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Propriété 5. k divise r (r—1) donc h (h—1) (4)
En effet kb = vr =r + (k=1 r* = kr* — r(r—1)

| Propriété 6. k (k—1) divise v(v—1) (5)
. Cela résulte de v(v—1) = v (k—1)r = k (k—1) b.

En vue d’étudier les (k, r) plans combinatoires a v éléments, v donné,
on peut remarquer qu’il existe toujours la solution:

k=2r=v—1.

¥ qui est la solution triviale d’un ensemble a v éléments dont les droites sont
| constituées par les sous-ensembles & deux éléments. Cette solution est
représentée par exemple par v points en position générale dans le plan.
'i Nous ’écarterons des solutions explicites que nous allons maintenant
donner pour le cas v < 20. A titre d’exemple, on peut vérifier que les 4 pos-
sibilités trouvées au § 3 pour les plans combinatoires a 5 éléments ne donnent
-f:" qu’un (k, r)-plan, le dernier cas, qui correspond précisément a k = 2, r = 4.

6. Les (k, r) plans combinatoires a v éléments, v < 20.

Indiquons sur le cas v = 13 le procédé de recherche des conditions
nécessaires.

On utilise les conditions nécessaires v — 1 = (k—1)r,r >k, k l r(r—1);
onadonc: v —1=12=3 X2 x 2 d’ou les possibilités:

k—1=1, r=12 c’est-a-dire k = 2, r = 12 (solution triviale)
k—1=2,k=23,r=6 qui vérifiec bien k | r (r—1).
k—1=3, k=4, r=4 qui donne le plan projectif d’ordre 3.
k—1=4,k=235,r =3 est impossible (r>k).

En procédant de méme pour tous les nombres v < 20 et en écartant
les solutions triviales et celles qui correspondent aux plans projectifs ou
aux plans affines, il reste les trois cas suivants & étudier pour lesquels le
probléme d’existence se pose.

I1®* cas. v =13, k = 3, r = 6.

En numérotant les points 0, 1, 1/, 2, 2', 3, 3", 4, 4, 5,5, 6, 6’ on peut
obtenir, aprés quelques titonnements, une solution avec les 26 droites
suivantes:



011’1 - 123 12 31 24 6 3 453 5
022 Wy rre| o sy S 46
033 6 152’i droites a5t droites 265
044'[ droites 164 1’5 6"
055’ 156/ 1'4'3 365 ; 5341 1
el ¥ 23 droites

346 6'2'3) 1

Chaque droite contient 3 points et par tout point il passe 6 droites.
Le nombre d’Euclide est & = 3.

On peut obtenir une solution algébrique de ce probléme (voir en Appen-
dice).

2¢cas.v=15k=3,r=17

Une solution peut €tre obtenue ici en appliquant une méthode générale
(cf. [2], page 29) a partir d’un espace projectif de dimension 3 sur le corps
fini F, a 2 éléments. Les points sont ceux de I’espace, les droites sont celles |
de l’espace. La structure est alors celle d’un (k, r)-plan combinatoire.
Numérotons les points comme I'indique la figure 8.

Les 35 droites correspondent aux parties suivantes:

011’ 142 235 347’ 1| 456" |
022’ 124 241" 352 ‘( 4 de 465’ i 3 dr
033’ 136" | - 253" L 5dr 361 473
044’ v 7dr 157 267" 374" |
055 163 276
066’ 175
077’
564" | 1" 2" &4 347V 1dr
571’} el 1’3’6’} 3 dr }
157
672" } 1dr 456" ) 1dr
23 5]
) 6 T I} 2 dr

3¢ecas. v=19,k=3,r=9

Une solution peut étre obtenue par un systéme de Netto, [2] p. 98, par la
méthode suivante:
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On part du corps F;o & 19 éléments. Cest I'ensemble S. Le groupe
multiplicatif I' des carrés non nuls possede 9 éléments qui sont:
r={1,4,9, 16, 6, 17, 11, 7, 5}
2232 4252 6% 778292
1l existe un sous-groupe multiplicatif G de I" qui est formé des 3 éléments:
G = {1, 11, 7}
Alors, les triples alignés sont les transformés de G par les transformations
du groupe @ a 19 x 9 éléments:
X - xa+ a wel, aeF,

Comme une méme droite peut étre obtenue a partir de 3 transformations

19 x 9

différentes 1l existe b = = 57 droites. On a vr = kb, d’ou

1
r=3x19 x 3 x 5 9 ce qui donne bien les paramétres k = 3, r = 9

du cas v = 19.

On remarquera que les 3 cas & étudier correspondent tous a k = 3,
c’est-a-dire a des systémes de triplets de Steiner, ([2], p. 97). Or le probléme
d’existence des solutions est résolu dans ce cas depuis longtemps (Kirkman,
1847, Netto [8], 1893) par la condition nécessaire

k {k—1) = 6 divise v (v—1) = 19 x 18 (propriété 6) -

Beaucoup plus récemment, Hanani [6], 1965, a démontré que cette
condition est suffisante pour k < 5. Le probléme est ouvert pour les valeurs
supérieures de k. On trouvera des indications sur les résultats connus dans [4].

Appendice (Netto [8] p. 145) v =6 X 2 + 1 premier :

Une solution du 1°* cas: v =13, k = 3, r = 6.

On considére une racine primitive mod 13, par exemple:

g = 2 dont les puissances sont:

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7
1, g g2g%g%g® g% g g% g% g0 gM!
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On forme les triples:
(1) O, 1, 4), (028)
©, g% g%, (0, g', &°)
et 12 autres a partir de ceux-la:
2) 6 x+8% x+8%) (=123, .., 12)
ou O x+1 x+4 (e, x+2, x4+8) x=0,1,.., 12

On obtient alorsles 13 x 2 = 26 triples cherchés qui sont donc explicite-
ment:

(0, 1, 4 (0, 2, 8
(1, 2, 5 (1, 3, 9)
(2, 3, 6) (2, 4,10)
(3, 4, 7 (3, 5 11)
(4, 5 8) (4, 6,12)
(5 6, 9) (5 17, 0)
(6, 7,10) (6, 8 1)
(7, 811) (7,9, 2)
(8, 9,12) ( 8,10, 3)
( 9,10, 0) (9,11, 4)
(10, 11, 1) (10, 12, 5)
(11, 12, 2) (11, 0, 6)
(12, 0, 3) (12, 1, 7)
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