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RÉSOLUTION EN NOMBRES ENTIERS
DE L'ÉQUATION DIOPHANTIENNE n(n+1) 2n'(n'+l)

par S. Thouvenot, Docteur de l'Université de Paris

Il est classique de résoudre les équations diophantiennes 2x2 ± 1 y2

par des formules de récurrence. Le problème, examiné dans cet article,
conduit une nouvelle fois à ce résultat. Mais les considérations qui sont

développées à cette occasion, en particulier celles qui utilisent à la fois

I une double descente infinie et des conditions de primalité à chaque étape
de ces descentes sont, semble-t-il, peu courantes.

1. — On se propose de trouver, s'il en existe, des solutions en nombres
entiers de l'équation

n (w+1) 2n' (ra' + l) (1)

Pour cela, on partira de l'équation plus générale

n (n+v) 2ri (w'+v) (2)

avec v entier positif

On établira diverses propriétés qu'ont nécessairement les entiers n, nf et v

vérifiant (2) puis à partir de celles-ci on examinera plus particulièrement
le cas de v 1, avec comme objectif d'atteindre toutes les solutions de (1).

2. — De (2) on déduit les inégalités évidentes

n > n' et n + v > n (3)

ainsi que l'impossibilité des solutions

n 2 ou n + v 2

qui conduiraient pour v à des valeurs négative ou fractionnaire.

2. — Examinons maintenant si l'un des quatre nombres n, n + v, n,
n' + v, peut être premier. Les quatre cas où l'un de ces nombres pourrait
l'être seront étudiés successivement. Les raisonnements suivis seront
extensibles aux cas où, sans être premier, l'un des quatre nombres n, n + v,
n\ n' + v, diviserait un des facteurs de (2) situé dans le membre opposé
de (2) où il se trouve lui-même.

L'Enseignement mathém,. t. XVI, fasc. 3-4. ^4
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3.1 — n est premier (différent de 2) donc impair.

n ne peut diviser ri à cause de (3).
Il y a donc un entier 2 tel que

ri + v Xn (4)

(2) montre alors que n + v 2Xri
En éliminant ri puis n entre les deux relations précédentes on a d'une

part
v (22+1) - (2X2-l)n

et d'autre
v (2+1) (222 — 1) ri

ce qui conduit à

n(X+1) ri (22+1) (5)

Comme n est premier avec ri et que (2+1) l'est avec (22+1) on a

n 22+1 ri 2 + 1

ce qui entraîne

v 2X2 - 1 (6)

ne peut être égal à 1 que si 2 1.

En ce cas

n — 3 ri — 2

On a ainsi démontré que (1) a au moins une solution (qu'il est facile
de vérifier).

3.2 — n + v premier (différent de 2) est à éliminer puisque n + v ne

peut diviser ri + v en vertu de (3) ni à fortiori ri.

3.3 — ri est premier.
Si ri divisait n il y aurait un entier 2 tel que n Xri ce qui conduirait

à écrire (2) sous la forme

ri (22 —2) t» v (2 — 2) (7)

équation qui ne permet aucune solution en entiers positifs pour n\ X et v.

Si maintenant ri divise n + v, il y a un entier 2 tel que

n + v Xri (8)

En raisonnant comme en 3.1 ci-dessus, on établit la relation

n(X+2) 2ri (2+1) (9)

de laquelle on déduit que deux et deux seulement éventualités sont possibles
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22 — 2
2n' 2 + 2 « 2 + 1 — 2« — 1 v —

ou

«' 2 + 2 « - 2(2+1) - 2n' - 2 v 22 - 2

v ne peut être égal à 1 que dans la première de ces deux éventualités

cas (10) montre que
2 2 n — 3 n 2

On retrouve le résultat rencontré en 5.2 ci-dessus.

