except at $ ((d/0) x Vf). If the order k is suitably chosen the desired

properties are obtained. (To see that WF (u) can be squeezed into F and
not only a neighborhood one can either use functional analysis (see
section 3 in Hörmander [7]) or more general symbols. A third possibility is

indicated in the proof of Theorem 3.4.1 below.)
Remark. Zerner [1] and Hörmander [7] have given similar results

which are weaker in that they are local and that they require Hp not to be a

tangent to the fiber of F* (X) so that the bicharacteristic curve is regular.
These constructions do not require the global definition of Fourier integral
operators as the proof of Theorem 3.2.3 does.

We can now give an analogue of part iii) of Theorem 1.4.6.

Theorem 3.2.4. Assume that no complete bicharacteristic strip of
P stays over a compact set in X. Then the following conditions are equivalent :

a) P defines a surjective map from Q)' (X) to <£)' {X)/C°° {X).
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b) For every compact set K a X there is another compact set K' c X,
which can be taken empty when K is empty, such that u e #' (X)
sing supp tPu c X implies sing supp u cz Kr.

c) For every compact set K c X there is another compact set K' ci Xsuch
that any interval on a bicharacteristic curve with respect to P having
endpoints in K must belong to K'.

Proof, b) implies a) by Theorem 1.2.4. Assume that c) is fulfilled, and
let ueS'(X). If m e WF (u)\ WF (Pu) it follows from Theorem 3.2.1

that each bicharacteristic half strip through m must contain some point
in WF (Pu) unless it stays in WF (u) and therefore over a compact set.

However, if a bicharacteristic half strip stays over a compact set, then the

bicharacteristic strip through any one of its limit points in the sphere bundle

stays over this compact set in both directions which we have excluded by
hypothesis. Hence m lies on an interval of a bicharacteristic strip with end

points over K which proves that b) follows from c). By using a more precise
version of Theorems 3.2.1 and 3.2.3 and an argument close to the proof of
Theorem 3.6.3 in Hörmander [1] one shows that a) implies c).

Assuming still that P has no bicharacteristic strip which stays over a

compact set in X, we set N p~x (0) c X* (X)\0 and let C <= N x N
be the bicharacteristic relation of pairs of points in N which are on the same

bicharacteristic strip. It is then easy to verify that C is a homogeneous
canonical relation if and only if condition c) in Theorem 3.2.4 is fulfilled.
Let C+ (resp. C~) be the subset of pairs (nu n2) with n1 on the forward
(backward) bicharacteristic strip starting at n2. Using the calculus of
Fourier integral operators outlined in section 2.3 and Lemma 3.2.2 above

one can prove

Theorem 3.2.5. Assume that no complete bicharacteristic strip of P

stays over a compact set in X and that condition c) in Theorem 3.2.4 A fulfilled.
Then there exist right parametrices E + and E ~ for P, that is, operators such

that PE+ — I and PE~ — I have C00 kernels, with the following
properties1) :

a) E± are continuous linear maps from H(s)n S" to i/(s+At_ ^ for every s.

1) (Added in proof) In fact are also left parametrices and E±E~ e
IV2 - r (Xx X, C'). (See Duistermaat - Hörmander [1])
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b) WF'(E+) {resp. WF' (E~)) is contained in d*uC + {resp. A* U C

where A * is the diagonal in T*{X)\0 x T*(X)\Q.

c) Outside A * the kernels of E+ and E~ are in (X x X, C').

Condition b) determines E± uniquely mod C00.

A still better result, essentially due to Grusin [1] for operators with

constant coefficients, can be obtained in the following way. Let A+ and A

be properly supported pseudo-differential operators with A+ + A —I.
With E + and E~ as in Theorem 5.3.7 we obtain a new parametrix E if we set

E E+A+ + E~A~

It will inherit the continuity properties of E+ and E~ listed above, and

WF' (E) a A * u { (m, n e WF (A*) }

Using operators with symbols satisfying (2.1.3)' one can arrange that
WF (A*) F± are any closed cones in T*(A)\0 with union equal to

T*(X)\0. By condition c) in Theorem 3.2.4 one obtains for a suitable choice

of F+ and F~ a parametrix which can be extended to a continuous map
from H(s) (X) to H(s+ß__1) (A) for every s. This gives back part a) ofTheo-
rem 3.2.4 in a more constructive way.

We have only given global existence theorems here. However, local
results follow immediately and they require only that no bicharacteristic
strip for P stays forever over a fixed point in X. In the next section we shall
discuss some more serious obstacles to local solvability which may occur
when p is complex valued.

3.3. Necessary conditions for local solvability and hypoellipticity

We shall now allow the principal part p of the pseudo-differential
operator P to be complex valued. That this leads to a drastic change of the
situation discussed in section 3.2 was first realized by H. Lewy [1]. He
found that the equation

(d/dx1 + id/dx2 + 2i (xx +ix2) d/dx3) u f
does not have a solution in any open set for suitably chosen /e C00 (R3).
Starting from this example some necessary and some sufficient conditions
for existence of (local) solutions were given by the author (see Hörmander
[1, Chap. VI, VIII] and for the case of pseudo-differential operators
Hörmander [3]). Mizohata [1] observed that for the equation
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(3.3.1) {ôjdx1Jtixfdlôx2)u =f
there is an existence theorem for even k but no solutions near the x2 axis for
suitable / if k is odd. With this example as starting point more precise
conditions for local existence of solutions have been obtained by Nirenberg
and Trêves [1], [2] (see also Trêves [2], [3]) and by Egorov [2], [3]. We shall
discuss these results here in a somewhat more precise form made possible
by the notion of wave front sets.

