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GEOMETRIES COMBINATOIRES

par L. LESIEUR

Je me propose de passer en revue les notions de géométries combinatoires

(d’aprés Crapo et Rota [1]), de treillis géométriques (d’aprés Dubreil-

Jacotin, Lesieur et Croisot [3]) et d’examiner plus particuli¢rement le cas
de certains plans combinatoires finis qui sont en méme temps des « blocks

1. Géométries combinatoires (de dimension finie). [1] § 1.

Elles sont définies par un ensemble S (I’ensemble des points) avec une

application de fermeture de Moore dans 'ensemble 2 (S) des parties de S’
| (4cA; AcB= AcB; A=A) vérifiant la propriété d’échange:

\

a beS

aem, G¢Z=>bem {Ae?(S)

f 'axiome de fermeture des points ou axiome géométrique:

a=avaeS et O =0, (noter que S=2S5),

¥ ct 'axiome de la dimension finie ou axiome de finitude :

A < S posseéde un sous-ensemble fini 4, tel que A = A

| Les ensembles fermés s’appellent les variétés de la géométrie et on peut
¥ définir une dimension de chaque variété au moyen de axiome de finitude:
} O est de dimension — 1, un point ae S est de dimension 0, une droite
§ (fermeture de 2 points distincts) est de dimension 1 etc..., la dimension
B de S est celle de Pespace.

Exemples :

6 points et 7 droites (fig. 1)
7 points et 7 droites (plan projectif fini) (fig. 2)
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2. Treillis géométrique L (S)

Les ensembles fermés (ou variétés) suffisent a définir 'application de
fermeture de Moore en postulant que Pintersection finie ou infinie de
fermés est un fermé.

On peut les ordonner par la relation d’inclusion des ensembles et
obtenir ainsi un treillis (particulier) qu’on appelle géométrigue. 11 est
possible de donner des propriétés caractéristiques de ces treillis (voir [3])
qui permettent de reconstituer la géométrie combinatoire. En particulier
la notion de dimension apparait également comme longueur d’une chaine
maximale allant de @ a S, diminuée de 1, cette longueur étant un invariant
pour toutes les chaines maximales considérées.

Exemple :

Géométrie sur 5 points schématisée par le dessin de la figure 3, ou les
points situés sur les droites dessinées constituent une variété, qui est une
droite de cette géométrie. La figure 4 représentente le treillis L (S) corres-
pondant. C’est un treillis de dimension 2 (rang 3). Une géométrie de dimen-
sion 2 s’appelle un plan.

Bien entendu, une géométrie projective ou affine de dimension finie
constitue un exemple de géométrie combinatoire (que 1’on peut d’ailleurs
caractériser dans la classe des géométries combinatoires). Mais il y en a
beaucoup d’autres, citons les géométries affines généralisées ([3], p. 303),
I’ensemble des relations d’équivalence sur un ensemble, les six exemples
dits classiques de [1] etc...

3. Géométries sur les ensembles finis

Cherchons par exemple les géométries finies sur 5 points.
dimension 1: S est la seule droite. (fig. 5)
dimension 2: 4 possibilités, avec représentation plane de la figure 6
dimension 3: 3 possibilités avec représentation dans I’espace de la figure 7
dimension 4: 1 possibilité, représentée par 5 points en position générale dans

I’espace de dimension 4.

Le nombre g,;, des géométries « non isomorphes » sur n éléments et
de dimension d est donné par le tableau [1], § 3.




g n 1 2 3 4 5 6 7 8

d

1 1 1 1 1 1 1 1

2 2 4 9 23 68

3 1 3 11 49 617
4 1 4 22 217
5 1 5 40
6 1 6
7 1
g, 1 2 4 9 26 101 950

Sil'onposeg, = gu1 + &u2 + -+ T -1 = (nombre total des géométries
différentes sur n éléments), on constate que g,.; % (g,)* ce qui donnerait
environ 30 000 géométries différentes sur un ensemble & 9 points.

Nous allons donc pour continuer nous limiter au cas des plans (d=2),
ligne soulignée du tableau.

4. Géométries planes combinatoires

Si d = 2, les seules variétés sont les points, les droites et '’ensemble S
tout entier. Une géométric plane combinatoire pourra alors étre définie
par I’ensemble S de ses points et ’ensemble de ses droites, qui est un sous-
ensemble de £ (S) satisfaisant aux axiomes suivants (cf [3], p. 318).
G,. Par deux points distincts il passe une droite et une seule. ‘
G,. Toute droite contient au moins deux points distincts.
G;. Il existe 3 points non situés sur une méme droite.

