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directement en se donnant à priori les conditions essentielles auxquellès

elle doit satisfaire.
Si l'on veut que les aires de deux domaines égaux soient égales, si 1 on

veut que l'aire du domaine formé par la réunion de deux autres soit la

somme des aires de ces deux autres, l'aire est déterminée à un multiplicateur

près qui correspond au choix laissé arbitraire de l'unité d'aire pour tous

les domaines que M. Jordan appelle les domaines quarrables. Quant aux

autres domaines, leur aire n'est pas déterminée par les conditions précitées.

Si l'on considère un domaine formé par la réunion d'une infinité de

domaines composants, l'aire précédemment définie du domaine total est la

somme des aires des domaines constituants, quand il s'agit de domaines

quarrables; mais il est impossible de profiter de l'indétermination de l'aire
des domaines non quarrables pour que, dans tous les cas, l'aire d'un
domaine D soit la somme des aires des domaines en lesquels on peut
décomposer D.

On voit par ces résultats que les problèmes qui se posent sont moins

simples qu'on aurait pu le croire. J'ajoute que cette manière de poser le

problème des aires, qui peut évidemment être aussi utilisée pour les volumes,
est susceptible d'être employée dans un ouvrage élémentaire, comme l'ont
fait voir MM. Gérard et Nievenglowski, d'une part, M. Hadamard, de l'autre.

Chapitre IX

Lorsqu'on se borne aux courbes convexes, ou décomppsables en courbes

convexes, la définition d'Archimède convient; il est vrai que les polygones
circonscrits n'existent pas toujours, si l'on entend par polygone circonscrit
un polygone dont les côtés sont des tangentes à la courbe, mais ils existent

toujours si l'on entend par polygone circonscrit un polygone dont chaque
côté n'a qu'un point commun avec la courbe. D'ailleurs, les méthodes qui
réussissent dans le cas de la circonférence permettent de démontrer l'identité
des deux limites qui interviennent dans la définition d'Archimède. Mais si

l'on prend une courbe quelconque, les mêmes raisonnements ne conviennent
plus. Après que Paul Du Bois Reymond eût signalé les difficultés que l'on
rencontre dans la définition des longueurs, Ludwig Scheeffer, puis M. Jordan,
reprirent la question. Voici leur résultat essentiel: si l'on considère une suite
quelconque de lignes polygonales inscrites dans une courbe et dont les

longueurs des côtés tendent vers zéro, les longueurs de ces lignes tendent
vers une limite, finie ou non, indépendante de la suite de lignes choisies.
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Cette limite est appelée la longueur de la courbe. Les courbes à longueur
finie sont dites rectifiables. M. Jordan a montré de plus qu'une courbe était
rectifiable ou non suivant que les trois coordonnées x, y z, étaient toutes
trois, ou non, des fonctions à variation bornée du paramètre variable ; une
fonction à variation bornée est la différence de deux fonctions croissantes.

Il semble que ces travaux résolvent toute la question, mais de nombreux
mémoires relatifs à la rectification des courbes, en particulier ceux de

M. Study, soulèvent bien d'autres points. Une question à laquelle on pense
de suite, et qu'avait déjà abordée Scheeffer, est celle du calcul de la
longueur. Voici un résultat simple:

Supposons que les dérivées x\ y', z' aient toujours un sens et soient

finies, alors la ongueur finie ou infinie de la courbe est toujours l'intégrale

de <\Jx y
^ -H z

Voilà un exemple qui montre l'intérêt que peuvent avoir les généralisations

de l'intégrale.
Pour passer aux aires, il est bon de remarquer que la définition adoptée

pour les longueurs est équivalente à celle-ci: la longueur d'une courbe C
est la plus petite des limites des longueurs des lignes polygonales tendant
vers C. Il sera donc naturel de dire: l'aire d'une surface S est la plus petite
limite des aires des surfaces polyédrales tendant vers S. Cette définition
est d'accord avec les définitions adoptées pour les cas particuliers qu'on
examine généralement, car, avec elle, l'aire de z — / (x, y) est l'intégrale de

ôz dz
— et — étant supposées continues.
dx dy

Qu'est-ce qui va correspondre à l'évaluation approchée de la longueur
d'une courbe à l'aire de polygones inscrits Divisons la surface en

morceaux. Soit C le contour d'un morceau, nous appellerons aire minima de C

la plus petite limite des aires des surfaces polyédrales ayant un seul contour
qui tend vers C. Comme valeur approchée de l'aire d'une surface on peut
prendre la somme des aires minima des contours limitant les morceaux
de la surface. Seulement, comme on pouvait s'y attendre d'après ce qui se

passe dans le cas du plan, on ne peut prendre les contours que dans une
famille spéciale de courbes, laquelle contient d'ailleurs toutes les courbes

rectifiables.



— 17 —

On voit que les choses se compliquent beaucoup, mais on ne peut guère

espérer arriver comme dans le cas des courbes à prendre pour définition

générale une définition voisine de celle d'Archimède, car M.M. Peano et

Schwartz ont montré à peu près au même moment, que même pour le cas

simple du cylindre de révolution les surfaces polyédrales inscrites ont des

aires qui ne tendent pas nécessairement vers l'aire du cylindre quand on fait
tendre vers zéro toutes les arêtes de ces surfaces polyédrales.