Definition 3.3.1. The operator P is said to be solvable at x0 e Z if
there is an open neighborhood V of x0 such that for every /e C00 (Z) one

can find u e Q)' (X) with Pu f in V.

Introducing a positive C00 density in X we can form the adjoint fP of
P and write the equation Pu — f in K as

<ufPv > <f,v > a veCS(V).
We may assume that V X. Solvability implies that the bilinear form

Cœ(Z) X C?(F)9C/>) <f,v >

is separately continuous if for / we take the C00 topology and for v the

weakest topology which makes the mapping v -» fPv e C00 (X) continuous.
Hence the form is continuous (Banach-Steinhaus), which means that for
some semi-norms Nx, N2 in C00 (Z)

I <f,v > i ^ C Nl (/) N2 (fPf), / g C00 (X), v e Cq {V).

Nt and N2 are continuous semi-norms in C\ X) for some k. The estimate
is clearly valid also for f e Ck (Z), and an application of the Hahn-Banach
theorem to the map

fPv -+ <f,v >

shows that for everyf e Ck (Z) one can find u e S'k (Z) so that Pu /in V.

We have therefore proved

Proposition 3.3.2. If P is solvable at x0, then there is a neighborhood
V ofx0 and an integer k such that for everyfe Ck (Z) one can find u e ê'k (Z)
with Pu f in V.

To prove that P is not solvable at x0 it is therefore sufficient to exhibit

arbitrarily smooth functions / such that Pu — f is not smooth near x0 for
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any distribution u.This property has the advantage that it can be localized

in the cotangent bundle as indicated in section 2.2:

Definition 3.3.3. If(x0,£0) e T* (*)\° and f6 & (Z)> we s°y
that fe PS;' (X) at (x0, £0) if onecan find (T) so that £0) £

£ WF(Pu-f).We shall say that P is solvable at £0) if this is possible for
every f.

Solvability of P at a point (x0, £0) e T* (X)\0 is closely related to

smoothness there of solutions of the adjoint equation P*u / when/ is

smooth and WF(u) is close to (x0, f0). Such existence and smoothness

questions will therefore be studied simultaneously in what follows. To trace

the origin of our arguments we first digress to discuss boundary problems

for elliptic operators briefly.
Consider as an example the Laplace equation Au 0 in an open set

IcR" with a differential boundary condition Bu / on the smooth

boundary dX. If u0 is the restriction of u to dX, then u is the Poisson integral
of u0 and the boundary condition Bu / can be written as a pseudo-

differential equation Bu0 f where the principal symbol of B is easy to

compute. In this way the study of elliptic boundary problems (see Agmon-
Douglis-Nirenberg [1] or Hörmander [1, Chap. X]) can always be reduced

to the study of an elliptic system of pseudo-differential operators on the

compact manifold dX. The reduction is possible quite generally, however.

In particular we can take B d/dv where v is a non-vanishing vector field

on dX such that the equation <v, N> =0 defines a non-singular sub-

manifold Y of dX, if N is the interior normal of dX. From the results

related to Lewy's equation referred to above it follows that there is (local)
solvability of the boundary problem if on Y the derivative of < v, N >
in the direction v (which is tangential to dX on Y) is negative whereas there
is a non-existence theorem if it is positive. For regularity of solutions the

opposite signs are required. (See Borelli [1], Hörmander [3].) This strange
result was explained by Egorov and Kondrat'ev [1] who found that in the
two cases one should respectively introduce an additional boundary condition

on Y or allow a discontinuity there. The problem then becomes well
posed and solutions are smooth apart from a smooth jump. The proof of
Egorov and Kondrat'ev attacked the boundary problem directly but their
result can be translated to a property of a certain pseudo-differential operator
which is elliptic outside a submanifold Y of codimension one. General
theorems of this type have been proved by Eskin [1] and Sjöstrand [1].
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Here we shall to a large extent follow Sjöstrand but will only deal with the
situation corresponding to du/dv 0 and given restriction of u to Y.

Let us first consider the typical example given by equation (3.3.1) with

/ 0. If it is possible to take Fourier transforms with respect to x2, the

equation becomes

(djdx1-xf^u (xj, £2) 0

with the solution u(x,.i2) C(<^2) exp (<^2x1i: + 1/(^+1))- If k isocWwe
set for v e Cq (R)

Ev(x)(2tt)_1 J exp (Ç2 (ix21))) v (£2)
— oo

(27t)"1 j| exp (Ç2(i(x2-y)+x1k+1l(k
«2<0

From the results of section 2.3 it follows that E maps Cq (R) to C00 (R2)
and ê' (R) to $)' (R2) continuously, and it is clear that PEv 0 if P

(d/dx1 + ix1kd/dx2). Let y : R 9 x2 (0, x2) be the inclusion of the

x2-axis. Since the x2-axis is non-characteristic with respect to P, it follows
from (2.2.2) and Theorem 2.2.5 that the restriction y*Ev(x2) is defined,
and clearly we have

y*Ev(x2)(271)_1 J
— od

Using Theorem 2.3.1 we see that

WF'(E) {(*!, Çux2, Ç2,y2, ï]2)-,Xj^ 0, x2 j>2, Ç2 <0}.