Si ’ensemble S est fini, on obtient un plan combinatoire fini.

5. (k, r) plans combinatoires

Nous allons considérer maintenant des géométries planes combinatoires
finies qui sont également des (k, r, s) plans au sens de G. HEUZE [7] et des
« blocks-designs » ou configurations tactiques au sens de [2], §2. D’une
fagon précise nous définissons un (k, r) plan combinatoire par les axiomes
suivants (concernant comme toujours, un ensemble S de points et un sous-
ensemble de Z (S) dont les éléments sont dénommés droites)

Iﬁ L’Enseignement mathém,. t. XVI, fasc. 2. 13
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1. Par 2 points distincts il passe une droite et une seule

2. Toute droite contient k points distincts (k>2) et k seulement
3. Tout point appartient a r droites distinctes, et r seulement

4. 11 existe 3 points non alignés: triangle p, g, r.

Il est clair que ces axiomes renforcent ceux des géométries planes
combinatoires (comparer avec G, G,, G3); ils coincident d’autre part avec
les (k, r, s) plans de G. HEUZE lorsqu’on prend s = k [7], et avec les blocks
designs de Dembowski lorsqu’on prend le paramétre b, = A égal a 1.

Etudions les premiéres propriétés de ces plans.

Propriété 1. Onar >k (1)

En effet, si a est un point donné, il existe au moins une droite ne passant
pas par a, par exemple I'un des cotés du triangle p, g, r. Sur cette droite D
se trouvent k£ points dont chacun détermine avec a une droite passant par a.
Il y a donc au moins k droites passant par a. Les autres, qui ne rencontrent
pas D sont en nombre 4 = r — k > 0, nombre qu’on peut appeler nombre
d’Euclide du plan.

Propriété 2. Un (k,r) plan combinatoire est fini et le nombre de ses points

est | v=1+(k-Dr| (2)

En effet, si O est un point fixé, tous les autres points p sont situés sur
les droites passant par O.

Sur chaque droite se trouvent k£ — 1 points autres que O et on balaye
tout le plan avec I’ensemble de ces r droites, d’ou la formule.

Propriété 3. Le nombre b des droites (ou blocs) est donné par la formule
lkbzvr[etonab>v. (3)

En effet il y a k points sur chaque droite d’ou kb points dont chacun
est compté r fois. On en déduit la formule (3). L’inégalité b > v résulte
de (1).

Propriété 4. Les plans projectifs finis sont les (k, r) plans combinatoires pour
lesquels r = k > 3 (ou h=0) et les plans affines sont les (k,r) plans
combinatoires pour lesquels r = k + 1 (ou h=1)

Il en résulte que la classe des plans (k,r) — plans combinatoires va
comprendre celle des plans projectifs finis et celle des plans affines finis.
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Propriété 5. k divise r (r—1) donc h (h—1) (4)
En effet kb = vr =r + (k=1 r* = kr* — r(r—1)

| Propriété 6. k (k—1) divise v(v—1) (5)
. Cela résulte de v(v—1) = v (k—1)r = k (k—1) b.

En vue d’étudier les (k, r) plans combinatoires a v éléments, v donné,
on peut remarquer qu’il existe toujours la solution:

k=2r=v—1.

¥ qui est la solution triviale d’un ensemble a v éléments dont les droites sont
| constituées par les sous-ensembles & deux éléments. Cette solution est
représentée par exemple par v points en position générale dans le plan.
'i Nous ’écarterons des solutions explicites que nous allons maintenant
donner pour le cas v < 20. A titre d’exemple, on peut vérifier que les 4 pos-
sibilités trouvées au § 3 pour les plans combinatoires a 5 éléments ne donnent
-f:" qu’un (k, r)-plan, le dernier cas, qui correspond précisément a k = 2, r = 4.

6. Les (k, r) plans combinatoires a v éléments, v < 20.

Indiquons sur le cas v = 13 le procédé de recherche des conditions
nécessaires.

On utilise les conditions nécessaires v — 1 = (k—1)r,r >k, k l r(r—1);
onadonc: v —1=12=3 X2 x 2 d’ou les possibilités:

k—1=1, r=12 c’est-a-dire k = 2, r = 12 (solution triviale)
k—1=2,k=23,r=6 qui vérifiec bien k | r (r—1).
k—1=3, k=4, r=4 qui donne le plan projectif d’ordre 3.
k—1=4,k=235,r =3 est impossible (r>k).

En procédant de méme pour tous les nombres v < 20 et en écartant
les solutions triviales et celles qui correspondent aux plans projectifs ou
aux plans affines, il reste les trois cas suivants & étudier pour lesquels le
probléme d’existence se pose.

