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RESOLUTION EN NOMBRES ENTIERS
DE L’EQUATION DIOPHANTIENNE n (n+1) = 20’ (W' +1)

par S. THOUVENOT, Docteur de I’Université de Paris

: Il est classique de résoudre les équations diophantiennes 2x* + 1 = »*
i par des formules de récurrence. Le probléme, examiné dans cet article,
conduit une nouvelle fois & ce résultat. Mais les considérations qui sont
© développées a cette occasion, en particulier celles qui utilisent & la fois
¢ une double descente infinie et des conditions de primalité & chaque étape
de ces descentes sont, semble-t-il, peu courantes.

; 1. — On se propose de trouver, s’il en existe, des solutions en nombres
- entiers de ’équation

n(nt+1) =2n (n+1) (1)
Pour cela, on partira de I’équation plus générale
n(n+v) = 2n" (n'+v) (2)

avec v entier positif

i On établira diverses propriétés qu’ont nécessairement les entiers n, n’ et v
¢ vérifiant (2) puis a partir de celles-ci on examinera plus particuliérement
' le cas de v = 1, avec comme objectif d’atteindre toutes les solutions de (1).

2. — De (2) on déduit les inégalités évidentes
n>n e nt+v>n (3)
| ainsi que Pimpossibilité des solutions
n=2 ou n+v=2
qui conduiraient pour v & des valeurs négative ou fractionnaire.

: 3. — Examinons maintenant si 'un des quatre nombres n, n + v, 7/,
¢ n' 4 v, peut étre premier. Les quatre cas ol I'un de ces nombres pourrait
Pétre seront étudiés successivement. Les raisonnements suivis seront
extensibles aux cas ol, sans étre premier, I'un des quatre nombres n, n -+ v,
n’, n’ + v, diviserait un des facteurs de (2) situé dans le membre opposé
i de (2) ou il se trouve lui-méme.

L’Enseignement mathém,. t. XVI, fasc. 3-4. 14
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3.1 — n est premier (différent de 2) donc impair.

n ne peut diviser n’ 4 cause de (3).
Il y a donc un entier A tel que

n-4+v=iln ' )«

(2) montre alors que n 4+ v = 21n’

En €liminant #’ puis # entre les deux relations précédentes on a d’une |

part
v(2A+1) = 2A* 1) n

et d’autre
v(A+1D) = A2 =D n’
ce qui conduit a

Comme 7 est premier avec n’ et que (A+1) ’est avec (2A+1) on a
n=24-1 n=241i+1
ce qui entraine \
y =212 — 1 (6) ¥

ne peut €tre égal a 1 que si 41 = 1.
En ce cas
n=3 n =2

On a ainsi démontré que (1) a au moins une solution (qu’il est facile
de vérifier).

3.2 —n + v premier (différent de 2) est a éliminer puisque n + v ne
peut diviser n” -+ v en vertu de (3) ni a fortiori n'.

3.3 — n’ est premier.
Si »’ divisait # il y aurait un entier 4 tel que n = An’ ce qui conduirait
a écrire (2) sous la forme

n(A*=2)=v2-1) (7)

équation qui ne permet aucune solution en entiers positifs pour n’, A et v.
Si maintenant #n’ divise n 4 v, il y a un entier A tel que

n—+v=Ain (8)

-

En raisonnant comme en 3./ ci-dessus, on établit la relation
n(A+2) = 2n" (A4+1) 9)

de laquelle on déduit que deux et deux seulement éventualités sont possibles

n(A+1) = n' 21+1) (gf
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a2 —2 (10)

2 =A+2,n=A+1 =2n"—-1,v=

ou
W=2A+2,n=20+1)=2n"=2,v=21"—=2 (11)
v ne peut étre égal & 1 que dans la premiére de ces deux éventualités auquel
cas (10) montre que
A=2 n=3 n =2

On retrouve le résultat rencontré en 3.7 ci-dessus.

