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SOMMES EGALES DE TROIS BICARRES

par M. Jean LAGRANGE

1. Le théoréme qui suit, bien qu’élémentaire et de démonstration facile,
ne semble pas avoir encore été remarqué.

THEOREME:

Quel que soit I’entier naturel 4, le systéme
4
i+ =xt+nta=.=x+u+zg D

a des solutions non triviales en entiers naturels.

Par solution non triviale on entend que, & I'ordre pres, les triplets
(x;, y;, ;) sont tous distincts.

On peut encore énoncer:

si f(n) est le nombre de représentations de ’entier #» par des sommes de
trois bicarrés on a

lim sup f(n) = + 0.

n—oo

C’est ’analogue du théoréme connu pour des sommes de deux carrés
ou de deux cubes ([1], p. 333).

2. Démonstration du théoréme :

On utilise I'identité bien connue ([2], p. 651)
(a + b)* + (a — b)* + 2b)* = 2(a* + 3b?).

D’une solution non triviale de a? + 3b% = ¢* 4+ 3d* = 1 (mod 2) on
déduit une solution de (1) avec & = 2 ([2], p. 653). Le lecteur vérifiera
facilement que la solution obtenue est non triviale 1.

Soit maintenant N un entier impair, on désigne par E(N) I’excés du
nombre des diviseurs de N congrus a 1 mod 6 sur le nombre des diviseurs
de N congrus & — 1 mod 6; on sait alors que N admet 2 E(N) décom-

1 Si on ne suppose pas a*> -+ 3 b% impair, on peut obtenir une solution triviale
comme le montre ’exemple 12 + 3-32 = 52 L 3.12,

L’Enseignement mathém,. t. XVI, fasc. 1. 1



.

positions en entiers rationnels de la forme a* - 3b% ([3], p. 80). Donc si
N n’est pas un carré parfait ou le triple d’un carré parfait, N admet E(N)/2
décompositions en entiers naturels de la forme a® 4 3b%. En particulier,
prenant pour N le produit des k premiers nombres premiers congrus a |
1 mod 6, on a E(N) = 2* et on obtient une solution du systéme (1) avec
h = 2¥"1; ce qui démontre le théoréme.

3. Exemples.

On prend N = 72 .13, d’ott E(N) = 6; on obtient une solution du
systéme (1) avec 2 = 3; soit avec une notation évidente

(4,23, 27)* = (7, 21, 28)* = (12, 17, 29)*

D’aprés [4] c¢’est 1a plus petite solution de (1) avec 4 = 3.

On peut espérer obtenir en prenant pour N le nombre défini a la fin du
paragraphe 2) la plus petite solution de (1) avec i = 2¢~ 1.

Voici les 32 décompositions du nombre 14 543 995 421 936 162 obtenues
avecN =7.13.19.31.37.43 = 85276 009 |

(5,9232,9237)* = (157,9155,9312)* = (368,9045,9413)* = (873,8767,9640)* =
— (880,8763, 9643)* = (960,8717, 9677)* = (1063,8657, 9720)* =
— (1383,8465, 9848)* = (1565,8352, 9917)* = (1592,8335, 9927)* =
— (1752,8233, 9985)* = (1933,8115,10048)* = (2277,7883,10160)* =
— (2435,7773,10208)* = (2640,7627,10267)* = (2687,7593,10280)* =
— (2787,7520,10307)* = (3127,7265,10392)* = (3272,7153,10425)*
— (3355,7088,10443)* = (3625,6872,10497)* = (3707,6805,10512)*
— (3953,6600,10553)* = (4103,6472,10575)* = (4177,6408,10585)*
— (4272,6325,10597)* = (4297,6303,10600)* = (4755,5888,10643)*
— (4833,5815,10648)% = (4925,5728,10653)* = (4968,5687,10655)* =
— (5295,5368,10663)%,

I

I

|

4. Remarque :

11 est possible qu’a partir d’un entier N on puisse obtenir en décomposant
le nombre 2N?* en somme de trois bicarrés une valeur de % supérieure a
E(N)/2. Ce sera toujours le cas si, partant d’une solution de x* + y* =
u* + v* on prend N = x? — xy 4 »2. En plus des E(N)/2 décompositions
du nombre 2N? = x* 4 y* 4 (x — y)* on obtient la décomposition

u* + v+ 4+ (x — P




1.
21
(3].
- [4.

3

Ainsi LANDER et PARKIN [4] ont trouvé « quite by chance » les égalités:

(1,133,134)* = (1,59,158)* = (71,83,154)*
(1,256,257)* = (1,193,292)* = (32,239,271)* = (109,184,293)* =
= (139,157,296)%.
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( Regu le 6 février 1970)

~ Jean Lagrange
Faculté des Sciences
Reims
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