I1®* cas. v =13, k = 3, r = 6.

En numérotant les points 0, 1, 1/, 2, 2', 3, 3", 4, 4, 5,5, 6, 6’ on peut
obtenir, aprés quelques titonnements, une solution avec les 26 droites
suivantes:



011’1 - 123 12 31 24 6 3 453 5
022 Wy rre| o sy S 46
033 6 152’i droites a5t droites 265
044'[ droites 164 1’5 6"
055’ 156/ 1'4'3 365 ; 5341 1
el ¥ 23 droites

346 6'2'3) 1

Chaque droite contient 3 points et par tout point il passe 6 droites.
Le nombre d’Euclide est & = 3.

On peut obtenir une solution algébrique de ce probléme (voir en Appen-
dice).

2¢cas.v=15k=3,r=17

Une solution peut €tre obtenue ici en appliquant une méthode générale
(cf. [2], page 29) a partir d’un espace projectif de dimension 3 sur le corps
fini F, a 2 éléments. Les points sont ceux de I’espace, les droites sont celles |
de l’espace. La structure est alors celle d’un (k, r)-plan combinatoire.
Numérotons les points comme I'indique la figure 8.

Les 35 droites correspondent aux parties suivantes:

011’ 142 235 347’ 1| 456" |
022’ 124 241" 352 ‘( 4 de 465’ i 3 dr
033’ 136" | - 253" L 5dr 361 473
044’ v 7dr 157 267" 374" |
055 163 276
066’ 175
077’
564" | 1" 2" &4 347V 1dr
571’} el 1’3’6’} 3 dr }
157
672" } 1dr 456" ) 1dr
23 5]
) 6 T I} 2 dr

3¢ecas. v=19,k=3,r=9

Une solution peut étre obtenue par un systéme de Netto, [2] p. 98, par la
méthode suivante:
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On part du corps F;o & 19 éléments. Cest I'ensemble S. Le groupe
multiplicatif I' des carrés non nuls possede 9 éléments qui sont:
r={1,4,9, 16, 6, 17, 11, 7, 5}
2232 4252 6% 778292
1l existe un sous-groupe multiplicatif G de I" qui est formé des 3 éléments:
G = {1, 11, 7}
Alors, les triples alignés sont les transformés de G par les transformations
du groupe @ a 19 x 9 éléments:
X - xa+ a wel, aeF,

Comme une méme droite peut étre obtenue a partir de 3 transformations

19 x 9

différentes 1l existe b = = 57 droites. On a vr = kb, d’ou

1
r=3x19 x 3 x 5 9 ce qui donne bien les paramétres k = 3, r = 9

du cas v = 19.

On remarquera que les 3 cas & étudier correspondent tous a k = 3,
c’est-a-dire a des systémes de triplets de Steiner, ([2], p. 97). Or le probléme
d’existence des solutions est résolu dans ce cas depuis longtemps (Kirkman,
1847, Netto [8], 1893) par la condition nécessaire

k {k—1) = 6 divise v (v—1) = 19 x 18 (propriété 6) -

Beaucoup plus récemment, Hanani [6], 1965, a démontré que cette
condition est suffisante pour k < 5. Le probléme est ouvert pour les valeurs
supérieures de k. On trouvera des indications sur les résultats connus dans [4].

Appendice (Netto [8] p. 145) v =6 X 2 + 1 premier :

Une solution du 1°* cas: v =13, k = 3, r = 6.

On considére une racine primitive mod 13, par exemple:

g = 2 dont les puissances sont:

1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7
1, g g2g%g%g® g% g g% g% g0 gM!
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On forme les triples:
(1) O, 1, 4), (028)
©, g% g%, (0, g', &°)
et 12 autres a partir de ceux-la:
2) 6 x+8% x+8%) (=123, .., 12)
ou O x+1 x+4 (e, x+2, x4+8) x=0,1,.., 12

On obtient alorsles 13 x 2 = 26 triples cherchés qui sont donc explicite-
ment:

(0, 1, 4 (0, 2, 8
(1, 2, 5 (1, 3, 9)
(2, 3, 6) (2, 4,10)
(3, 4, 7 (3, 5 11)
(4, 5 8) (4, 6,12)
(5 6, 9) (5 17, 0)
(6, 7,10) (6, 8 1)
(7, 811) (7,9, 2)
(8, 9,12) ( 8,10, 3)
( 9,10, 0) (9,11, 4)
(10, 11, 1) (10, 12, 5)
(11, 12, 2) (11, 0, 6)
(12, 0, 3) (12, 1, 7)
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