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GÉOMÉTRIES COMBINATOIRES

par L. Lesieur

Je me propose de passer en revue les notions de géométries combinatoires

(d'après Crapo et Rota [1]), de treillis géométriques (d'après Dubreil-
Jacotin, Lesieur et Croisot [3]) et d'examiner plus particulièrement le cas
de certains plans combinatoires finis qui sont en même temps des « blocks
designs » (d'après Dembowski [2]) avec quelques exemples précis.

1. Géométries combinatoires (de dimension finie). [1] § 1.

Elles sont définies par un ensemble S (l'ensemble des points) avec une
application de fermeture de Moore dans l'ensemble EP (S) des parties de S'

(Acz A; A^B => A^B; Ä=Ä) vérifiant la propriété d'échange:

et l'axiome de la dimension finie ou axiome de finitude :

A ç S possède un sous-ensemble fini Af tel que Äf Ä.

Les ensembles fermés s'appellent les variétés de la géométrie et on peut
définir une dimension de chaque variété au moyen de l'axiome de finitude:
0 est de dimension - 1, un point a e S est de dimension 0, une droite
fermeture de 2 points distincts) est de dimension 1 etc..., la dimension
de S est celle de l'espace.

Exemples :

ae Au {bj, a£A=>beAu{aj
S)

l'axiome de fermeture des points ou axiome géométrique :

â a ya e S et 0=0, (noter que 3=S),

6 points et 7 droites (fig. 1)

7 points et 7 droites (plan projectif fini) (fig. 2)
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2. Treillis géométrique L (S)

Les ensembles fermés (ou variétés) suffisent à définir l'application de

fermeture de Moore en postulant que l'intersection finie ou infinie de

fermés est un fermé.

On peut les ordonner par la relation d'inclusion des ensembles et

obtenir ainsi un treillis (particulier) qu'on appelle géométrique. Il est

possible de donner des propriétés caractéristiques de ces treillis (voir [3])

qui permettent de reconstituer la géométrie combinatoire. En particulier
la notion de dimension apparaît également comme longueur d'une chaîne

maximale allant de 0 à S, diminuée de 1, cette longueur étant un invariant

pour toutes les chaînes maximales considérées.

Exemple :

Géométrie sur 5 points schématisée par le dessin de la figure 3, où les

points situés sur les droites dessinées constituent une variété, qui est une
droite de cette géométrie. La figure 4 représentente le treillis L (S)
correspondant. C'est un treillis de dimension 2 (rang 3). Une géométrie de dimension

2 s'appelle un plan.
Bien entendu, une géométrie projective ou affine de dimension finie

constitue un exemple de géométrie combinatoire (que l'on peut d'ailleurs
caractériser dans la classe des géométries combinatoires). Mais il y en a

beaucoup d'autres, citons les géométries affines généralisées ([3], p. 303),

l'ensemble des relations d'équivalence sur un ensemble, les six exemples
dits classiques de [1] etc...

3. Géométries sur les ensembles finis

Cherchons par exemple les géométries finies sur 5 points,

dimension 1 : S est la seule droite, (fig. 5)

dimension 2: 4 possibilités, avec représentation plane de la figure 6

dimension 3: 3 possibilités avec représentation dans l'espace de la figure 7

dimension 4: 1 possibilité, représentée par 5 points en position générale dans

l'espace de dimension 4.

Le nombre gnd des géométries « non isomorphes » sur n éléments et

de dimension d est donné par le tableau [1], § 3.
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n 12 3 4 5 6 7 8

d
1 1 1 1 1 1 1 1

2 1 2 4 9 23 68

3 1 3 11 49 617

4 1 4 22 217

5 1 5 40

6 1 6

7 1

Sn 1 2 4 9 26 101 950

Si l'on pose gn gnl + gn2 + + gn,n-1 (nombre total des géométries

différentes sur n éléments), on constate que gn+1 # (gnY ce qui donnerait

environ 30 000 géométries différentes sur un ensemble à 9 points.
Nous allons donc pour continuer nous limiter au cas des plans (d= 2),

ligne soulignée du tableau.

4. Géométries planes combinatoires

Si d 2, les seules variétés sont les points, les droites et l'ensemble S

tout entier. Une géométrie plane combinatoire pourra alors être définie

par l'ensemble S de ses points et l'ensemble de ses droites, qui est un sous-
ensemble de 0* (5) satisfaisant aux axiomes suivants (cf [3], p. 318).

G j. Par deux points distincts il passe une droite et une seule.

G2. Toute droite contient au moins deux points distincts.

G3. Il existe 3 points non situés sur une même droite.
Si l'ensemble S est fini, on obtient un plan combinatoire fini.