5.4 — Il est facile de voir que n' + v ne peut ni diviser n ni diviser

n + v. Dans l'un et l'autre cas (2) ne permet en effet d'avoir aucune solution
en n et n' où ces deux nombres seraient simultanément entiers et positifs.

5.5 — Dans le cas où v 1, on conclut des développements précédents
(5 à 3.4) que hormis le cas où

n 3 «+1=4 n' 2 n' + 1 3 (12)

les quatre nombres n, n + 1, n', n' + 1, résolvant (1), s'il en existe, sont
nécessairement composés. Bien plus, même s'ils sont composés — cf 3 —
aucun d'entre eux ne peut diviser l'un des autres.

4. — Revenons à la relation (2)
Et supposons (hypothèse Hx) que n, n + v, n' et n + v sont composés

et qu'aucun ne divise l'un des autres.

Supposons aussi (hypothèse H2) que n et n + v d'une part, n' et ri + v

d'autre part sont premiers entre eux.

Il est clair que si v 1 H1 et H2 sont également vérifiés — sauf dans
le cas particulier de n 3, n' 2 signalé en 3.5 —

Posons alors

n ab

n' + v aß

a et b d'une part, a et ß de l'autre étant premiers entre eux.
Deux éventualités et deux seulement sont alors possibles

El où f «=2««) f]4) E2 où { «=a« 1

{n+v=bß J
U J' \n+v=2bß\ (15)

On supposera maintenant que a, oc,et sont premiers entre eux deux
à deux (hypothèse H3). Il est facile de voir que si 1 que les conditions
de l'hypothèse H3 sont nécessairement remplies et qu'en outre on a

dans le cas de Ex bet ßimpairsdans celui de E2 a et a impairs.

(10)

(H)
auquel
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5. — Dans le cas de E1 on peut alors écrire (par définition de n, n + v,

ri et ri -f v)

bß 2aa + v ccß — ab + v (16)

d'où l'on déduit

ß (b — a) a (2a — b) (17)

Comme a est premier avec ß, et que (b — a), l'est avec 2a — b — cf H3
de 4 — on a

b - a a ß 2a- b (18)

5.1 — De même dans le cas de E2 on a successivement

2bß aa + v aß ab + v (19)

ß (2b — a) a (a — b) (20)

d'où l'on déduit par un raisonnement identique à celui fait en 5 ci-dessus :

2b — a a ß a — b (21)

5.2 — Les relations précédentes (16) et (18) dans le cas de Eu et (19)
et (21) dans le cas de E2 permettent de calculer tous les nombres (a, a,

b, ß et v) caractérisant une solution de (2) dès lors que l'on connaît deux
d'entre eux.

Les tableaux ci-annexés T. I pour E1 et T. II pour E2 montrent à quels
résultats on parvient — par des calculs élémentaires — en partant de tous
les couples possibles formés de deux des quatre nombres a, a, ù, ß supposés

connus.

6. —Plaçons nous dans le cas de Ex et de v 1.

6.1 — En se reportant à T. I — couple de facteurs a, a — on voit que

ß a — a
1 a2 — 2aa — a2

ß et b sont impairs — cf 4 in fine — ce qui entraîne a et a de parité opposée.

L'équation ci-dessus en a et a montre que

a a ± \J 1 2a1 (23)

a devant être entier positif, seul le signe + est à retenir, et pour que
l'on ait ß a — a, il faufi que

ß2 1 + 2a2 (24)

— condition que donnait déjà le tableau T. I pour v 1 au couple de

facteurs a, ß —
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6.2 — Examinons la parité de a

Si a est pair, posons a 2a\ on peut alors écrire — cf (14), (16) avec

v 1 et (22) —

n 4a'oc n + 1 bß ri la'b ri + 1 ccß

En ce cas, il est clair que a, ß et b sont impairs.
Si a est impair, a est pair — cf (22) — Posons a 2a'.

