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REPRESENTATIONS
INDUITES DES ALGEBRES DE LIE !

par Jacques Dixmier (Paris)

| Soit G un groupe localement compact. Soit G 'ensemble des classes de
représentations unitaires irréductibles de G. Pour G commutatif, G est le
groupe dual bien connu. Pour G quelconque, é peut, semble-t-il, jouer
dans pas mal de questions le role d’objet dual de G.

Supposons que G soit un groupe de LIE réel. Soit g I’algébre de LIE
* de G. Il y a des relations étroites bien connues entre les représentations
irréductibles de dimension finie (pas nécessairement unitaires) de G, et
.+ celles de g. Pour les représentations de dimension infinie, il existe encore
des relations entre représentations de G et représentations de g, bien plus

. délicates. Nous y reviendrons. En tous cas, si ’on veut arriver & G, il semble
raisonnable "d’étudier les représentations irréductibles (de dimension finie
" ou non) de g sur C.

. L’étude des représentations, irréductibles ou non, de g, peut se trans-
| former en un probléme d’algébre associative, par le passage 2 I'algébre
enveloppante E (g) de g. Rappelons qu’on prend l’algébre tensorielle de
Pespace vectoriel g, et que £ (g) est le quotient de cette algébre par 1’idéal
* bilatére qu’engendrent les

X®y —y®x—[x,y] pourxyeag.

D’apres le théoréme de Poincaré-Birkhoff-Witt, g se plonge dans E (g), et
31 (xq, ..., X,) €st une base de g, les mondmes x,*! x,*2 ... x,* («y, ..., o,
entiers = 0) forment une base de 1’espace vectoriel E (g). Celui-ci est donc
tout a fait accessible au calcul. Par exemple, prenons pour g I’algébre g°
admettant une base (x, y, z) telle que [x, y] = z, [x, z] = [y, z] = 0. Alors
E (g°) admet la base (x™ y" z?), et il faut calculer la table de multiplication.
« Ona
(" " 22) (' " 2y = ey e

B2 ot tout revient & transformer »" x™. Or,

& .Conférence faite a la séance de la Société mathématique suisse, tenue 2 Berne le
t 10 mai 1970.



et on y arrive par récurrence.

Revenons au cas général. Toute représentation © de g se prolonge de
maniere unique en une représentation n’ de E (g) et © |» =’ est une bijec-
tion entre ’ensemble des représentations de g et ’ensemble des représenta-
tions de E (g). On identifie # & ©’. Cela conserve I'irréductibilité. L’incon-
vénient de remplacer g par E (g) est ’apparition des algébres de dimension
infinie. Mais on dispose maintenant des méthodes associatives (idéaux a
gauche maximaux, etc.). En fait, on considére plutdt E-(g) = E (g¢).

Notons que ce passage a 'algebre associative s’effectue aussi quand on
¢tudie les représentations de G lui-méme. Si G est fini, on considére I’algébre
du groupe G sur C, et ’étude des représentations de G équivaut a celle des
représentations de cette algebre de groupe. Si G est quelconque, la définition
de I'algebre de groupe est plus compliquée et il y a différentes possibilités.
L’une des plus étudiées est L'(G) par rapport & une mesure de Haar. On
peut d’ailleurs considérer que E (gc) est aussi une algébre de G.

Cherchons les représentations irréductibles de g° (ou de E (g o). Comme
E (go) est de dimension dénombrable, une telle représentation m est de
dimension < N, et les éléments centraux de E (g¢) donnent des scalaires.
Si m (z) = 0, il s’agit de choisir n (x) et 7 (y) permutables, et la représenta-
tion doit €tre de dimension 1. Les représentations correspondantes s’identi-
fient aux formes linéaires sur g° / Rz. Supposons que 7 (z) soit un scalaire
o # 0. Il s’agit de choisir des opérateurs linéaires = (x), 7 (y) tels que
n(x)n(y) — n(y)n(x) =a.1, et de telle maniére que 7 soit irréductible.
Une solution bien connue consiste & prendre, dans C [X],

df
(M () ) (x) = —oxf(x)  (m,(»)f)x) = N
Mais une étude plus approfondie révele 'existence d’une énorme quantité
de représentations irréductibles de g° (ou de E (g¢)), méme pour « (#0)
fixé. Il semble que ces représentations échappent au classement.