3.4 —11 est facile de voir que n' + v ne peut ni diviser » ni diviser
n + v. Dans I'un et 'autre cas (2) ne permet en effet d’avoir aucune solution
en n et n’ ol ces deux nombres seraient simultanément entiers et positifs.

3.5 — Dans le cas ot v = 1, on conclut des développements précédents
(3 4 3.4) que hormis le cas ou

n=73 n+1=4 n =2 n+1=3 (12)

les quatre nombres n, n + 1, n', n’ 4+ 1, résolvant (1), s’il en existe, sont
nécessairement composés. Bien plus, méme s’ils sont composés — cf 3 —
aucun d’entre eux ne peut diviser I’'un des autres.

4. — Revenons a la relation (2)

Et supposons (hypothése H,) que n, n + v, n’ et n’ + v sont composés
et qu’aucun ne divise 'un des autres.

Supposons aussi (hypothése H,) que n et n + v d’une part, n’ et n’ + v
d’autre part sont premiers entre eux.

Il est clair que si v =1 H, et H, sont également vérifiés — sauf dans
le cas particulier de n = 3, n’ = 2 signalé en 3.5 —

Posons alors

n' = ab }
(13)

| n+v=af
, a et b d’une part, o et § de l'autre étant premiers entre eux.
‘ Deux éventualités et deux seulement sont alors possibles

CE,ou | n=2au
’ n+v=>bp

| On supposera maintenant que a, «, b et § sont premiers entre eux deux
‘| a deux (hypothése H3). Il est facile de voir que si v = 1 que les conditions
{ de hypothése H; sont nécessairement remplies et qu’en outre on a

: dans le cas de E; b et ff impairs  dans celui de E, a et o impairs.

E,ou [ n=aqu 1

(14), in+v=2bﬁj (15)
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5. — Dans le cas de E; on peut alors écrire (par définition de #, 11 < v,
n etn +v)
bp = 2a0 + v aff = ab + v (16)
d’ou I’on déduit
p(b—a) = aRa—>b) (17)
Comme a est premier avec f3, et que (b—a), I'est avec 20 — b — cf H;
de 4 —on a

b—a=a p =20 —b (18)

5.1 — De méme dans le cas de £, on a successivement
2bp = ao + v off = ab + v (19)
p(2b—0o) = a(ax—>) (20)
d’ou I’on déduit par un raisonnement identique a celui fait en 5 ci-dessus:
2b —a=a p=a~—0>b (21)

5.2 — Les relations précédentes (16) et (18) dans le cas de E;, et (19)
et (21) dans le cas de E, permettent de calculer tous les nombres (a, o,
b, B et v) caractérisant une solution de (2) dés lors que ’on connait deux
d’entre eux.

Les tableaux ci-annexés T. I pour E, et T. II pour £, montrent a quels
résultats on parvient — par des calculs élémentaires — en partant de tous
les couples possibles formés de deux des quatre nombres a, «, b,  supposés
connus.

6. — Plagons nous dans le cas de E, et de v = 1.

6.1 — En se reportant a T. I — couple de facteurs a, « — on voit que

f=a-a } 22)

1 = o? — 2a00 — &>

B et b sont impairs — cf 4 in fine — ce qui entraine « et o de parité opposée.
L’équation ci-dessus en a et « montre que

a=a-+ ./ 14+ 2a* (23)
o devant étre entier positif, seul le signe 4 est a retenir, et pour que
I'on ait f = a — «, il faut” que
B* =14 24? (24)
— condition que donnait déja le tableau T.I pour v =1 au couple de
facteurs a, f —
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6.2 — Examinons la parité de a
Si a est pair, posons a = 2a’, on peut alors écrire — cf (14), (16) avec

v=1¢et (22) —
n = 4a'o n-+1=05bp n' = 2a'b n+1=ap
En ce cas, il est clair que «, f§ et b sont impairs.
Si a est impair, o est pair — cf (22) — Posons a = 2a'.
On écrit de méme
n = 4ad’ n-+1=>bp n' = ab n+1=2p - ©5)
bp = 4aa’ + 1 20’ = ab + 1