5. (k, r) plans combinatoires

Nous allons considérer maintenant des géométries planes combinatoires
finies qui sont également des (k, r, s) plans au sens de G. Heuze [7] et des

« blocks-designs » ou configurations tactiques au sens de [2], § 2. D'une
façon précise nous définissons un (k, r) plan combinatoire par les axiomes
suivants (concernant comme toujours, un ensemble S de points et un sous-
ensemble de 0 (S) dont les éléments sont dénommés droites)

L'Enseignement mathém,. t. XVI, fasc. 2. 13
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1. Par 2 points distincts il passe une droite et une seule

2. Toute droite contient k points distincts (£>2) et k seulement
3. Tout point appartient à r droites distinctes, et r seulement
4. Il existe 3 points non alignés : triangle /?, q, r.

Il est clair que ces axiomes renforcent ceux des géométries planes
combinatoires (comparer avec Gu G2, G3); ils coïncident d'autre part avec
les (k, r, s) plans de G. Heuze lorsqu'on prend s k [7], et avec les blocks

designs de Dembowski lorsqu'on prend le paramètre b2 2 égal à 1.

Etudions les premières propriétés de ces plans.

Propriété 1. On a r > k (i)
En effet, si a est un point donné, il existe au moins une droite ne passant

pas par a, par exemple l'un des côtés du triangle p, q, r. Sur cette droite D
se trouvent k points dont chacun détermine avec a une droite passant par a.

Il y a donc au moins k droites passant par a. Les autres, qui ne rencontrent

pas D sont en nombre h r — k ^ 0, nombre qu'on peut appeler nombre

d'Euclide du plan.

Propriété 2. Un (,k, r) plan combinatoire est fini et le nombre de ses points

est v 1 + (k— 1) r (2)

En effet, si O est un point fixé, tous les autres points p sont situés sur
les droites passant par O.

Sur chaque droite se trouvent k — 1 points autres que O et on balaye

tout le plan avec l'ensemble de ces r droites, d'où la formule.

Propriété 3. Le nombre b des droites (ou blocs) est donné par la formule

et on a b > v. (3)k b vr

En effet il y a k points sur chaque droite d'où kb points dont chacun

est compté r fois. On en déduit la formule (3). L'inégalité b > v résulte

de (1).

Propriété 4. Les plans projectifs finis sont les (k, r) plans combinatoires pour
lesquels r k > 3 {ou h=0) et les plans affines sont les (k, r) plans
combinatoires pour lesquels r k 1 (ou h= 1)

Il en résulte que la classe des plans (k,r) — plans combinatoires va

comprendre celle des plans projectifs finis et celle des plans affines finis.
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Propriété 5. k divise r (r — 1) donc h {h— 1) (4)

En effet kb vr r + (k— 1) r2 kr2 — r (r— 1)

Propriété 6. k(k— 1) divise v(v—1) (5)

Cela résulte de v (v— 1) v (k—l) r k (k—l) b.

En vue d'étudier les (k, r) plans combinatoires à v éléments, v donné,

on peut remarquer qu'il existe toujours la solution:

k 2 r v — 1.

qui est la solution triviale d'un ensemble à v éléments dont les droites sont
constituées par les sous-ensembles à deux éléments. Cette solution est

représentée par exemple par v points en position générale dans le plan.
Nous l'écarterons des solutions explicites que nous allons maintenant
donner pour le cas v < 20. A titre d'exemple, on peut vérifier que les 4

possibilités trouvées au § 3 pour les plans combinatoires à 5 éléments ne donnent
qu'un (k, r)-plan, le dernier cas, qui correspond précisément à k 2, r 4.

6. Les (k, r) plans combinatoires à v éléments, v < 20.

Indiquons sur le cas v 13 le procédé de recherche des conditions
nécessaires.

On utilise les conditions nécessaires v — 1 (k— 1) r, r > k,k\r{r-1);
on a donc: v — 1 12 3x2 x 2 d'où les possibilités:

k — 1 1, r 12 c'est-à-dire k 2, r 12 (solution triviale)
k — 1=2, 3, r 6 qui vérifie bien k | r (r — 1).

k — 1=3, k — 4, r 4 qui donne le plan projectif d'ordre 3.

k — 1 4, k 5, r 3 est impossible (r>A:).

En procédant de même pour tous les nombres v < 20 et en écartant
les solutions triviales et celles qui correspondent aux plans projectifs ou
aux plans affines, il reste les trois cas suivants à étudier pour lesquels le
problème d'existence se pose.

7er cas. v 13, k 3, r 6.

