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SOMMES ÉGALES DE TROIS BICARRÉS

par M. Jean Lagrange

1. Le théorème qui suit, bien qu'élémentaire et de démonstration facile,

ne semble pas avoir encore été remarqué.

Théorème:

Quel que soit l'entier naturel /?, le système

xf + y\ + z\ X2 + y\ + ^2 ••• xt + yt + zh (1)

a des solutions non triviales en entiers naturels.

Par solution non triviale on entend que, à l'ordre près, les triplets
(xh yh Zj) sont tous distincts.

On peut encore énoncer:
si /(n) est le nombre de représentations de l'entier n par des sommes de

trois bicarrés on a

lim sup / (n) +00.
OO

C'est l'analogue du théorème connu pour des sommes de deux carrés

ou de deux cubes ([1], p. 333).

2. Démonstration du théorème :

On utilise l'identité bien connue ([2], p. 651)

(a + b)4 + (a - bY + (2b)4- 2(a2 + 3b2)2.

D'une solution non triviale de a2 + 3b2 c2 + 3d2 1 (mod 2) on
déduit une solution de (1) avec h 2 ([2], p. 653). Le lecteur vérifiera
facilement que la solution obtenue est non triviale L

Soit maintenant N un entier impair, on désigne par E(N) l'excès du
nombre des diviseurs de N congrus à 1 mod 6 sur le nombre des diviseurs
de N congrus à — 1 mod 6; on sait alors que N admet 2 E(N) décom-

1 Si on ne suppose pas a2 + 3 b2 impair, on peut obtenir une solution triviale
comme le montre l'exemple l2 -j- 3 • 32 52 -f 3 • l2.
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positions en entiers rationnels de la forme a2 + 3b2 ([3], p. 80). Donc si

N n'est pas un carré parfait ou le triple d'un carré parfait, N admet E(N)ß
décompositions en entiers naturels de la forme a2 + 3b2. En particulier,
prenant pour N le produit des k premiers nombres premiers congrus à
1 mod 6, on a E(N) 2k et on obtient une solution du système (1) avec
h 2k~1; ce qui démontre le théorème.

3. Exemples.

On prend N 72 13, d'où E(N) 6; on obtient une solution du

système (1) avec h 3; soit avec une notation évidente

(4, 23, 27)4 - (7, 21, 28)4 - (12, 17, 29)4

D'après [4] c'est la plus petite solution de (1) avec h 3.

On peut espérer obtenir en prenant pour N le nombre défini à la fin du

paragraphe 2) la plus petite solution de (1) avec h 2k~1.

Voici les 32 décompositions du nombre 14 543 995 421 936 162 obtenues

avecN 7 13 19 31 37 43 85 276 009

(5,9232,9237)4 - (157,9155,9312)4 - (368,9045,9413)4 (873,8767,9640)4

(880,8763, 9643)4 (960,8717, 9677)4 (1063,8657, 9720)4 -
(1383,8465, 9848)4 (1565,8352, 9917)4 (1592,8335, 9927)4

(1752,8233, 9985)4 (1933,8115,10048)4 (2277,7883,10160)4

(2435,7773,10208)4 (2640,7627,10267)4 (2687,7593,10280)4

(2787,7520,10307)4 (3127,7265,10392)4 (3272,7153,10425)4

(3355,7088,10443)4 (3625,6872,10497)4 (3707,6805,10512)4

(3953,6600,10553)4 (4103,6472,10575)4 (4177,6408,10585)4

(4272,6325,10597)4 (4297,6303,10600)4 (4755,5888,10643)4

(4833,5815,10648)4 (4925,5728,10653)4 (4968,5687,10655)4

(5295,5368,10663)4.

4. Remarque :

Il est possible qu'à partir d'un entier N on puisse obtenir en décomposant
le nombre 2N2 en somme de trois bicarrés une valeur de h supérieure à

E(N)/2. Ce sera toujours le cas si, partant d'une solution de x4 + y4
u4 + v4 on prend N x2 — xy + y2. En plus des E(N)/2 décompositions
du nombre 2N2 x4 + y4 + (x — y)4 on obtient la décomposition
u4 + v4 + (x - y)4.
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Ainsi Lander et Parkin [4] ont trouvé « quite by chance » les égalités

(1,133,134)4 (1,59,158)4 (71,83,154)4

(1,256,257)4 (1,193,292)4 (32,239,271)4 (109,184,293)4

(139,157,296)4.
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