For suitable choice of v we obtain a solution u Ev of Pu 0 with
WE(u) equal to any closed subset of F { (xl5 Çl9 x2, Ç2); xx ^

0, £2 < 0 } and conclude that P is not hypoelliptic. Moreover, if u e $'
and P*u /, then E*f 0 because E*P* (PE)* 0. In case we only
have (x0, £0) $ WF(P*u— f) for some wef we can still conclude that
WFr (E*) (x0, £0) $ WF(E*f). For every point in F this is a non-trivial

necessary condition in order that f e P Q)\X) at (x0, £0). (By studying the

inhomogeneous equation Pu f Sjöstrand also obtains the sufficiency.)
Let us more generally consider a pseudo-differential operator such that

the principal symbol in a local coordinate system with coordinates varying
over R" is of the form

(3.3.2) p(x, 0Çn + (x, O

when £ is in a conic neighborhood of £0 (0O, 0) # 0 and x is near 0 e R".
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Proposition 3.3.4. Letp be of the form (3.3.2) with k odd and

Re q (0, to)<0 IfBisa pseudo-differential operator in R"~1 with WF (B)

contained in a sufficiently small conic neighborhood of (0, there exists

a Fourier integral operator E : Cq (R" \) Co (R") continuous

extension from 6' (R" _1) to ß' (R") such that

(i) PE has a C"1 kernel.

(ii) 1 VF'(E) {(x',xnff'ffn;y',ri'),xn£„ 0,
(x'ff1)0>',ri')eWF(B)}

(iii) y* EB if y (x') (x', 0) e R", x' e R""1

Proof Let bbea symbol for B vanishing outside a small conic neighborhood

of (0, 0O). In or<ler to have (iii) we wish to write E in the form

(3.3.3) Ev(x)(27t)1 J ei9ix'9)a(x,e)i(e)dd

(27I)1"" |J ei(<Hx-e)-<3,'-e>) a

where

(3.3.4) <p(x,0) < x', 0 > ,a(x, 0) b(x',0) when xn 0

In order to obtain (i) the rules of geometrical optics require that one first
solves the characteristic equation

(3.3.5) d<p/dxn + ixnk q(x, dcp/dx) 0

approximately with the initial data of (3.3.4). By the general remarks made

in section 3.1 or directly by just computing what djcp/dxnj must be when

xn 0 for every /, we obtain a solution q> of infinite order when xn 0,

and

<p(x,0) <x',6> — ixnk+1 q (x', 0,0, 0)/(fc + 1) + O (xnk+2).

iVote that, in a neighborhood of (0, 0O) in which the support of a will lie,

3.3.6) Im cp(x, 9) ^ cxnk+1 \ 6 \

or some c > 0, which gives (ii) in view of Theorem 2.3.1. Following the
rules of geometrical optics (see also the parametrix construction in section

2.1) we determine successively the terms in an asymptotic series for a
such that (i) is fulfilled. In doing so we can let P act under the integral sign in
(3.3.3) and use the same formal expansion of p(eiq>(x>6) a (x, 0)) as if P
were a differential operator (cf. Hörmander [3], Nirenberg-Trèves [2] and
Hörmander [4, Theorem 2.6]).
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We can now continue the argument precisely as in the example above. It
follows that we can choose u with Pu e C00 and WF (u) equal to any closed

cone F in a sufficiently small neighborhood of (0, £0) in p-1 (0). We can
also choose / as smooth as we please so that / is not in P*^' (X) at any
point in F. Putting this conclusion in a form which is invariant under the

equivalence used in Lemma 3.2.2 we shall obtain the main results of this
section.

Proposition 3.3.5. Let Nj,j 1, 2, 3, be the sets of all m e T*(X)\0
with p (m) 0 having the following properties

(Nf) There exist Fourier integral operators A, B with the properties (i),
(ii) in Lemma 3.2.2 such that the principal symbol of BPA satisfies
the conditions in Proposition 3.3.4 at % (m).

(N2) H1 {pup2 } (m) 0, I 11 < p; H1 {pup2 } (m) XTc, | 11 pjor
some even integer p ^ 0, (Xl, X2) e R2\0, and real c < 0; here we have

written p p1 + ip2, denoted by H1 any product of | / | Ffamiltonian

first order operators HPi or HP2 and by A1 the corresponding product
of X1 or X2. If p A 0 then X2HPi (m) — 21LTpg (m) 0.

(N3) For some even integer /i| 0 and complex number z we have

(Re zHp)j {p>p} (m)/2i 0 for j < p and < 0 for j p

Then the closures of N±, N2, N3 in T*(X)\0 are equal.

Proof N1 cz N2. Since (N2) is invariant under canonical transformations

and multiplication ofp by a non-vanishing factor q (or even transformation

of (pi,p2) by a matrix with positive determinant) it suffices to check

(N2) when p1 (x, £) £„- xn feIm q (x, 0, Pi (x, 0 xn kRe q (x, Ç) and

Re q < 0. Then we have { pt, p2 } kxf~x Re^ (x, Ç) + O(xnk), HPi —

— d/dxn and HP2 vanish when xn 0 if k > 1. Since xn Owe obtain (N2)
with p k — 1, c kl Re q and X (1, 0) if k > 1. That N2 a N3 is

trivial. To show that N3 is in the closure of N1 it suffices to consider a point
in N3 such that z 1, that is,

HPlJ p2 (m)0 for j ^ (m) <0
Since p2 (m) 0 it follows that HPi (m) does not have the radial direction.