En se reportant & T. I couple de facteurs (o, b) on voit que

a=b—o=>b—2d (26)
Dés lors en se reportant aux relations (25), on a
20'bf = Saw'? + 20’ = ab* + b 27)
et en comparant (26) et (27) on a |
8a'? = b*+ 1 (28)

I1 est facile de voir que (28) ne peut jamais avoir de solutions en nombres

entiers. Quel que soit b, on a
’

i

0,1,4 8)
donc
b24+1=1,2,5 (®)

On ne peut donc jamais avoir 5> +1 =0 ().
Il résulte de ces développements que dans ’hypothése E; a est pair,
o, b et B sont impairs.

6.3 — Revenons a 6.1. Toute solution (a pair, a, b, f, v=1) définissant
un couple de nombres n, n’ vérifiant (1) est donc tel que (24) soit vérifié.

6.4 — Inversement si I’on se donne un couple de deux nombres a et f
répondant a la condition (24), (23) permet de définir un nombre vérifiant
la deuxiéme relation (22) pour la valeur de a considérée. En choisissant
pour la valeur de b celle (a--o) donnée par T. I pour le couple (a, «), on a
quatre nombres (a, a, b, ) caractérisant par (14) deux nombres n et »n’

- constituant une solution de (1).

6.5 — On notera dés maintenant si v = 1, en se reportant & T. II que
~si ’on connait une solution (a, «, b, f,) caractérisant des nombres n et
n’ vérifiant (1) et répondant a I’hypothése £, on a nécessairement:
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1 = ol — 2b2

En prenant a = b, = o, on dispose de deux nombres « et § répondant
a la condition (24) utilisables selon 6.4.

6.6 — Application.
On connait déja la solution exceptionnelle (12) » = 3, n" = 2 qui peut
étre rattachée a £, en posant
02:1 0(2:3 b2:2 ﬁzzl

En prenant a = 2, f = 3 qui répondent & (24) on peut, en procédant
comme il a été indiqué en 6.4 calculer

o=2>5 b=17
d’ou I’on déduit la solution de (1)
n=20 n+1=21 n = 14 n+1=15 (29)

6.7 — Indépendamment de toute référence a des couples de nombres
vérifiant auparavant (24) et issus de la connaissance antérieure d’une
solution répondant a I’hypothése E, on peut définir une formule de récur-
rence permettant de construire une quantité infinie de solutions corres-
pondant a I’hypothése E; dés lors que I’on connait 'une d’entre elles.

Il suffit pour cela de remarquer que si

B* =1+ 2a°
et si ’on pose
B = 2a* 4 B* a’ = 2ap (30)
on a nécessairement
B? =1+ 2a"
Exemple
De (29) on peut déduire a partir de
a=2.2.3=12 B =2.224+3=17
la solution (12, 29, 41, 17 n = 697 n' = 492). Et de celle-ci
a son tour on déduit par le méme procédé
2.12.17 = 408 B = 2.12% 4 17> = 577

et la solution (408, 985, 1393, 577).
7. — Voyons maintenant le cas de E, avec v =1

7.1 — En se reportant a T. II (couple @, o), on a n -1 pair donc n
impair donc a et o impairs
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2p =0 —a } (31)

2y = 2 = o? — 2a0 — o

Posons |
o = 2u+ 1 } (32)
a=2p-+1 :
d’ott ’'on déduit
p=u—-p (33)
L’équation en a et « ci-dessus — cf (31) — s’écrit aprés simplification
v = 2u® — 4pu — [(2p+1)*>—2p?] (34)
c’est-a-dire avec v =1
u* — 2pu — (p+1)* =0 (35)
dont le déterminant est
| P>+ (p+1)* = 2p (p+D) + 1 (36)
et les racines
u=p+.p*+ (p+1) (37)

. une peut €tre entier et positif que si I'on choisit le signe + dans (37) et si
p? -+ (p+1)? est le carré d’un nombre impair qui compte tenu de (33) et
' de (37) ne peut étre que . On a donc

P+ (p+1)? = p? (38)
Mais si f est impair, il y 2 un nombre impair p’ tel que
ap' (p'+1) + 1 = p? (39)
En comparant (36) et (39) on en conclut que
p(p+1) =2p (p'+1) (40)

7.2 — D’autre part si f est impair — cf (38) — et si a et o le sont
— cf (31) — seul b est pair et dans (1) seuls (n+1) et »’ le sont.