Or, soit A une algebre associative complexe. Soit 4 ’ensemble des classes
de représentations irréductibles de A. Pour tout = € 4, Ker = est ce qu'on
appelle un idéal bilatére-primitif de 4. Soit Prim (4) I’ensemble des idéaux
primitifs de 4. L’application | Ker = de 4 dans Prim A est surjective,
mais pas injective en général. Méme si A est énorme, Prim A peut étre

un objet raisonnable. Jacobson I'a muni d’une topologie et I’a appelé

I’espace structural de A.
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Revenons & 4 = E (g2). Alors que 4 est énorme, Prim (4) est tout a
fait calculable. Il est réunion disjointe de 2 sous-ensembles M, M,; M,
| est Iensemble des noyaux des représentations de dimension 1 de g°; et
M, est 'ensemble des noyaux des 7, (x € C — {0} ). D’ailleurs, Ker r, est
I'idéal bilatére de E (g¢o) engendré par z — . 1.

Il se trouve que G° est, pour G° simplement connexe d’algébre de
LIE g°, réunion de 2 sous-ensembles: 1) les représentations unitaires de
dimension 1 de G; 2) une famille de représentations unitaires irréductibles p,,
o « € R — {0}. Ce qu’on peut donc espérer, C’est, non pas une corres-

- pondance étroite entre G et E (gc) ", mais entre G et Prim (£ (gc)). Effective-
~ment, on a le théoréme suivant: Soit G' un groupe de LIE nilpotent simple-

ment connexe. Soit p € é; p opere dans un espace hilbertien H,. Soit H
’ensemble des vecteurs indéfiniment différentiables pour p. Alors on définit
canoniquement une représentation 7 de g dans H%. On peut identifier = a
une représentation de E (go). Cette représentation n’est pas irréductible.
- Mais Ker 7 est un idéal primitif de E (gc). On a donc une application @ de

G dans Prim (E(gc)). Comme p est unitaire, Ker n est stable par I'anti-
automorphisme principal de E (g¢) (celui qui transforme o xy ... x, pour

aeC, Xy, ..., X, €0, en & (—x,) ... (—x,)). Alors @ est une bijection de G
sur ’ensemble des éléments de Prim E (g) fixes pour 'antiautomorphisme
principal.

Si G n’est pas nilpotent, les relations entre G et Prim E (g¢) sont plus
compliquées et mal connues. Malgré tout, une étude approfondie de

- Prim E(g,) est sirement utile pour I'étude de G, et est siirement plus simple.

5k
% ES

La méthode la plus efficace pour construire des éléments de G est la
- méthode des représentations induites. Nous allons donc chercher, pour
- les représentations de g, une méthode d’induction. Pour cela, nous allons
- encore nous ramener a ’algébre associative. Rappelons d’abord ce qui se
-~ passe pour les groupes.

Soient G un groupe fini, H un sous-groupe, p une représentation de H
- dans un espace vectoriel complexe, = = Ind (p 1 G). Soient 4 l'algébre de
G, Blalgébre de H, de sorte que B est une sous-algébre de A. Alors 7 et p
definissent des représentations 7', p’ de 4, B. Cela posé, n’ est la représenta-
- tion de 4 induite par p’ au sens qu’on va rappeler maintenant.

Soit M un espace vectoriel réel. Il est bien connu qu’on peut complexi-
fier M, i.e. étendre les scalaires de R & C; on forme pour cela C @z M.

L’Enseignement mathém,. t. XVI, fasc. 2. 12
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Plus généralement, soit M un module a gauche sur un anneau B. Sup-
posons que B soit un sous-anneau d’un anneau A. On peut étendre
les scalaires de B a 4 en formant 4 ® z M ; il suffit de considérer 4 comme
un B-module a droite. On a obtenu ainsi un A-module a gauche. Les éléments
de 4 ®z M sont les combinaisons Z-linéaires d’éléments a ® m, ol a€ A
et me M, et la régle de calcul essentielle est que ab ® m = a ® bm pour
acA, beB et me M.

