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On a évidemment D_F < D"F, D.F< D'F. En outre I'ensemble
constitué¢ par les x pour lesquels la relation D_F(x) £ D¥F(x) (respec-
tivement D, F(x) £ D™ F(x)) n’est pas vraie est dénombrable. En effet,
pour tout x tel que I'on ait D" F(x) < D_F(x), il existe des nombres
rationnels a, b, c satisfaisant aux conditions suivantes (cf. figure):

C
Mx)[~"" T ,
T PR (x)
D F(x) o D_F(x)
D F(x) T i
a  x b -
F(y) — F(x) F(z) — F(x)
a<x<b, <c<

y —X zZ —X

pour y et z tels que a<z<x<y<b. De plus, pour a, b, ¢ donnés, il existe
au plus une valeur de x pour laquelle les conditions précédentes sont rem-
plies. Il en résulte que I'ensemble des x tels que D" F(x) < D_F (x) est
'image d’une partie de Q°, donc est dénombrable.

Enfin, si la fonction F est, ou bien croissante, ou bien continue, les
quatre fonctions D_F, D™F, D.F, D*F sont boréliennes (car on a, par
exemple, D*F (x) = lim sup [F (x+h) — F(x)]/h).

he—0
h>0, heQ

Dans la suite, lorsqu’on parlera d’une fonction intégrable, ou d’un
ensemble négligeable, ou d’une propriété vraie presque partout (p.p.), il
sera toujours sous-entendu que ces notions sont relatives a la mesure de
Lebesgue sur R.

[ 5 o
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THEOREME |

Soit F une application de R dans R.

| (a) Si F_(x) = F(x) et DyF(x) < oo pour fout x, on a
ob
F(b) — F(a) £ [ D.F(x)dx pour a<b (a, beR).

| (b) Si F™ (x) = F(x) et D_F(x) < 00 pour tout x, on a
j P
F(b) — F(a) £ | D_F(x)dx pour a<b (a, beR).

7

(c) Si F™ (x) = F(x) et D*F(x) > — o0 pour tout x, on a

F(b) — F(a) = jb DY F (x) dx pour a<b (a, beR).

(d) Si F.(x) = F(x) et D”F(x) > —o00 pour tout x, on a

F(b) — F(a) 2 jb D™ F (x) dx pour a<b (a, beR).

*a

Démonstration

En appliquant la proposition (a) (resp. (b)) a la fonction — F, on obtient
la proposition (c) (resp. (d)). De méme, en appliquant (c) (resp. (d)) a la
fonction x — F (—x), on obtient la proposition (b) (resp. (a)). Il suffit donc
de démontrer 'une quelconque des quatre propositions énoncees.

Démontrons la proposition (a). Supposons donc que ’on ait F_(x) = F(x)
et D.F(x) < 400 pour tout x, et fixons les nombres réels a, b tels que
a<b.

Il suffira évidemment de prouver que ’on a

F(b) ~ Fla) < | £ (x)dx

pour toute fonction réelle f, semi-continue inférieurement sur [a, b], inté-
grable et telle que ’on ait D, F(x) < f(x) pour tout x de [a, b].

Soit f une fonction possédant ces propriétés, et posons, pour tout x
de [a, b],

g(x) = [ f()di — [F(x) — F@)] .
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Il s’agit de prouver que I'on a g (b) = 0. L’ensemble A constitué par
les x de [a, b] tels que g (x) = 0 n’est pas vide, car on a a € A4.

Désignons par ¢ la borne supérieure de 4. Ona g (¢) = lim supg(x) = 0

xX—c, x=c¢
et par suite ¢ € A. En raisonnant par I’absurde, supposons que I’on ait ¢ <b.
Nous montrerons qu’il existe alors un élément ¢’ de [a, b] tel que ¢’ >c,
g (c) > g(c). (Il en résultera ¢’ € 4, contrairement a la définition de c.)
Soit o un nombre réel tel que D .F (c) < a < f(c).

Puisque f est semi-continue inférieurement sur [a, b], il existe un ¢lé-
ment d de ]c, b] tel que £ (x) > o pour tout x € [c, d}; puisque D, F (¢c) < a,
il existe un élément ¢’ de Jc, d] tel que [F(¢') — F(¢)]/(¢’—¢c) < a. On a
alors

F(c) —F(c) <a(c—c) < Cf(t)dt :
et par suite

() —g@© =] f(dt —[F(c) -~ F@[ > 0.