On écrit de même

n Aaa' n + 1 bß ri ab ri + 1 2oc'ß

bß 4aa' + 1 2a'ß ab + 1

En se reportant à T. I couple de facteurs (a, b) on voit que

a b — a b — 2a (26)

Dès lors en se reportant aux relations (25), on a

2a bß %aa'2 + 2a ab2 + b (27)

et en comparant (26) et (27) on a

8 a'2 b2 + 1 (28)

Il est facile de voir que (28) ne peut jamais avoir de solutions en nombres

entiers. Quel que soit b, on a
b2 0, 1, 4 (8)

donc
b2 + 1 1, 2, 5 (8)

On ne peut donc jamais avoir b2 + 1 0 (8).

Il résulte de ces développements que dans l'hypothèse Ei a est pair,
a, b et ß sont impairs.

6.3 — Revenons à 6.1. Toute solution (a pair, a, 6, ß, v=l) définissant

un couple de nombres n, ri vérifiant (1) est donc tel que (24) soit vérifié.

6.4 — Inversement si l'on se donne un couple de deux nombres a et ß

répondant à la condition (24), (23) permet de définir un nombre vérifiant
la deuxième relation (22) pour la valeur de a considérée. En choisissant

pour la valeur de b celle (a+oc) donnée par T. I pour le couple (a, a), on a

quatre nombres (a, a, 6, ß) caractérisant par (14) deux nombres n et ri
constituant une solution de (1).

6.5 — On notera dès maintenant si v 1, en se reportant à T. II que
si l'on connaît une solution {a2 a2 b2 ß2) caractérisant des nombres n et
ri vérifiant (1) et répondant à l'hypothèse E2 on a nécessairement:
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1-OC22- 2b\

En prenant a b2ß oc2 on dispose de deux nombres a et ß répondant
à la condition (24) utilisables selon 6.4.

6.6 — Application.
On connaît déjà la solution exceptionnelle (12) n 3, n' 2 qui peut

être rattachée à E2 en posant

a2 — 1 a2 3 b2 2 /]2 1

En prenant a 2, ß 3 qui répondent à (24) on peut, en procédant
comme il a été indiqué en (5.4 calculer

a 5 b 7

d'où l'on déduit la solution de (1)

n 20 n + 1 21 14 + 1 15 (29)

(5.7—Indépendamment de toute référence à des couples de nombres
vérifiant auparavant (24) et issus de la connaissance antérieure d'une
solution répondant à l'hypothèse E2 on peut définir une formule de récurrence

permettant de construire une quantité infinie de solutions
correspondant à l'hypothèse E1 dès lors que l'on connaît l'une d'entre elles.

Il suffit pour cela de remarquer que si

ß2 1 + 2a2

et si l'on pose
ß' 2a2 + ß2 a' - 2aß (30)

on a nécessairement
ß'2 - 1 + 2a'2

Exemple

De (29) on peut déduire à partir de

a' 2.2.3-12 ß' 2 22 + 32 - 17

la solution (12, 29, 41, 17 n 697 n' — 492). Et de celle-ci

à son tour on déduit par le même procédé

2 12 17 408 ß' 2. 122 + 172 577

et la solution (408, 985, 1393, 577).

7. — Voyons maintenant le cas de E2 avec v — 1

7.1 — En se reportant à T. II (couple a, a), on a n + 1 pair donc n

impair donc a et a impairs
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2ß — a — a I (31)

2v 2 a2 — 2aoc — a2 J

Posons

a 2u + 11 (32)

a 2/? + 1J

d'où l'on déduit
ß u — p (33)

L'équation en a et a ci-dessus — cf (31) — s'écrit après simplification

v 2u2 — 4pu — [(2pJrl)2 — 2p2] (34)

c'est-à-dire avec v 1

u2 — 2pu — (p+1)2 0 (35)

dont le déterminant est

P2 + (P+1)2 (p+1) + 1 (36)

et les racines

u p ± p2 + (p+1)2 (37)

w ne peut être entier et positif que si l'on choisit le signe + dans (37) et si

p2 + (/?+l)2 est le carré d'un nombre impair qui compte tenu de (33) et
de (37) ne peut être que ß. On a donc