Soient A une algébre, B une sous-algébre, v une représentation de B
dans un espace vectoriel M. Alors on peut considérer M comme un
B-module a gauche. Formons 4 ®z M, qui est un A-module a gauche.
On a donc une représentation ¢ de 4 qu’on dit induite par 7. On pose
o = Ind (¢ 1 A).

Sion revient a G, H, n, p, on a n’ = Ind (p’ T A4).

Passons maintenant aux algébres de LIE. Soient g une algebre de LIE,
h une sous-algeébre, p une représentation de ) dans un espace vectoriel V.
On peut considérer p comme une représentation de £ (§) dans V. Or E (h)
est une sous-algebre de E (g). Soit # = Ind (p T E (g)). On peut considérer
7n comme une représentation de g qu’on note Ind (p T g). L’espace de 7 est
E (g) ® gy V. Cette représentation est tout a fait calculable. Reprenons
0° = Rx® Ry ® Rz avec [x,y] = z,[x,z] = [y,z] = 0. Soit h = Ry @ Rz,
Soient V' = C, et p défini par la forme linéaire Ay + uz > —u. Alors E (b)
est l’algebre des polynomes en y et en z, et p()"2z°) =0 si n > 0,
p (z°) = (—1)?. Comme E (g¢) admet la base (x™y" z¥) sur C, il admet la
base (x™) sur E (bo). On a

T(xX)E"R1)=x""1®1,

1(NE"D=yx" @1l ="y +[xD®I1
=x"®y.1—nx"'z®1=0—-nx""'®z.1
=nx""'®1,

1@O)ERD)=zx"Q1=x"zQ01=x"®z.1=-x"Q1L

Si on identifie x" ® 1 & un mondme X", I’espace de = s’identifie a C [X],
7 (x) est la multiplication par X, = (y) est la dérivation, et 7 (z) = — 1.
On retrouve la représentation considérée plus haut (avec o = — 1).

Revenons a g, ), p quelconques, et 7 = Ind (p T g). Soit J le noyau
de p dans E (h). Soit / le noyau de n dans E (g). Alors I ne dépend que de
J: c’est le plus grand idéal bilatére de E (g) contenu dans E(g)J. On
posera I = Ind (J 1 g), et on dira que c’est I'idéal bilatére de E (g) induit
par J.
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Dans le cas des groupes, dans quelle mesure la méthode des représenta-

tions induites est-elle efficace pour la recherche de G ?

1) Partant d’un sous-groupe fermé H de G, et d’une représentation
unitaire p de H, formons n = Ind (p T G). Obtient-on une représentation
unitaire irréductible ? Il est nécessaire que p soit irréductible. Malheureuse-
ment, ce n’est pas suffisant.

2) Supposons (H, p) bien choisi. Obtient-on pour n une représentation
unitaire irréductible arbitraire de G ? Autrement dit, toute représentation
unitaire irréductible = de G est-elle induite ? La réponse est trivialement
oui: prendre H = G, p = n. La vraie question est: peut-on trouver
(H, p) assez simple tel que = = Ind (p T G) ? Par exemple, peut-on imposer
a p d’étre de dimension finie ou méme de dimension 1 ?

Pour résoudre ce genre de question, on dispose de 2 théorémes de
Mackey:

Soient G un groupe localement compact séparable, K un sous-groupe
distingué fermé de G tel que K soit de type 1.

a) Soit o € K. Soit H le sous-groupe (fermé) des ge G telsque g . 0 = 0.

Soit p € H tel que p | K soit un multiple de o. Alors Ind (p T G) est irré-
ductible.

b) Soit 7 € . Supposons K réguliérement plongé dans G, de sorte que

T | K est concentrée sur une G-orbite dans K. Soit ¢ un point de cette
orbite. Soit H le sous-groupe (fermé) des g € G tels que g. ¢ = o. Il existe

pE H tel que p I K soit un multiple de o et tel que = = Ind (p T G).