7.3 — Les résultats donnés dans 7.1 conduisent a une triple conclusion:

7.3.1 — On connait par (32), (33) et (38) la condition que doivent remplir
les facteurs (a, o, b, f) de n et n’ formant une solution de (1) répon-

dant a I’hypothése E,, outre celles découlant du tableau T.II
ci-annexé;

7.3.2 — Inversement si on se donne deux nombres impairs a et f répondant
a (32) et (38), on peut définir a et b, pour que (n'=aux, n'=ab) soit
une solution de (1);
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7.3.3 — Enfin par (32), (33) et (40) on dispose d’une formule de récurrence
permettant de construire un nombre infini de solutions de (1).

7.4 — Application.

Partons de la solution (12). En posant p =3, on a — cf (32) —
a=2.34+1=7¢et — cf (38) — B> = 3% 4- 4> = 5% (B=51) d’olt I'on
tire une nouvelle solution de (1)

(7,17, 12, 5) avec n = 119 n' = 84 (41)
A son tour (41) permet de poser
p=119 a=2.119-+1=239 p>=119% + 120> =169* B =169
d’ol I’on tire la solution de (1)
(239, 5717, 408, 169) ...

7.5 — On peut évidemment utiliser pour p toute valeur n déja connue
figurant dans une solution de (1) qu’elle soit ou non reliée & I’éventualité
E, ou E,. Mais la nouvelle solution que I’on construira a partir de n sera
elle, liée a E,.

Ainsi, partant de la solution trouvée en 6.6 (n=20, n’'=14), on peut écrire

a=2204+1 =41
p* = 20% 4 21% = 292
d’ou I'on tire la solution (41, 99, 70, 29) avec n = 4059 et n’ = 2870.

8. — On peut maintenant rassembler les résultats précédemment
obtenus, et ceux que ’on peut susciter a partir de ceux-ci en utilisant les
procédés décrits aux paragraphes 6 et 7 précédents sous forme d’un tableau
(cf. T. III ci-annexé).

On notera que les mémes nombres caractérisant a, a, b ou f§ apparaissent
dans les colonnes des parties gauche et droite de T. III, mais celles d’un
cOté sont décalées latéralement et horizontalement par rapport a celles de
I’autre coté. ,

T. III fait apparaitre quelques propriétés sur lesquelles il n’y a pas lieu

ici d’insister :
— tous les nombres figurant dans une méme colonne de T. IIl obéissent
a une loi de récurrence générale 1dentique qui est donnée par les formules
ci-dessous oll u; est le i°™ nombre de la colonne considérée (en partant
du haut)

U1 = B2u; — (LD w—y =TS u;—y — B2 u; =
= (1712 u;—, — (1.5 u;— 1 = 294D u;_ 3 — (17.12)u;_, = ... (42)

W3 Tl ERR e T LT L b e s e e S R ]
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tous les coefficients numériques ci-dessus sont les produits successifs de deux
nombres de méme rang de deux colonnes différentes — toujours les mémes —.

_ dans une méme colonne la différence entre deux nombres consécutifs
est égale (pour a, o, b et f) au double d’un nombre figurant dans une autre
colonne (ex: 70—12=2.29 169—-29=2.70 ...).

9. —1l y a lieu maintenant de montrer qu'aucune solution de (1) ne
peut exister autre que celles figurant au tableau T. III ou pouvant y figurer
par des applications répétées des procédés décrits aux paragraphes 6 et 7
en partant de la seule solution (12) pour laquelle n = 3.