P2 + (P+ \)2-ß2 (38)

Mais si ß est impair, il y a un nombre impair p' tel que

4p'(p'+ l)+l=ß2 (39)

En comparant (36) et (39) on en conclut que

P(P+1) 2/Q/+1) (40)

7.2 — D'autre part si ß est impair — cf (38) — et si a et a le sont
— cf (31) — seul b est pair et dans (1) seuls («-f 1) et n' le sont.

7.3 — Les résultats donnés dans 7.1 conduisent à une triple conclusion:

7.3.1 — On connaît par (32), (33) et (38) la condition que doivent remplir
les facteurs (a, a, b, ß) de n et n' formant une solution de (1) répondant

à l'hypothèse E2, outre celles découlant du tableau T. II
ci-annexé ;

7.3.2 — Inversement si on se donne deux nombres impairs a et ß répondant
à (32) et (38), on peut définir a et b, pour que (n'=aa, n'^ab) soit
une solution de (1);
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7.3.3 — Enfin par (32), (33) et (40) on dispose d'une formule de récurrence

permettant de construire un nombre infini de solutions de (1).

7.4 — Application.
Partons de la solution (12). En posant p 3, on a — cf (32) —

a 2 3 + 1= 7 et — cf (38) — ß2 32 + 42 52 (ß=5l) d'où l'on
tire une nouvelle solution de (1)

(7, 17, 12, 5) avec n 119 ri 84 (41)

A son tour (41) permet de poser

p \\9 a 2.119+l 239 ß2 1192 + 1202 1692 ß \69

d'où l'on tire la solution de (1)

(239, 577, 408, 169)

7.5 — On peut évidemment utiliser pour p toute valeur n déjà connue
figurant dans une solution de (1) qu'elle soit ou non reliée à l'éventualité
E2 ou Ex. Mais la nouvelle solution que l'on construira à partir de n sera

elle, liée à E2.

Ainsi, partant de la solution trouvée en 6.6 (n=20, ri — 14), on peut écrire

a 2.20 +1 =41
p2 202 + 212 292

d'où l'on tire la solution (41, 99, 70, 29) avec n 4059 et ri 2870.

8. — On peut maintenant rassembler les résultats précédemment
obtenus, et ceux que l'on peut susciter à partir de ceux-ci en utilisant les

procédés décrits aux paragraphes 6 et 7 précédents sous forme d'un tableau

(cf. T. III ci-annexé).
On notera que les mêmes nombres caractérisant a, oc, b ou ß apparaissent

dans les colonnes des parties gauche et droite de T. III, mais celles d'un
côté sont décalées latéralement et horizontalement par rapport à celles de

l'autre côté.

T. III fait apparaître quelques propriétés sur lesquelles il n'y a pas lieu

ici d'insister:

— tous les nombres figurant dans une même colonne de T. III obéissent

à une loi de récurrence générale identique qui est donnée par les formules
ci-dessous où ut est le iéme nombre de la colonne considérée (en partant
du haut)

ui+1 (3.2) Ui - (1.1) W;_ (7.5) M;_ - (3.2) w;

(17.12) M;_2 - (7.5) Ui~i(29.41) wf_3 - (17.12) (42)
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tous les coefficients numériques ci-dessus sont les produits successifs de deux

nombres de même rang de deux colonnes différentes — toujours les mêmes

— dans une même colonne la différence entre deux nombres consécutifs

est égale (pour a, a, b et ß) au double d'un nombre figurant dans une autre

colonne (ex: 70 — 12=2.29 169 — 29=2.70

9. — Il y a lieu maintenant de montrer qu'aucune solution de (1) ne

peut exister autre que celles figurant au tableau T. III ou pouvant y figurer

par des applications répétées des procédés décrits aux paragraphes 6 et 7

en partant de la seule solution (12) pour laquelle n 3.

