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ON THE CLOSED CONVEX HULL OF A COMPACT SET

by Dwight B. GOODNER

Although it is known that the closed convex hull of a compact set may
not be compact, the literature contains few, if any, reasonably easy proofs
of this theorem, and existing proofs seem to be difficult to find. Unfortun-
ately many students encounter this result before their training and experience
have prepared them to prove it. The purpose of this note is to give a proof
that seems to be minimal in terms of the knowledge and mathematical
sophistication required to understand it.

Theorem. There is a linear topological space in which the closed
convex hull of a certain compact set is not compact.

Proof. Let m be the space of bounded real-valued sequences with the
usual supremum norm. We proceed by identifying a compact set S [2, p. 135]
contained in a linear subspace L [1, p. 12] of m such that in L the convex
hull [1, p. 10] of S is closed but is not compact.

Let w be the directed system of positive integers. For fixed i e w let
0'={0';} jew be the sequence defined by 6, =1 and &, =0 for i#;
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o'jis the Kronecker delta. We note that6'em. Let S = {@ } u {—-:iew}
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where © is the zero element in m, and let K (S) be the convex hull of S in m.
Since lim — = O, each open neighborhood of © contains all but finitely

many elements of the sequence { —},.,,, and we see that S is compact.
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For each 7, x; € K(S) [1, p. 10]. If
16" 1 & .1 0"
Xog =limx; =lim (" ' —— + ——)=1lm )" ——,
0 i— o0 i»oo(znzl 2" n 21_1 i) i— o Zn=1 2"n

then x, ¢ K (S) but x, € cl K(S) where cl K(S) is the closure of K (S) in m.
We remark that this shows that in a linear topological space the convex hull
of a convex set may not be closed and, hence, may not be compact [2, p. 141].
We note but do not prove that the closed convex hull, cl K(S), of S is
compact.

Let L be the set of all linear combinations of all finite subsets of S.
Then L with the relative topology of m [2, p. 51] is the smallest linear
subspace [1, p. 2] of m containing K (S), and K’ (S) = L cl K(S) is the
closed convex hull of S'in L. To complete our proof it suffices to show that
K’ (S) is not a compact subset of L.

The sequence { x; },., defined above is a closed subset of L since its
only cluster point x, ¢ L. Foreachkew let 4, = {xeL :x¢{x,} T}
Each 4, is an open subset of L and 4 = { 4, : ke w } is an open cover
of K’ (S). However, if 4y 1y, Ai(2)s --» Ak 18 @ finite subset of A and if j
is any integer greater than max { k (1), k (2), ..., k (n) }, then x; ¢ U'i_; A, ().
Since x; € { X; }ic © K'(S) it follows that 4 does not contain a finite subset
which covers K’ (S) and, hence, that K’ (S) is not a compact subset of L
which completes the proof.
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