According to Lemma 3.2.2 we can therefore choose Fourier integral operators

A and B satisfying conditions (i), (ii) there so that the principal part of
BA is real and the real part of the principal symbol of BPA is £n near x 0*0-
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To economize notation we assume that already p1 (Ç) Çn. Then HPi

ô/ôxn and our hypotheses are now that m (0; 60, 0), dj/dxnJp2 (0; 0o,O)

0 for j ^ p and < 0 for j — p + 1. Hence p2 (0, xn ; 0O, 0) has the sign

of — xn for small x„. It follows that the equation p2 (x', xn; 0) 0 for
(x', <T) close to (0, 0o) has at least one zero where p2 for increasing xn

changes sign from plus to minus. If we choose such a zero close to m of
minimum multiplicity k, necessarily odd, we may conclude from the implicit
function theorem applied to dk~1 p2/dxk~1 that the zeros of p nearby are
defined by f?î 0 and an equation xn r (x', £') with r e C00 homogeneous
of degree 0 with respect to Noting that the Poisson bracket { xn —

— r (x', £') } is 1 it is easy to add further canonical coordinates to £n and

xn — r (x', £') to obtain a homogeneous canonical transformation changing
these functions to and xn. Implementing this by Fourier integral operators
as in Lemma 3.2.2 again we see that at some point corresponding to a point
arbitrarily close to m the transformed operator BPA will have a principal
part of the form Çn + iqx where qx (x, 0) x k

q (x, Ç') and q < 0.

Thus the principal part can be written £„ (1 +is) + ixkq where s is real.

Multiplication by an elliptic operator with symbol 1 + is) ~1 reduces it to
the desired form and completes the proof.

Definition 3.3.6. The closure of any one of the sets Nu N2, N3 in
Proposition 3.3.5 will be denoted by 7VT (/?), and we write N+ (p) N_ (p)
which corresponds to changing the signs in the definition of Nl9 N2, N3.

Note that in the case of differential operators the fact that p (x, Ç)

(-l)ßp(x> ~0 implies that N+ (p) and N_ (p) differ by multiplication
with — 1 in the fibers of T* {X). Thus they are simultaneously empty. This
is not the case for pseudo-differential operators. For example, the study of
the oblique derivative problem mentioned above leads to

P(x> 0 Zn + icxn I (J I

where c g R\0. Then p 0 is equivalent to xn 0 and { Re p, Imp}
c I f I has the sign of c there, so either N+ or AL_ is empty but not both.
From Propositions 3.3.4 and 3.3.5 we obtain by simple functional

analysis :

Theorem 3.3.7. Let F+ and F_ be arbitrary closed cones contained
m N+(p) and AL (/?). For every k> 0 one can find f e Ck (X) with
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WF(f) F+ such that f is not in P <3'(X) at any point in F+. One can
also find u e (X) with WF(u) and Pu e C00 (A).

The theorem shows that every (local) existence theorem must assume
that N+ (p) 0 and that hypoellipticity requires that 7V_ (p) 0. The
first statement is the necessary condition of Egorov, Nirenberg and Trêves
referred to above.

In the notation of Proposition 3.3.5 Egorov's form of the condition
iV_ (p) 0 is N3 0. To arrive at the version of Nirenberg and Trêves

we consider a point meT* (X)\0 with p (m) 0 and d Re p (m) ^ 0. The

equation Re p 0 defines a smooth hypersurface S containing m, and

through each point in S there is an oriented integral curve of HRep which
stays in S. Since in condition (N2) we must have A1 ^ 0 if p > 0, it follows
from (N2) and (N3) that N_ (p) 0 if and only if in a neighborhood of m
in S the restriction of Im p to integral curves of HRep never has a zero of
finite order where the sign changes from positive to negative. This is the
condition of Nirenberg and Trêves. They conjectured that a necessary and
sufficient condition for solvability at m of the adjoint (if Hp does not have

the radial direction) is that such sign changes do not occur at any zeros (of
finite or infinite order). A proof of the invariance of this condition under

multiplication ofp by a non-vanishing factor was given in Nirenberg-Trèves
[2, appendix]. In fact, they discuss a semiglobal version of the same condition

but the statements are not precise in this respect. Note that solvability
of P at (x0, Ç0) for every to ^ 0 does not imply solvability at x0. An
example is the differential operator in R2

P x1 djdx2 — x2 d/dx1

which in view of Lemma 3.2.2 is locally solvable at any point (x0, to)
obviously not solvable at 0. In Theorem 3.2.4 such behavior is ruled out by
the assumption that bicharacteristic curves cannot lie in a compact set and

similar conditions should be imposed in general.

3.4. Further necessary conditions for hypoellipticity

The standard definition of hypoellipticity which we have used throughout
is that P is hypoelliptic if

(3.4.1) sing supp u sing supp Pu, ueS)' (A).

This means that for every open set Y c X
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(3.4.2) u e & (X), Pu e C00 (7) => u e C00 (7).

For operators with variable coefficients this condition may be fulfilled for a

fixed Y, for example Y X, while (3.4.1) is not valid. For example, if
X { x e R2, 1 < I x I < 2 } and P x1d/dx2 — x2ô/ôx1 + 1 then P is

not hypoelliptic but (3.4.2) is valid if Y — X. On the other hand, using the

notion of wave front sets we -can also consider a stronger property than

(3.4.1)

(3.4.3) WF (u) WF(Pu),ue@' (X).

Such operators will be called strictly hypoelliptic here. All hypoelliptic
differential operators with constant coefficients as well as the hypoelliptic
operators discussed in Hörmander [4] (see section 2.1) are strictly
hypoelliptic. (It seems quite clear that if wave front sets had been considered

some 15 to 20 years ago, then (3.4.3) rather than (3.4.1) would have been

taken as definition of hypoelliptic operators.)
An operator P e Lß (X) is called subelliptic. if for some ö > 0 and real s

(3.4.4) u e H(s) (X) n g' (X), Pu e H(s+l_ß)(X) => u e H(s+ô)(X).