Pour cela on établira d'abord que ces mêmes procédés employés à

rebours permettent en partant d'une solution (n, ri) supposée connue de (1)

— qui peut être à priori différente de l'une des solutions pouvant figurer
dans T. III — de construire une nouvelle solution de (1)

(n1<n, n\)

ou d'aboutir à une contradiction avec des résultats déjà connus et nécessaires.

Dans le premier cas on continuera à partir de (nu riß) les investigations
commencées avec {n, n'), en vue de trouver, s'il en existe, une nouvelle

solution (n2<n1 ri 2) de (1) ou si tel est le cas de déboucher sur une autre
contradiction.

Toute apparition d'une contradiction avec des résultats déjà connus et
nécessaires conduit à abandonner ou dès l'origine, ou en route (suivant
le moment où elle se manifeste) le chemin dans lequel on s'est engagé.

On se trouve en présence d'un « arbre » de décisions (construit selon

un procédé à double choix) de « descente infinie » dont toutes les branches
successives se terminent dans le vide (contradictions apparues), sauf peut-
être une si l'on débouche à son extrémité sur n% 3. En ce cas on retrouve
la souche initiale de T. III et (n, ri) figure nécessairement dans T. III.

On ne cherchera pas à identifier les nombres ri u ri2, successifs. Il
suffit d'établir la suite des nombres n, nu n2, nt décroissants. Il n'est
même pas nécessaire de se donner au départ le couple {n, ri) des nombres
vérifiant (1). Il suffit de se poser la question de la manière suivante:

n peut-il figurer dans un couple de deux nombres formant une solution
de (1)

9.1 — En nous reportant à ce qui est indiqué aux paragraphes 2 et 3,

p il est clair que ni n m ni ne peuvent être égaux à 1 ou à 2, qu'ils ne peuvent
être premiers ou décomposés en deux facteurs dont l'un serait égal à 1



— 212 —

(sauf si n ou nt est égal à 3) et qu'ils ne peuvent être décomposés en facteurs

qui ne seraient pas premiers entre eux (ce qui exclut, par exemple, que l'on
ait ri — 2J).

D'autre part et sauf dans le cas où l'un de ces nombres n ou nt serait
égal à 3

— n impair est décomposable en deux nombres atta impairs, en même

temps que (n+1) l'est en deux nombres 2b et ß, b pair, ß impair

— ou n pair est décomposable en deux nombres 2a et a, a pair, a impair en
même temps que {n+1) l'est en deux nombres impairs a et ß (a, a, b et ß

étant différents de 1 et premiers entre eux)

— et de même nt et (^^+1) pair ou impair sont décomposables en nombres

ai9 oq, Zq, ßt répondant aux mêmes critères que a, a, b et ß.

Les formules liées aux éventualités E± (a pair) ou E2 (a impair) sont
applicables.

9.2 — Si a est impair et de la forme a 2p + 1? il y a nécessairement

en vertu de ce qui a été démontré en 7.1 un nombre

a — 1

(43)
2

qui doit figurer dans un couple (p, p') de nombres p et p' vérifiant (1).
On a donc

— 1

«i - (44)

et

n1 < n

9.3 — Si a est pair, n est pair, (n+1) est impair et («+1) est décomposable
en deux nombres b et ß impairs vérifiant — cf T. 1 — les relations

1+2a2 ß2

et

2 ß2 + 2bß -b2 (45)

Le déterminant de (45) est 2{b2+\) qui est pair et doit être en même temps
le carré d'un nombre pair" 2 y.Ona donc

b2+ 1 2 (46)

En posant

b+ 1 (47)
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(46) s'écrit

\ y2 + (q+1)2 1

yy2 2q (#+1) + 1
J

(48)