Pour cela on établira d’abord que ces mémes procédés employés a
rebours permettent en partant d’une solution (n, n’) supposée connue de (1)
— qui peut étre a priori différente de I"'une des solutions pouvant figurer
dans T. Il — de construire une nouvelle solution de (1)

(ny<n, n'y)

ou d’aboutir & une contradiction avec des résultats déja connus et néces-
saires.

Dans le premier cas on continuera a partir de (n, n') les investigations
commencées avec (n, n'), en vue de trouver, s’il en existe, une nouvelle
solution (n,<n,; n',) de (1) ou si tel est le cas de déboucher sur une autre
contradiction.

Toute apparition d’une contradiction avec des résultats déja connus et
nécessaires conduit 2 abandonner ou dés l'origine, ou en route (suivant
le moment ou elle se manifeste) le chemin dans lequel on s’est engagg.

On se trouve en présence d’un « arbre » de décisions (construit selon
un procédé a double choix) de « descente infinie » dont toutes les branches
successives se terminent dans le vide (contradictions apparues), sauf peut-
étre une si 'on débouche a son extrémité sur n; = 3. En ce cas on retrouve
la souche initiale de T. III et (n, n’) figure nécessairement dans T. III.

On ne cherchera pas a identifier les nombres n'y, n',, ... successifs. Il
suffit d’établir la suite des nombres n, ny, n,, ..., n; décroissants. Il n’est
méme pas nécessaire de se donner au départ le couple (n, n') des nombres
vérifiant (1). Il suffit de se poser la question de la maniére suivante:

n peut-il figurer dans un couple de deux nombres formant une solution
de (1) ?

9.1 — En nous reportant & ce qui est indiqué aux paragraphes 2 et 3,
il est clair que ni z ni n; ne peuvent étre égaux a 1 ou a 2, qu’ils ne peuvent
€tre premiers ou décomposés en deux facteurs dont I'un serait égal a 1
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(sauf si n ou n; est égal a 3) et qu’ils ne peuvent &tre décomposés en facteurs
qui ne seraient pas premiers entre eux (ce qui exclut, par exemple, que I’on
ait n = 2J).
D’autre part et sauf dans le cas ol I'un de ces nombres # ou »; serait
égal 2 3
— n impair est décomposable en deux nombres a et o impairs, en méme
temps que (n+1) P’est en deux nombres 2b et f, b pair,  impair

— ou z pair est décomposable en deux nombres 2a et o, a pair, o impair en
méme temps que (r+1) I'est en deux nombres impairs a et S (a, o, b et
étant différents de 1 et premiers entre eux)

— et de méme n; et (r;,+1) pair ou impair sont décomposables en nombres
a;, o;, b;, B; répondant aux mémes critéres que a, «, b et f.

Les formules liées aux éventualités E, (a pair) ou E, (a impair) sont
applicables.

9.2 — Si a est impair et de la forme a = 2p + 1, il y a nécessairement
en vertu de ce qui a été démontré en 7./ un nombre

a—1 43)
P=
qui doit figurer dans un couple (p, p’) de nombres p et p’ vérifiant (1).
On a donc
n e’
' 2
et
ny<n

9.3 — Si a est pair, n est pair, (n+1) est impair et (n+1) est décomposable
en deux nombres b et f impairs vérifiant — cf T. 1 — les relations

1+ 2a% = B

et
2 = 2 4+ 2b8 — b (45)

Le déterminant de (45) est 2 (b*--1) qui est pair et doit étre en méme temps
le carré d’un nombre pair’ 2y. On a donc

b*+1=27 (46)
En posant
b=2+1 (47)

&
£
L4
&
£
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(46) s’écrit

25 ) =
Mais y est impair en vertu de (48) et il y a un nombre ¢’ tel que
y*=4q ¢+ +1 (49)
On a donc
q(q+1) = 24’ (¢'+1D (50)