Elliptic operators correspond to <5 1. From (3.4.4) it follows that we have
a seemingly much stronger property: For any te R

(3.4.5) u e Q)' (X), Pu e H(t) at m g T* (X)\0 H(t+fl_i+ô) at m

In particular, subellipticity implies strict hypoellipticity. To prove (3.4.5)
we choose a real number r so that u e H(r) at m. Assuming that r ^ t + ft — 1

we shall prove that u e H(r+Ö) at m; by iteration this gives (3.4.5). Choose a

pseudo-differential operator A of order r — s which is non-characteristic
at m so that Au e H(s) (X) n g' (X) and APu e H(t_r + s) (X). We have

PAu APu — [A, P] u

Here APu e H(t_r + s) a H(s+1_fl) and [A, P] is of order ^ r — s + jj, — 1

so [A, P]u eH(s_fl+1) also. It follows from (3.4.4) that Au e H(s+Ô) (X),
hence that u e H(r + Ô) at m.

Subelliptic operators were characterized by Hörmander [3] for <5 1/2
by means of a localization method which is also valid for arbitrary 5 > 0
(see Hörmander [4]). In a series of papers Yu. V. Egorov has analyzed the
localized estimates for arbitrary <5 > 0 ; their complexity increases very
much as <5 0. In Egorov [2] it was announced that (3.4.4) (or (3.4.5)) is
valid if and only if N_(p) 0 (see Definition 3.3.6) and



— 152 —

(3.4.6) Hpjp(m) -0,0 Sj S Ji=> S ^ I/O + 2).

Here we have used the notations in Proposition 3.3.5 and p may be equal
to 0. However, according to the lecture by Egorov at the International
Congress in Nice there is a gap in his proof of sufficiency when HRep and

Hlmp are linearly dependent. (When they are linearly independent a proof
has been given in Egorov [3] and another is easily obtained by combination
of the results in Hörmander [3] and [5].)

In this section we shall derive other necessary conditions for hypo-
ellipticity from constructions of solutions with small singularities. These

are variants of Theorem 3.2.3. The first result is a more precise version of
one due to Trêves [5], [7].

Theorem 3.4.1. Let I be an interval c R and I b t -» y (t) e T*(X)\0
a bicharacteristic strip for P, that is, 0 ^ y' (0 is proportional to Hp (y (t))
for every tel. If I0 is a sufficiently small neighborhood of a point t0e I and

r (resp. r) is the closed conic hull of y (70) (resp. y (dl0)) one can for v —

0, 1, 2, find ueCv (X) so that WF(u) - T, WF{Pu) c r.
Proof There is nothing to prove if y (t has a constant projection on

the cosphere bundle. Otherwise we can after an application of Lemma 3.2.2

assume that (y (f0)) =£ 0. Let y (t0) — (x0, £0) and choose a function cp

so that

(i) cp (x) — <x — Xq, (^o > + i1 x — x0 12 in L where E is a plane in R"

through x0 which is transversal to p\ (y (t0)).

(ii) If y (,t) — (x (t), Ç then grad cp (x (t)) — £ (0) f°r t near and

p (x, grad cp) 0 of infinite order on the bicharacteristic curve { x (t)}.

By the remarks on first order differential equations given in section 3.1

it is possible to choose cp locally with these properties. Since Im cp vanishes

to the second order on { x (,t)} it follows from (i) that

(3.4.6) lmcp(x) ^ cd(x)2

where c > 0 and d (x) is the distance from x to the curve. One can now
repeat the proof of Theorem 3.2.3 to obtain u in the form of a Fourier
integral operator with phase function Ocp (x).

It seems difficult to improve Theorem 3.4.1 to a global result analogous
to Theorem 3.2.3 as one would like to do in order to study (3.4.2) for a

fixed Y. To do so we would first have to give a global definition of spaces of



Fourier integral operators which correspond locally to phase functions cp

such as the one just constructed. Besides the curve y (t), the most important
data contained in cp are the second order derivatives of (p along the curve.

Let V (t) be the tangent space of T(T*(X)) at y (t) reduced modulo / (t)
and restricted to the orthogonal space of y' (t). Then V (t) is symplectic,
and if Vc (t) is the complexification, the Hamiltonian field Hp gives

symplectic bijections %st : Vc (t) Vc (s). The Lagrangean plane defined

in local coordinates by 5Ç cp"xx ôx gives a Lagrangean plane A (t) in

Vc(t) with xstA{t) A (5). To have (3.4.6) we must require that A(t)
is positive in the sense that

Imcr(T, T) > 0 if 0 7^ TeA(t).

This condition is preserved by symplectic transformations which preserve
the real spaces V (t) but not by general complex symplectic transformations.
Thus positivity of A (t) does not imply positivity of A (s). This is why we
could make a global statement of Theorem 3.2.3 but not of Theorem 3.4.1.

However, we have no examples which prove that this global difficulty is not
merely due to the method of proof.

Next we consider a point m ep~x (0)\(N+(p) u 7V_ (p)) where HRep(m)
and Hlmp (m) are linearly independent. Then p~1 (0) is near m a manifold
of codimension 2 on which { Re p, Im p } 0 ; conversely, these conditions
imply that m<£ N+ (p) u 7V_ (p). By the Jacobi identity it follows that
L#Rep> #imp] H{Rep, imp} is a linear combination of HRep and Hlmp on
o~l (0). In view of the Frobenius theorem we conclude that through m
there passes a two dimensional local integral manifold of the vector fields

epj ^imcontained in p~1 (0) of course. This we call the bicharacteristic
strip through m. Combination of the proof of Theorem 8.3 in Hörmander [7]
with an analogue of Lemma 3.2.2 gives easily

Theorem 3.4.2. Let m ep~1 (0)\(N+(p)uN_(p)), and assume that
'/rc(: <'»). (m)andthe radial direction at m are linearly independent.