Cela permet de prouver par exemple que, pour G nilpotent simplement

connexe, toute me G est induite par une représentation de dimension 1
d’un sous-groupe fermé (par récurrence sur la dimension de G).

Nous voudrions maintenant des théorémes analogues aux résultats a)
et b) pour les algebres de LIE.

Cas du théoréme a).

Il existe un bon analogue, dii a Blattner. Introduisons d’abord une
notation. Soient g une algébre de LIE sur C, f un idéal de g, ¢ une repré-
sentation de ¥ dans un espace vectoriel complexe 4. Nous noterons
‘ st(o,g) Pensemble des yeg tels qu’il existe o0 € Hom (4, 4) vérifiant

o ([y, xI) = [s, 0 (x)] pour tout x e f. Alors st (o, g) est une sous-algébre
§ de g contenant f.
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Théoréme. Soient g une algébre de LIE complexe, f un idéal de g, o
une représentation irréductible de f, h = st (o, g), p une représentation
irréductible de b telle que p |f soit un multiple de o. Alors Ind (p 1 g)
est irréductible.

Cas du théoréme b).

Si on part d’une représentation irréductible de g, il n’y a pas d’espoir
de pouvoir affirmer qu’elle est induite comme dans le théoréme b), d’aprés
ce qu'on a dit plus haut. Mais on peut espérer un résultat analogue pour
les idéaux primitifs de E (g). Soient g une algébre de LIE complexe, f un
idéal de g, I un idéal primitif de E (g). Il faut définir d’abord I’analogue
de . Ce sera un idéal primitif L de E (f) possédant la propriété suivante:
I N E (%) estle plus grand des idéaux bilatéres L’ de E (f) contenus dans L
et tels que [g, L] = L'. Il est probable qu’un tel L existe toujours. C’est
en tous cas démontré pour g résoluble.

Soit donc un tel L, et soit ¢ une représentation irréductible de f de
noyau L dans E (). Soit § = st (0, g). Conjecture: il existe une repré-
sentation irréductible p de b telle que p | t soit un multiple de o et telle que
Ind (p T g) ait pour noyau /.

Cela, malheureusement, n’est démontré que dans divers cas particuliers,
notamment:

(1) T est résoluble, I est maximal.

Les i1déaux maximaux sont des cas particuliers des idéaux primitifs.
Dans I’algebre enveloppante d’une algébre de LIE nilpotente complexe, les
2 notions coincident. On a donc un analogue complet du théoréme b) pour
g nilpotente. On en déduit facilement que, pour g nilpotente, tout idéal
primitif de E (g) est induit par une représentation de dimension 1 d’une
sous-algebre.

(i) g est résoluble, f est nilpotent.

On en déduit, un peu plus difficilement cette fois, que, pour g résoluble
complexe, tout idéal primitif de E (g) est induit par une représentation de
dimension 1 d’une sous-algebre.

*
% %k

Les résultats qui précédent permettent de décrire Prim E (g), compléte-
ment pour g nilpotente, partiellement pour g résoluble. Pour le cas général,
il faudrait savoir décrire Prim E (g) pour g semi-simple complexe. Voici des
conjectures. Soit Z (g) le centre de E (g); soit L un idéal de codimension 1
de Z (g). Alors l'idéal bilatére I de E (g) engendré par L est primitif;
E (g) /I n’a qu'un nombre fini d’idéaux bilatéres, et, pour presque tout L,
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E (g) / I est en fait simple. Tout idéal primitif de E (g) est induit par une
représentation irréductible de dimension finie d’une sous-algébre para-
bolique. Presque tout idéal primitif de £ (g) est induit par une représenta-
tion de dimension 1 d’une sous-algébre de Borel. Ces conjectures ne sont
a I’heure actuelle démontrées que pour les idéaux « génériques ».

( Regu le 30 juin 1970)

Jaques Dixmier,
Université de Paris,
Dépt. de mathématiques
9, quai St. Bernard, Tour 45-55
Paris 5¢
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