Il est vrai que l'on peut cependant adopter encore la définition d'Archimède,

à condition de dire que l'on ne considère que des surfaces polyédrales

convexes, mais comme il existe des surfaces très simples, le paraboloïde
hyperbolique par exemple, qui ne sont pas décomposables en morceaux

convexes, il est indispensable de ne pas s'en tenir à la définition d'Archimède.
La définition que j'ai indiquée plus haut n'a pas encore été beaucoup

étudiée, on ne sait presque rien sur la représentation paramétrique des

surfaces d'aire finie, ni sur l'expression de l'aire.1)
D'autres définitions ont été proposées. Je laisse de côté celles dans

lesquelles on a essayé de considérer des surfaces polyédrales inscrites et

assujetties à certaines conditions supplémentaires. Ces définitions, presque
toutes insuffisantes, même pour lé cylindre, ne s'appliquent que dans des

cas peu généraux et sont très arbitraires. Je laisse aussi de côté la définition
proposée par Hermite, et qui est reproduite dans beaucoup de traités
d'analyse français parce qu'elle ne s'applique qu'aux surfaces ayant des plans
tangents et parce que, faisant intervenir les axes de coordonnées, c'est
seulement le calcul de l'aire qui montre que cette aire est indépendante des

axes choisis.
Je veux dire quelques mots d'une définition proposée indépendamment

par M.M. Laisant et Peano. Considérons un contour fermé C; on peut,
au moins dans les cas simples, trouver un contour plan C1 tel que les

projections de C et de C1 sur un même plan quelconque de l'espace limitent
toujours des aires égales. L'aire de Ct est l'aire gauche de C; on voit de
suite l'analogie entre l'aire gauche d'un contour et la distance de deux
points. Cette analogie comprise, on devine que l'on va appeler aire d'une
surface la limite supérieure des nombres obtenus en divisant la surface en
morceaux d'une façon quelconque et en attachant à chaque division la

r) De très nombreux travaux ont éclairé beaucoup ces questions, bien qu'on manque
encore d'une théorie simple; les travaux actuels sur l'aire des surfaces sont encombrés
d'un arsenal très lourd de notions dont toutes ne sont sans doute pas définitives. Voir
T. Rado, Length and Area, Colloquium Publications, Princeton 1948 (572 p.) et
L. Cesari, Surface Area, Annals of Math. Study, Princeton 1956 (593 p.). G. C.

L'Enseignement mathém,. t. XVII, fasc. 1. 2
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somme des aires gauches des contours de ces morceaux. M. Frechet a

signalé un rapprochement curieux entre l'aire gauche et l'aire des domaines

plans en montrant que l'aire gauche peut être définie simplement par
certaines de ses propriétés, analogues à celles que l'on peut employer pour
définir l'aire des domaines plans.

Pour en finir avec ces questions sur lesquelles j'ai longuement insisté

parce qu'on les considère volontiers comme tranchées depuis longtemps
alors qu'il est très facile d'apercevoir combien il reste à faire, je signalerai
une très jolie définition employée récemment par M. Minkowski et qui
avait été aperçue dès 1854 par Borchardt.

Les définitions dont j'ai parlé jusqu'ici sont des traductions en langage

mathématique des opérations que l'on fait pour mesurer pratiquement une
courbe ou une surface en la remplaçant par une ligne polygonale ou des

surfaces polyédrales voisines mais on peut aussi opérer pratiquement d'une
autre manière: supposons qu'il s'agisse de mesurer une courbe ou une
surface réalisées matériellement sous forme de fil, ou de feuilles; on pourra
évaluer de bien des manières le volume de l'objet, par exemple à l'aide du

poids. Le quotient du volume par l'aire de la section du fil ou par l'épaisseur
de la feuille est la longueur ou l'aire, au point de vue pratique, de l'objet
considéré.

C'est en traduisant ce procédé opératoire en langage mathématique que
M. Minkowski a été conduit à toute une suite de définitions qui lui ont
permis de renouveler le problème des isopérimètres.

La comparaison de toutes ces définitions reste à faire.

Chapitre X

Je reviens maintenant aux opérations fondamentales de l'analyse; après

l'intégration, la dérivation.
Autrefois on plaçait toujours le calcul différentiel avant le calcul intégral ;

dans son cours d'analyse, M. Jordan définit l'intégrale avant la dérivée.

Cela peut se justifier: si l'on recherche les origines géométriques de la
dérivation et de l'intégration, on trouve que celles de l'intégration
précédèrent, et de beaucoup, les autres; puis l'intégration est plus générale que
la dérivation; puis encore bien des résultats sur la dérivation se déduisent

immédiatement de ceux relatifs à l'intégration.
On dit parfois, d'une façon un peu trop absolue, que les géomètres des

siècles derniers admettaient que toute fonction a des dérivées. J'ai eu
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