If V is a sufficiently small neighborhood of m in the two dimensional
bicharacteristic strip through m and T{resp. r') is the cone generated by V (resp.
cV), then one can for v 0, 1, find ue so that
IVF(Pu) c r.

It is easy to prove a global version of this result analogous to Theorem

3.2.3, at least when V is simply connected. (For more precise results
see Duistermaat-Hörmander [1]).
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When the radial direction lies in the bicharacteristic two plane it seems

hard to give simple general results. However, the following theorem contains
a case discussed by Trêves [5, 7]. For the sake of simplicity we assume that
the symbol of P is an asymptotic sum of homogeneous terms.

Theorem 3.4.3. Let A cz p"1 (0) be a conic Lagrangean manifold and

assume that on A the projection of Hp on the tangent space of S* (Z) is

proportional to a real vector and ^ 0. Let T be the cone generated by a finite
solution interval of this vector field which is not a closed curve in S * (X), and
let r be generated by the end points of the interval. Then one can for v

0, 1, find ueCv(Y) so that WF(u) F and WF(Pu) c r.
Note that Hp is tangential to A so the real vector field on S* (X) assumed

to exist must be tangential to the submanifold of S* (Z) induced by A.
The proof of Theorem 3.4.3 is a repetition of that of Theorem 3.2.3 if one
notes that for a homogeneous symbol differentiation in the radial direction
is equivalent to multiplication by the degree. The first order differential

equation in the direction Hp occurring in the recursive determination of
the amplitude can therefore be reduced to a differential equation with real
coefficients.

Assuming the conjecture stated at the end of section 3.3, Trêves [7]

deduced from the preceding results necessary conditions for hypoellipticity
of differential operators P with non-singular characteristics which were
also proved to be sufficient. If P is such an operator, the necessary conditions

are derived as follows:

a) By Theorem 3.3.7 we must have A_ (p) 0,
hence N+ (p) N_ (p)' 0.

b) By Theorem 3.4.2 the projection in T (Z) of Hp must have a real direction

if p 0. (If P is strictly hypoelliptic we conclude that Hp itself must
have a real direction modulo the radial direction. In view of Theorem

3.4.3 we then obtain a contradiction if Hp does not have a real

direction at some point.) Assuming from now on that p^ A 0 when

p 0 we obtain, if HK&p (m), Hlmp (m) are linearly independent for
some m with p (m) 0, that the projection p-1 (0) -> Z has rank

n — 1 at every point in some neighborhood of m. The projection is

therefore a hypersurface Y, defined by an equation p(x) 0 with
grad p A 0. Since p vanishes onp-1 (0) near m it follows that Hp is a

linear combination of HRep and Hlmp. Hence p (mj 0 implies
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p {m' + tHp(m')) 0 if t is small and m' is close to m. But p is a

polynomial in the fibers so this must be an identity in t. Thus p must vanish

in the normal bundle N(Y) of Y, which is a Lagrangean manifold.

On N(Y) we also obtain that Hp is a linear combination of HRep and

Hlmp which means that the hypotheses of Theorem 3.4.3 are fulfilled so

that P cannot be hypoelliptic. This contradiction shows that indeed Hp
must be proportional to a real vector.

c) By Theorem 3.4.1 there cannot exist any one dimensional bicharacteristic

strip for p. Hence it follows from b) that Im p cannot vanish on an
interval of a bicharacteristic strip for Re p.

d) Let p (m) 0 and assume that HRep (m) ^ 0. If the conjecture at the

end of section 3.3 is true, it follows that on each bicharacteristic strip
of Re p in a neighborhood of m the restriction of Im p is everywhere

^ 0 or everywhere ^ 0. Only one of the cases can occur for otherwise
there would exist a bicharacteristic strip for Re p on which Im p vanishes,
in contradiction with c). Hence we conclude that either Im p ^ 0 in a

neighborhood of m when Re p 0, or else the opposite inequality is

valid. Since we can choose a e C00 near m so that a Re p + Im p is

constant on a vector field transversal to (Re p)~1 (0), this means that m
belongs to the set Nv (p) introduced in

Definition 3.4.4. We shall denote by Nv (p) the set of all m g r*(X)\0
such that for some C00 function q in a neighborhood of m we have q (m) ^ 0

and Im qp ^ 0.

Naturally the function q can be chosen homogeneous. The set Nv (p)
is open and contains the complement of p~1 (0). Only the intersection with

~1 (0) is therefore interesting and it might have been more appropriate to
introduce only this set in the definition. Note that Nv (/?) n N+ (p)

Nu (p) n N_ (p) 0 for any p.
Modulo the truth of the conjecture at the end of section 3.3 it is therefore

proved that if p is hypoelliptic and p, # 0 when p 0 then Nv (p)
T* f 3f )\0 and there is no one dimensional bicharacteristic strip for p

(condition c) above). Conversely, Trêves [7] also proved that these conditions
imply hypoellipticity. We shall give a proof in the following section where
we also study the wave front set of solutions of Pu in (p).
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3.5. Sufficient conditions for solvability and hypoellipticity

Apart from the results of Hörmander [3] and Egorov [2] already referred

to, all such conditions given so far in the literature include the assumption

(3.5.1) N + (p) v AU (p) 0

This is a necessary condition in the case of differential operators but not in
general. (Cf. Definition 3.3.6 and Theorem 3.3.7.) When (3.5.1) is fulfilled,
p is real analytic, and p 0 implies p% A 0, Nirenberg and Trêves [2]
have proved that P is solvable at every point. In fact, they showed that for
every x0 e X and s e R there is an open neighborhood V of x0 such that for
every fe H(s) (X) one can find u e H(s+fl_l) {X) with Pu — f in V. The
analyticity assumption is needed to give control of the changes of signs in
say Im p when Re p 0. Unfortunately the proof which is based on an
abstract version of the energy integral method does not seem to lead to
information concerning the propagation of singularities. For this reason
we content ourselves here with a reference to part II of Nirenberg-Trèves [2]
and subsequent additions to appear in the same journal.