Mais y est impair en vertu de (48) et il y a un nombre q' tel quey24 1) + 1 (49)

On a donc

q(q+l) 2q' 1) (50)

De n figurant dans un couple de nombres vérifiant (1) on est donc passé

— par la décomposition de (/z+l) — à q figurant dans un nouveau couple

de nombres vérifiant (1). On peut donc prendre

9.4— Ainsi donc, en partant de n, et en supposant n différent de 3,

de deux choses l'une, ou n n'est pas décomposable en facteurs premiers

entre eux dont aucun n'est égal à 1, et n ne peut figurer dans aucun couple
de deux nombres vérifiant (1); ou il Vest. Si n est impair, on considère tous
les modes de décomposition possibles en deux nombres impairs a et a

premiers entre eux et pour chaque nombre a possible, on dispose d'un

nombre pouvant être substitué à n pour la recherche du problème

Si n est pair, on considère (/?+1) qui est impair et qui lui, doit être

décomposable en deux nombres impairs b et ß premiers entre eux. S'il ne

l'était pas n ne pourrait figurer dans aucun couple de deux nombres vérifiant

(1). S'il l'est, on dispose pour tout nombre b possible d'un nombre
b - 1

—-— pouvant être substitué à n pour la recherche du problème posé.

a - 1 b - 1

Ensuite, on continue avec les différents nombres et ainsi
2 2

apparues les mêmes opérations qui de nombres impairs en nombres impairs
décroissants font apparaître des nombres nt eux-mêmes allant en décroissant.

On aboutit ainsi nécessairement après un nombre limité d'opérations de

cette nature, soit à une contradiction avec les conditions rappelées en 9.1,
soit à nt 3 qui est la souche même de T. III.

b - 1

(51)< n

posé.
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Il n'y a de nombre n figurant dans un couple (n, n) vérifiant (1) que
ceux figurant dans T. III.

Il est facile d'autre part de vérifier que si n est dans l'un de ces couples
il n'est que dans ce couple. Autrement dit l'arbre de décomposition de n,
s'il débouche sur n 3, ne peut provenir que d'une et une seule solution
(n, n') figurant dans T. III.

9.5. — Quelques exemples permettront d'éclaircir ce qui vient d'être
développé.

9.5.1 — Soit n 527, impair, et décomposable d'une seule manière en
31 X 17. L'arbre de 527 se construit facilement:

De a — 31 =2.15 + 1 on déduit nl 15 impair, décomposable

5x3
J i 3 2.1 + 1 n2 1 { impossible

[al 5 2.2+1 n 2 2 j cf 9.1

De a 17 2 8 + 1 on déduit ni 8 23 impossible cf 9.7

527 ne peut figurer dans aucun couple (527, n') vérifiant (1).

9.5.2 — Soft n 44 pair et décomposable
n + 1 45 est décomposable de deux manières 5 x 9 et 3 x 1.5

b - 1

De b 5 on déduit nt ——— 2 impossible cf 9.7

b -\De b 9 on déduit —-— 4 2 impossible cf 9.7

b1 - 1

De b 3 on déduit 1 impossible cf 9.7

De b 5 on déduit ^ —-— 7 premier impossible cf 9.7

44 ne peut figurer dans aucun couple (44, n') vérifiant (1)

9.5.3 — Soit n 34 pair et décomposable

n + 1 =35 décomposable en 5 x 7

b — 1

De b 5 on déduit nx —-— 2 impossible cf 9.7

b - 1

De b 7 on déduit nx 3 possible
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n — 34 ne peut figurer dans un couple (34, n) que si ce couple
dérive du couple (n=3, n'=2) figurant dans le tableau III et donc

y figure lui-même. En ce cas 34 ne figure que dans un couple
(34, /?'), si du moins ce couple existe.

S. Thouvenot
74, rue Raynouard
Paris (16)

Reçu le 13 octobre 1970)
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