Le point ¢’ répond donc a la question, et le théoréme est démontré.

Corollaire 1

Soit F une application de R dans R.

(a) Si F admet une dérivée finie F' en tout point, on a

| bF’(x)dx <F(b) —F(a) < | bF’(x)dx (a <b,a, beR),

b
et par suite | F'(x)dx = F(b)—F (a) si la fonction (borélienne) F' est inté-
grable sur l’intervalle [a, b].

(b) Supposons que la fonction F soit localement lipschitzienne. La fonc-
tion F est alors p.p. dérivable, sa dérivée F’ (p.p. définie) est localement
intégrable, et ['on a

ij'(x)dx = F(b)—F(@) (a<b,a, beR).
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Démonstration

L’assertion (a) découle directement du théoréme 1. Démontrons 'asser-
! tion (b). Les fonctions D, F, D*F, D_F, D~ F sont boréliennes et localement
bornées: elles sont donc localement intégrables. Il résulte alors cu théo-
“réme |

b b
[ D*F(x)dx F(b) —F(a) £ | D, F(x)dx,

b b

( D"F(x)dx <F(b) — F(a) £ | D_F(x)dx .

~ Ces inégalités deviennent d’autre part des égalités si Ion tient compte des
inégalités évidentes: D,F < DY¥F et D_F < DF.
Il en résulte que chacune des quatre fonctions D, F, DYF, D_F, D°F
est une version de la densité (par rapport a la mesure de Lebesgue) de la
- mesure engendrée par F (c’est-a-dire de la mesure de Borel u sur R déter-
minée par la condition u ([a, b]) = F (b)— F (a) pour a<b).
Cela prouve ’assertion (b).

- Corollaire 2

Soit F une application croissante de R dans R, et soit u la mesure engen-
drée par F (c’est-a-dire la mesure de Borel sur R déterminée par la condi-
tion u ([a, b]) = F(b)— F (a) pour tout couple a, b de points de continuité
. de F tels que a<b). ‘

Si la mesure u est singuliére (par rapport a la mesure de Lebesgue),
1 on a F'(x) = 0 pour presque tout x.

Démonstration

Comme F est croissante, on a F~ (x) = F(x) = F, (x) pour tout x,
et les fonctions D¥F et D™ F sont boréliennes et positives. En appliquant
le théoréme 1, on trouve donc

| D*F(x)dx £ F(b) — F(a)

| D™ F(x)dx £ F(b) — F(a) pour a<b.
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Ces relations expriment que la mesure p majore la mesure définie par
la densité DT F (resp. D™ F) par rapport a la mesure de Lebesgue. Cela
entraine que, si la mesure u est singuliére, la densité D¥F (resp. D™ F) est
p.p. nulle, et cela démontre le corollaire.

THEOREME 2

Soit F une application croissante de R dans R, et soit u la mesure engen-
drée par F. On a alors les conclusions suivantes :

1) La fonction F est p.p. dérivable, et sa dérivée F' (p.p. définie) est loca- @
lement intégrable. 1

2) La mesure )\ définie par la densité F' (par rapport a la mesure de
Lebesgue) est majorée par la mesure L.

3) La mesure u— A est singuliére (par rapport a la mesure de Lebesgue).

Démonstration

En vertu du corollaire 2, on peut se ramener (en retranchant de u sa
partie purement atomique) au cas ou u est diffuse (c’est-a-dire, au cas ou F
est continue). On peut aussi supposer que la mesure u est portée par un
intervalle compact [a, b].

Il résulte de la démonstration du corollaire 2 que la mesure p majore
la mesure définie par la densité D™ F (resp. D™F).

Désignons par A I’ensemble (négligeable pour la mesure de Lebesgue)
constitué par les éléments x de [a, b] tels que D, F(x) = +oo. Il suffira
de montrer que ’on a 2

) .
(1) p(fa,b]n A9 < | D, F(x)dx
(car alors on aura aussi
b b
[ D"F(x)dx = [ D F(x)dx < p([a,b]nA4A°) <] D, F(x)dx,
a [a, b]nAc a

de sorte que les trois assertions du théoréme découleront immédiatement,
compte tenu des relations D, F(x) £ D F(x) et D_F(x) < D" F(x), qui
sont vraies sur le complémentaire d’un ensemble dénombrable).