En numérotant les points 0, 1, E, 2, 2', 3, 3', 4, 4', 5, 5', 6, 6' on peut
obtenir, après quelques tâtonnements, une solution avec les 26 droites
suivantes:
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011' 123 1' 2 3'

022' 143' 1 2'6
033'
044'

6

droites
152'

164'

J
j droites

1'4 5'}
1' 5 6'

055' 15' 6'j1 l'4'3
066'

5

droites

24 6'

24' 5

26 5'

3'65*

3'2'5'
3'4' 6'

3

droites

3

droites

453 I

4621

5' 34'} 1

6'2' 3} 1

Chaque droite contient 3 points et par tout point il passe 6 droites.
Le nombre d'Euclide est h 3.

On peut obtenir une solution algébrique de ce problème (voir en Appendice).

2e cas. v œ 15, k 3, r 1

Une solution peut être obtenue ici en appliquant une méthode générale

(cf. [2], page 29) à partir d'un espace projectif de dimension 3 sur le corps
fini F2 à 2 éléments. Les points sont ceux de l'espace, les droites sont celles

de l'espace. La structure est alors celle d'un (k, r)-plan combinatoire.
Numérotons les points comme l'indique la figure 8.

Les 35 droites correspondent aux parties suivantes:

011' 142'
'

235'
*

347'

022' 124' 241' 352'

033' 136' * n
253'

6 dr
267'

> 5 dr 361'

044' > 7 dr 157' 374'

055' 163' 276'

066' 175'

077'

4 dr

456'
465'

473'

3 dr

564' 1

1 ' 2 dr
571' j

672' } 1 dr

1' 2' 4'
1' 3' 6'
1' 5' 7'

2' 3' 5' 1

2' 6' 7' |

3 dr

2 dr

3' 4' 7' } 1 dr

4' 5' 6' } 1 dr

3e cas. v 19, k 3, r 9

Une solution peut être obtenue par un système de Netto, [2] p. 98, par la

méthode suivante:
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On part du corps Fi9 à 19 éléments. C'est l'ensemble S. Le groupe

multiplicatif F des carrés non nuls possède 9 éléments qui sont:

r {1, 4, 9, 16, 6, 17, 11, 7, 5}

22 32 42 52 62 72 82 92

Il existe un sous-groupe multiplicatif G de r qui est formé des 3 éléments :

G {1, H, 7}

Alors, les triples alignés sont les transformés de G par les transformations

du groupe à 19 x 9 éléments:

X —* XOC -f~ Cl Ö! G f, fl £

Comme une même droite peut être obtenue à partir de 3 transformations

19 X 9
différentes il existe b 57 droites. On a vr kb, d'où

3

r 3 x 19 x 3 x — 9 ce qui donne bien les paramètres k 3, r 9
19

du cas v — 19.

On remarquera que les 3 cas à étudier correspondent tous à k 3,

c'est-à-dire à des systèmes de triplets de Steiner, ([2], p. 97). Or le problème
d'existence des solutions est résolu dans ce cas depuis longtemps (Kirkman,
1847, Netto [8], 1893) par la condition nécessaire

k {k— 1) 6 divise v (v— 1) 19 X 18 (propriété 6)

Beaucoup plus récemment, Hanani [6], 1965, a démontré que cette
condition est suffisante pour k < 5. Le problème est ouvert pour les valeurs

supérieures de k. On trouvera des indications sur les résultats connus dans [4].

Appendice (Netto [8] p. 145) v 6 X 2 + 1 premier :

Une solution du 1er cas : v 13, k 3, r 6.

On considère une racine primitive mod 13, par exemple:

g 2 dont les puissances sont:

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7

1, g g2 g3 g" g5 g6 g1 g8 g9 g10 g11
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On forme les triples :

(1) (0, 1, 4), (028)

(0,g°,g2), (0,g\g3)
et 12 autres à partir de ceux-là:

(2) (x, X+g",X+g2*)(X 1. 2, 3, 12)

ou (XX+1>X+4) (x,X+2> X+8) — 0, 1, 12

On obtient alors les 13 X 2 26 triples cherchés qui sont donc explicitement:

0, 1, 4) o, 2, 8)
1, 2, 5) 1, 3, 9)
2, 3, 6) 2, 4, 10)

3, 4, 7) 3, 5, 11)

4, 5, 8) 4, 6, 12)

5, 6, 9) 5, 7, 0)
6, 7, 10) 6, 8, 1)

7, 8, H) 7, 9, 2)
8, 9, 12) 8, 10, 3)

9, 10, 0) 9, 11, 4)

(10,11, 1) (10, 12, 5)

(11, 12, 2) (H, 0, 6)

(12, 0, 3) (12, 1, 7)
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