De 7 figurant dans un couple de nombres vérifiant (1) on est donc passe
— par la décomposition de (n+1) — & ¢ figurant dans un nouveau couple
de nombres vérifiant (1). On peut donc prendre

I’ll————é——<n (51)

9.4 — Ainsi donc, en partant de n, et en supposant n différent de 3,
de deux choses l'une, ou n n’est pas décomposable en facteurs premiers
entre eux dont aucun n’est égal a 1, et n ne peut figurer dans aucun couple
de deux nombres vérifiant (1); ou il est. Si n est impair, on considére tous
les modes de décomposition possibles en deux nombres impairs a et o

© premiers entre eux et pour chaque nombre a possible, on dispose d’un

a—1 AN ‘
nombre — pouvant étre substitué & n pour la recherche du probléme
posé. o

Si n est pair, on considére (n-+1) qui est impair et qui lui, doit &tre
décomposable en deux nombres impairs b et f premiers entre eux. S’il ne

: Pétait pas n ne pourrait figurer dans aucun couple de deux nombres véri-

i fiant (1). S’il ’est, on dispose pour tout nombre b possible d’un nombre
5 b — 1

pouvant €tre substitué¢ a n pour la recherche du probléme posé.

. . or a—1 b-1 .
Ensuite, on continue avec les différents nombres et ainsi

' apparues les mémes opérations qui de nombres impairs en nombres impairs
# décroissants font apparaitre des nombres 7; eux-mémes allant en décroissant.

On aboutit ainsi nécessairement aprés un nombre limité d’opérations de

@ cctte nature, soit 4 une contradiction avec les conditions rappelées en 9.1,
| soit & n; = 3 qui est la souche méme de T. III.
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Il n’y a de nombre » figurant dans un couple (n, n’) vérifiant (1) que §
ceux figurant dans T. III. |

Il est facile d’autre part de vérifier que si n est dans 'un de ces couples |
il n’est que dans ce couple. Autrement dit I’arbre de décomposition de »,
s’il débouche sur n = 3, ne peut provenir que d’une et une seule solution
(n, n') figurant dans T. III.

9.5. — Quelques exemples permettront d’éclaircir ce qui vient d’€tre
développé.

9.5.1 — Soit n = 527, impair, et décomposable d’une seule maniére en
31 x 17. L’arbre de 527 se construit facilement:

De a = 31 = 2.15 + 1 on déduit n, = 15 impair, décomposable

=35X%X3
[a, =3=2.1+1 nzzll} impossible
la,=5=2.2+1 ny =2 | cf 9.1

Dea=17 =2.8 L 1 on déduit n, = 8 = 2> impossible cf 9.1
527 ne peut figurer dans aucun couple (527, n') vérifiant (1).

9.5.2 — Soit n = 44 pair et décomposable
n -+ 1 = 45 est décomposable de deux maniéres 5 X 9 et 3 X 15

b—1

De b = 5 on déduit n; = —5 = 2 impossible cf 9.1

o b— 1 e
De b = 9 on déduit n; = —y = 4 = 2° impossible cf 9.1

. by — 1 : .
De b = 3 on déduit n; = 5 = 1 impossible cf 9.1

: 15 -1 . ,

De b = 5 on déduit n; = g = 7 premier impossible cf 9.1

44 ne peut figurer dans aucun couple (44, n') vérifiant (1)

9.5.3 — Soit n = 34 pair et décomposablé
n + 1 = 35 décomposable en 5 X 7

b—1

De b = 5 on déduit n; = = 2 impossible cf 9.1

De b = 7 on déduit n, = I 3 possible
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n = 34 ne peut figurer dans un couple (34, n’) que st ce couple
dérive du couple (n=3, n'=2) figurant dans le tableau III et donc
y figure lui-méme. En ce cas 34 ne figure que dans un couple
(34, n'), si du moins ce couple existe.

§ S. Thouvenot
§ 74, rue Raynouard
§ Paris (16)

( Re¢u le 13 octobre 1970)
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