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Propriété 5. k divise r (r — 1) donc h {h— 1) (4)

En effet kb vr r + (k— 1) r2 kr2 — r (r— 1)

Propriété 6. k(k— 1) divise v(v—1) (5)

Cela résulte de v (v— 1) v (k—l) r k (k—l) b.

En vue d'étudier les (k, r) plans combinatoires à v éléments, v donné,

on peut remarquer qu'il existe toujours la solution:

k 2 r v — 1.

qui est la solution triviale d'un ensemble à v éléments dont les droites sont
constituées par les sous-ensembles à deux éléments. Cette solution est

représentée par exemple par v points en position générale dans le plan.
Nous l'écarterons des solutions explicites que nous allons maintenant
donner pour le cas v < 20. A titre d'exemple, on peut vérifier que les 4

possibilités trouvées au § 3 pour les plans combinatoires à 5 éléments ne donnent
qu'un (k, r)-plan, le dernier cas, qui correspond précisément à k 2, r 4.

6. Les (k, r) plans combinatoires à v éléments, v < 20.

Indiquons sur le cas v 13 le procédé de recherche des conditions
nécessaires.

On utilise les conditions nécessaires v — 1 (k— 1) r, r > k,k\r{r-1);
on a donc: v — 1 12 3x2 x 2 d'où les possibilités:

k — 1 1, r 12 c'est-à-dire k 2, r 12 (solution triviale)
k — 1=2, 3, r 6 qui vérifie bien k | r (r — 1).

k — 1=3, k — 4, r 4 qui donne le plan projectif d'ordre 3.

k — 1 4, k 5, r 3 est impossible (r>A:).

En procédant de même pour tous les nombres v < 20 et en écartant
les solutions triviales et celles qui correspondent aux plans projectifs ou
aux plans affines, il reste les trois cas suivants à étudier pour lesquels le
problème d'existence se pose.

7er cas. v 13, k 3, r 6.

En numérotant les points 0, 1, E, 2, 2', 3, 3', 4, 4', 5, 5', 6, 6' on peut
obtenir, après quelques tâtonnements, une solution avec les 26 droites
suivantes:
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011' 123 1' 2 3'

022' 143' 1 2'6
033'
044'

6

droites
152'

164'

J
j droites

1'4 5'}
1' 5 6'

055' 15' 6'j1 l'4'3
066'

5

droites

24 6'

24' 5

26 5'

3'65*

3'2'5'
3'4' 6'

3

droites

3

droites

453 I

4621

5' 34'} 1

6'2' 3} 1

Chaque droite contient 3 points et par tout point il passe 6 droites.
Le nombre d'Euclide est h 3.

On peut obtenir une solution algébrique de ce problème (voir en Appendice).

2e cas. v œ 15, k 3, r 1

Une solution peut être obtenue ici en appliquant une méthode générale

(cf. [2], page 29) à partir d'un espace projectif de dimension 3 sur le corps
fini F2 à 2 éléments. Les points sont ceux de l'espace, les droites sont celles

de l'espace. La structure est alors celle d'un (k, r)-plan combinatoire.
Numérotons les points comme l'indique la figure 8.

Les 35 droites correspondent aux parties suivantes:

011' 142'
'

235'
*

347'

022' 124' 241' 352'

033' 136' * n
253'

6 dr
267'

> 5 dr 361'

044' > 7 dr 157' 374'

055' 163' 276'

066' 175'

077'

4 dr

456'
465'

473'

3 dr

564' 1

1 ' 2 dr
571' j

672' } 1 dr

1' 2' 4'
1' 3' 6'
1' 5' 7'

2' 3' 5' 1

2' 6' 7' |

3 dr

2 dr

3' 4' 7' } 1 dr

4' 5' 6' } 1 dr

3e cas. v 19, k 3, r 9

Une solution peut être obtenue par un système de Netto, [2] p. 98, par la

méthode suivante:
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On part du corps Fi9 à 19 éléments. C'est l'ensemble S. Le groupe

multiplicatif F des carrés non nuls possède 9 éléments qui sont:

r {1, 4, 9, 16, 6, 17, 11, 7, 5}

22 32 42 52 62 72 82 92

Il existe un sous-groupe multiplicatif G de r qui est formé des 3 éléments :

G {1, H, 7}

Alors, les triples alignés sont les transformés de G par les transformations

du groupe à 19 x 9 éléments:

X —* XOC -f~ Cl Ö! G f, fl £

Comme une même droite peut être obtenue à partir de 3 transformations

19 X 9
différentes il existe b 57 droites. On a vr kb, d'où

3

r 3 x 19 x 3 x — 9 ce qui donne bien les paramètres k 3, r 9
19

du cas v — 19.

On remarquera que les 3 cas à étudier correspondent tous à k 3,

c'est-à-dire à des systèmes de triplets de Steiner, ([2], p. 97). Or le problème
d'existence des solutions est résolu dans ce cas depuis longtemps (Kirkman,
1847, Netto [8], 1893) par la condition nécessaire

k {k— 1) 6 divise v (v— 1) 19 X 18 (propriété 6)

Beaucoup plus récemment, Hanani [6], 1965, a démontré que cette
condition est suffisante pour k < 5. Le problème est ouvert pour les valeurs

supérieures de k. On trouvera des indications sur les résultats connus dans [4].

Appendice (Netto [8] p. 145) v 6 X 2 + 1 premier :

Une solution du 1er cas : v 13, k 3, r 6.

On considère une racine primitive mod 13, par exemple:

g 2 dont les puissances sont:

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7

1, g g2 g3 g" g5 g6 g1 g8 g9 g10 g11
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On forme les triples :

(1) (0, 1, 4), (028)

(0,g°,g2), (0,g\g3)
et 12 autres à partir de ceux-là:

(2) (x, X+g",X+g2*)(X 1. 2, 3, 12)

ou (XX+1>X+4) (x,X+2> X+8) — 0, 1, 12

On obtient alors les 13 X 2 26 triples cherchés qui sont donc explicitement:

0, 1, 4) o, 2, 8)
1, 2, 5) 1, 3, 9)
2, 3, 6) 2, 4, 10)

3, 4, 7) 3, 5, 11)

4, 5, 8) 4, 6, 12)

5, 6, 9) 5, 7, 0)
6, 7, 10) 6, 8, 1)

7, 8, H) 7, 9, 2)
8, 9, 12) 8, 10, 3)

9, 10, 0) 9, 11, 4)

(10,11, 1) (10, 12, 5)

(11, 12, 2) (H, 0, 6)

(12, 0, 3) (12, 1, 7)
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