However, in Nv (p) the situation is not too different from the real case

studied in section 3.2. In fact, Trêves [7] has succeeded in extending the

geometrical optics constructions to operators with Nv (p) T* (X)\0.
The main point is that, although there may be no strict solutions to the
characteristic and transport equations, it is possible to find sufficiently good
approximate solutions. From his proof one can also obtain information
on the wave front sets. We shall indicate a different approach here based on
the energy integral method which gives a shorter though less constructive

proof.

Proposition 3.5.1. Let ue Q)' (X) and Pu f and consider a bichar-

acteristic strip 13 t -» y (t) e T* (X)\0 for Re p where I { t e R j h
^ t ^ t2 }. Assume that Im p U 0 in a neighborhood of y (I). If y (/) n
u WF (/) 0 and y (t2) WF (w), it follows that y (/) n WF (u) 0.
More precisely, iffe H(s) at y (/) and u e 1} at y (t2), then u e H(s+ß_ 1}

at y (/).

Proof The assertion about WF (w) follows from the last statement

applied not only to y (I) but also to bicharacteristic strips for Re p nearby.
In proving the last statement we may assume that MeF(s+/t_3/2) at y (/).
It is convenient to assume that \i — 1 which can be brought about by
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multiplication of P to the left by an elliptic operator of order 1 - p. Choose

a closed conic neighborhood F of y (I) such that Im p ^ 0 in a neighborhood

of r,feH(s) and u e {/2) in T. It is clearly enough to prove

Proposition 3.5.1 locally so we may assume that r has a compact projection
in a coordinate patch which is identified with R,T and that ue S" (R").

Let M cz Ss~1 (X x R") be a bounded subset of Ss (X x R") which

consists only of real valued functions with support in r. (We shall make an

explicit choice of M later where the closure in Ss (in a weak topology) can

contain symbols of order s.) With c e M we put C — c (x, D) and form

(3.5.2) (Cf, Cu) (CPu, Cu) (.PCu, Cu) + ([C, P] m, Cm)

Here denotes the usual sesquilinear scalar product. Write P A + iB
with A and B self-adjoint, that is, A (P+P*)/2, B — (P—P*)/2/. The

principal symbols a and b oï A and B are Re /? and Im p respectively. Taking
the imaginary part of (3.5.2) we obtain

(3.5.3) Im(C/, Ct/) (BCu, Cu) + Re([C,P] u, Cu) +

+ Im([C, Ä\ u, Cm)

We can write B B0 + Bl where the principal symbol of P0 is non-
negative everywhere and WF (Bx) does not meet P. By a well known
improvement of Gârding's inequality (Hörmander [3, Theorem 1.3.3]; see

also Lax-Nirenberg [1], Kumano-go [1], Vaillancourt [1], and for a still
more precise result Melin [1]) we have

(3.5.4) ReCB0v,v)Z - C, \\v \\(0)2,v e

where || |j(0) is the norm in L2 H{0). (We use here the more restrictive
definition of H(s)(Rn) as (1 —A)~s/2 L2 (R")0 Since BXC is of order - oo

we obtain with a constant C2 depending on u but not on C

(3.5.5) (BCu, Cu) ^ - Ci || Cu ||(0)2 - C2

Next we note that the symbol of C* [C, B] is ic { b, c } i { b, c2 }/2
apart from an error which belongs to a bounded set in S2s~ i. Since { b, c2 }
is real valued it follows that the symbol of the sum of C* [C, B] and its
adjoint is in a bounded set in S2^1, which shows that with another C2

depending on u

13.5.6) Re ([C, P] u, Cu) ^ - C2

In the same way we obtain
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(3.5.7) 2Im([C, Ä] u, Cu) ^ Re ({ a, c2 } (x, D) w, n) — C2

Summing up (3.5.3)-(3.5.7) we obtain with still another C2

(3.5.8) Re(e(x,D)w,n) ^ || Cf ||(0)2 + C2,Ce M

where

(3.5.9) e (x, 0 { a, c2 } (x, 0 - (2C1 + 1 )c (x, £)2 •

Clearly || C/||(0) is bounded when CeM. Note that while C2 and this
bound may depend on M, the constant Cx comes from (3.5.5) and is

completely independent of the choice of M.
We may assume that the map from I to the cosphere bundle defined by

y is injective. Let T0 be an open conic neighborhood of y (t2) where u e H(s)
and choose a non-negative C00 homogeneous function c of degree s with
support in F such that {a, c2} HRep c2 ^ 0 in T\r0 with strict inequality
in y (I)\r0. That this is possible is seen immediately if we first define c (x, Ç)

for |^| 1 using a norm in T7* (X) which is constant on the integral curves
of HR&p. Also choose C00 functions a0 and a1 homogeneous of degree 0

and 1 respectively so that Haa0 — 1, Haa1 0 and a1 is different from 0

in the support of c. This is also possible if the support of c is a sufficiently
small neighborhood of y (I). Now M will consist of the functions