2 On note A€ le complémentaire par rapport a8 R d’une partie 4 de R.
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Pour démontrer la relation (1), il suffira de prouver que I'on a

n(la,b]n A9 = | f(x)dx

pour toute fonction numérique f, semi-continue inférieurement sur [a, b],
‘telle que 'on ait D, F (x) < f(x) pour tout x € [a, b] n A°.

: Soit f une fonction jouissant de ces propriétés, et désignons, pour tout
n_l par G, I’ensemble (ouvert) constitué par les éléments x de la, b[ pour
lesquels il existe un x’ tel que

'?g(z) x+1ln<x'2b, FX)-Fx <[ f@dr.
; x

f La suite (G,) est croissante. En raisonnant comme dans la démonstra-
tion du théoréme 1, on voit que Ja, b[nA4° = UG,. 1l suffit donc de prouver

n

- que, pour tout n=1, on a

u(G,) = If(t)dt

c’est-a-dire

b
pw(K) = J f(ndt

' pour tout ensemble compact K =G,.

Soit K un ensemble compact contenu dans G,. On voit sans peine que
I'on peut recouvrir K par un nombre fini d’intervalles [x, x'] (x € K) satis-
faisant aux conditions (2), deux & deux sans points intérieurs en commun.
Si on désigne par H la réunion de ces intervalles, on a

e TR NS S g

A
S

R(K) S p(H) < ] J@dt = jf(t)dr

ce qui conclut la démonstration.

Sz R R Uy G ke

| Il résulte de la démonstration précédente que (si la fonction F est conti-
B nue) la mesure singuliére u—A est portée par ’ensemble des x tels que
D, F(x) = +4oco. En raisonnant de fagon analogue (ou bien en appliquant
le résultat précédent a la fonction x> — F(—x)), on voit que la mesure
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u—A est portée aussi par ’ensemble des x tels que D_F(x) = +co0. On
peut donc affirmer que la mesure p— A est portée par ’ensemble des points x
ol F admet une dérivée égale a + o0.

Istituto di Matematica
Universita di Pisa,
Ttalia.
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UNE DEMONSTRATION ELEMENTAIRE
DU THEOREME DE LEBESGUE SUR LA DERIVATION
DES FONCTIONS CROISSANTES

par G. LerTA (Pisa)

RESUME

On expose une démonstration ¢lémentaire du théoréme de Lebesgue

concernant la dérivabilité p.p. d’une fonction F croissante et la décompo-
© sition de Lebesgue de la mesure engendrée par F. Cette démonstration ne

falt pas appel au lemme de recouvrement de Vitali (ni a aucune autre pro-

: posmon analogue). On démontre d’abord un théoréme (Théor. 1) concer-
“nant une fonction F quelconque (non nécessairement croissante) et donnant
“un certain nombre d’inégalités entre I’accroissement F (b)—F (a) de la
fonction F sur un intervalle [a, b] et les intégrales inférieures et supérieures,
- sur cet intervalle, des quatre dérivées généralisées de F.

Ce théoréeme permet déja d’obtenir le théoréme de Lebesgue dans le

cas particulier ol la fonction F est, ou bien localement lipschitzienne
 (Cor. 1), ou bien singuli¢re (Cor. 2). On démontre ensuite le théoréme de

'S

(

| R

Lebesgue dans le cas général (Théor. 2).

Pour toute application F de R dans R, nous poserons ! (pour xeR)

F_(x) =Ilim inf F(y) , F,(x) =lim inf F(y) ,
yo X, y=x yox, yix
F~(x) = lim sup F(y) , F*(x) = lim sup F(y) ,
yorx, y=x yox, px
| . F — F(x F — F (o
D_F() =tim i =) . DLF(x) =lim jnf L T FO) ,
yox, y<x y =X YoX, y>X y — X
F - F X F ? —_— F
D F(x) = lim sup W) >) , DTF(x) =lim sup W) 0 :
yox, y<x y —X YoOX, y>x y—-X

I On note R I'ensemble des nombres réels, et Q ’ensemble des nombres rationnels.
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