CÄ,e — ceÀa°( 1 + s2a12)~1/2, 0<8^1,
where X is fixed Cx + 1. If c is replaced by &

the function e in (3.5.9)
becomes

eA,e ({a>c2} + (2/1 — 2Cx — 1) c2) e2Xa° (1 +s2a12)~i

Since ex>e ^ 0 outside T0 with strict inequality on y (/)\T0 we can choose a

non-negative homogeneous function r of degree s which is positive on y (I),
and a real valued homogeneous function q of order s with support in T0,
thus q (x, D)ue L2, such that

(3.5.10) r2 S({a,c2} + (2Â - 2C1 - 1) c2) e2Aa° + q2

Let rE r (l+e2a*)~1/2 and qE ~ q (1 +e2a12)~1/2. An application of
(3.5.4) to the operator with principal symbol equal to the difference of the

two sides in (3.5.10) multiplied by | £ |1_2s leads to the estimate

\\rs(x,D)u||(0)2 ^ Re(eAi£(x,D)M,u) + ||(0)2 + C3

since u e 77(s_1/2) in T. (Here we rely on the uniformity of (3.5.4) when the

symbol of B0 is bounded in S1.) In view of (3.5.8) we conclude that
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II rE (x, D) u ||(0) is bounded when s -> 0, which proves that the limit

r (x, D) u of re (x, D) u in Q)' must belong to L2. Hence ueH(s) at y (/),
which proves the proposition.

Another way of stating the proposition is that if y (/) n WF (/) 0
and y (tx) e WF (u), then y (/) c= WF(u). In view of Theorem 2.2.2 it follows

that y (I) c= p~1 (0), which implies that TTImp 0 on y (/) since Im p ^ 0.

Thus y (/) is a bicharacteristic strip for p. This gives the following extension

of a result of Trêves [7] mentioned above:

Theorem 3.5.2. If F is an open cone c= Nv(p) containing no
bicharacteristic strip for p, then

(3.5.10) WF (Pu) n T WF (u) n T,u g (X).

If F ZD p'1 (0) it follows that P is strictly hypoelliptic.

We can also obtain conclusions concerning the global existence of solutions

and the global regularity question (3.4.2). To state them we first
have to discuss the orientation of the Hamilton field Hp (m) when

m e Njj (p) n p~
1

(0). According to Definition 3.4.4 we can choose q so that

q (m) A 0 and Im qp ^ 0 near m. With p1 qp we have then d Re px (m) #
^ 0, d Im px (m) 0. If for another function r with r (m) A 0 we have

Im rpl 0 0 near then r (m) is either positive or negative. In the latter case

we obtain Im/71 ^0 near m when Repx 0, and since Im px ^0 it follows
that lm/?1 0 near m when Re px 0. Hence lmpx s Repx for some
smooth which means that px (1+A) Re px is real apart from a non-
vanishing factor. Ifp is not of this special form we conclude that r (m) > 0,
hence that Hrpi (m) r (m) Hp± (m) has the same direction as HPi (m).

Definition 3.5.3. By NR(p) we denote the set of all meP (I)\0
such that there is a C00 function q in a neighborhood of m with q(m) ^ 0
and qp real.

Nr (p) is of course an open subset of Nv (p) containing the complement
of /?-1(0). In NR(p) n p'1 (0) there is no natural way of choosing a

complex number z such that zHp is real, but if me Nv (p)\NR (p) we choose
as positive the direction of q (m) Hp (m) when q (m) ^ 0 and Im qp 0

in a neighborhood of m. The arguments preceding Definition 3.5.3 proved
precisely that this definition is unique.
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In Nr (p) we have the situation studied in section 3.2. However, the
orientation of the Hamiltonian field in Nv (p)\NR (p) enters the analogue of
Theorem 3.2.1 there.

Theorem 3.5.4. Let u e (X) and Pu /.
Ifme(WF(u)\WF(f))r\ Nv(p), then there exists a bicharacteristic strip
iDt y (t)e Nv (p)\WF (/) for p with me y (/) c= WF (u) such that I is a

(finite) interval on R and, if t0 is a boundary point of 7,

(0 y (*o) e (p)\Nr (p) and the positive direction of Hp (y (£0)) points
towards y (7) if t0 e 7.

(ii) y (t) does not converge to a limit in Nv (p)\WF(/) as 13 t t0 if t0£ /.

The proof follows from Proposition 3.5.1.

We can now give a partial extension of Theorem 3.2.4. Assume that
Nu (P) T* (X)\0- We shall say that a curve Id t - y (t) ep~* (0) is a

complete bicharacteristic strip for p if / is a finite interval in R and

(i) dyjdt is proportional to Hp (y (/)), tel,
(ii) y (f0) e A# (/?)\AÄ (/>) and the positive direction of Hp (y (f0)) points

towards y (I) if t0 is a boundary point of I belonging to 7.

(iii) y (t) does not converge to a limit in Nv (p) as Id t -> t0 if t0 $ /.

Theorem 3.5.5. Assume that Nv (p) — T* (!")\0 and that no complete
bicharacteristic strip for p stays over a compact set in X. Every ue S' (X)
with P*ue C00 (X) is then in Cq (X), which implies that the equation Pu — f
can be solved in a neighborhood ofany compact set K c X whenf is orthogonal
to the finite dimensional vector space offunctions v e C q (K) with P*v — 0.

The map from Fl' (X) to Q)' (A)\CG0 (X) defined by P is surjective if in

addition for every compact set Kcz X there is another compact set K' c X
such that K' contains the projection of any compact interval I on a complete
bicharacteristic strip J for p with the projection of the boundary of I relative

to J contained in K.

The proof is a repetition of part of the proof of Theorem 3.2.4 with
Theorem 3.2.1 replaced by Theorem 3.5.4.
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