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REPRÉSENTATIONS
INDUITES DES ALGÈBRES DE LIE 1

par Jacques Dixmier (Paris)

Soit G un groupe localement compact. Soit G l'ensemble des classes de

| représentations unitaires irréductibles de G. Pour G commutatif, G est le

groupe dual bien connu. Pour G quelconque, G peut, semble-t-il, jouer
dans pas mal de questions le rôle d'objet dual de G.

Supposons que G soit un groupe de LIE réel. Soit g l'algèbre de LIE
de G. Il y a des relations étroites bien connues entre les représentations
irréductibles de dimension finie (pas nécessairement unitaires) de G, et
celles de g. Pour les représentations de dimension infinie, il existe encore
des relations entre représentations de G et représentations de g, bien plus

délicates. Nous y reviendrons. En tous cas, si l'on veut arriver à G, il semble

raisonnable d'étudier les représentations irréductibles (de dimension finie
ou non) de g sur C.

L'étude des représentations, irréductibles ou non, de g, peut se

transformer en un problème d'algèbre associative, par le passage à l'algèbre
enveloppante E (g) de g. Rappelons qu'on prend l'algèbre tensorielle de

l'espace vectoriel g, et que E (g) est le quotient de cette algèbre par l'idéal
hilatère qu'engendrent les

x 0 y — y ® x — [x,y\ pour x, y e g.

D'après le théorème de Poincaré-Birkhoff-Witt, g se plonge dans E (g), et
si (xl9 xn) est une base de g, les monômes x^1 x22 (al5 a„
entiers 0) forment une base de l'espace vectoriel E(g). Celui-ci est donc
tout à fait accessible au calcul. Par exemple, prenons pour g l'algèbre g0

admettant une base (x, y, z) telle que [x, y] z, [x, z] [y, z] 0. Alors
E (g0) admet la base (.xm yn zp), et il faut calculer la table de multiplication.
On a

(xm yn zp) (xm'f zp') xw y11 xm' yn' zp+p'

et tout revient à transformer yn xm\ Or,

1 Conférence faite à la séance de 1a. Société mathématique suisse, tenue à Berne le
10 mai 1970.
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y" Xm'= y"~l xy xm'~l - y"-1 x"1'-1 z,

et on y arrive par récurrence.
Revenons au cas général. Toute représentation n de g se prolonge de

manière unique en une représentation n' de E (g) et n |-> n est une bijec-
tion entre l'ensemble des représentations de g et l'ensemble des représentations

de E (g). On identifie n à n\ Cela conserve l'irréductibilité. L'inconvénient

de remplacer g par E (g) est l'apparition des algèbres de dimension
infinie. Mais on dispose maintenant des méthodes associatives (idéaux à

gauche maximaux, etc.). En fait, on considère plutôt ^(g) E (gc).
Notons que ce passage à l'algèbre associative s'effectue aussi quand on

étudie les représentations de G lui-même. Si G est fini, on considère l'algèbre
du groupe G sur C, et l'étude des représentations de G équivaut à celle des

représentations de cette algèbre de groupe. Si G est quelconque, la définition
de l'algèbre de groupe est plus compliquée et il y a différentes possibilités.
L'une des plus étudiées est L1{G) par rapport à une mesure de Haar. On

peut d'ailleurs considérer que E (gc) est aussi une algèbre de G.

Cherchons les représentations irréductibles de g0 (ou de E(g£)). Comme

^(9c) est de dimension dénombrable, une telle représentation % est de

dimension < K0 et les éléments centraux de E (g£) donnent des scalaires.

Si n (z) 0, il s'agit de choisir n (x) et n (y) permutables, et la représentation

doit être de dimension 1. Les représentations correspondantes s'identifient

aux formes linéaires sur g0 / Rz. Supposons que n (z) soit un scalaire
oc # 0. Il s'agit de choisir des opérateurs linéaires n (x), n (y) tels que
7i (x) n (y) — n (y) n (x) oc. I, et de telle manière que tz soit irréductible.
Une solution bien connue consiste à prendre, dans C [X],

(Xa (*)/) M - axf(x) (nx (y)/) dx

Mais une étude plus approfondie révèle l'existence d'une énorme quantité
de représentations irréductibles de g0 (ou de E(g£)), même pour a(^0)
fixé. Il semble que ces représentations échappent au classement.

Or, soit A une algèbre associative complexe. Soit Â l'ensemble des classes

de représentations irréductibles de A. Pour tout n e Â, Ker n est ce qu'on
appelle un idéal bilatère-primitif de A. Soit Prim (A) l'ensemble des idéaux

primitifs de A. L'application n |-> Ker n de Â dans Prim A est surjective,
mais pas injective en général. Même si Â est énorme, Prim A peut être

un objet raisonnable. Jacobson l'a muni d'une topologie et l'a appelé

l'espace structural de A.
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I Revenons à A E(g2). Alors que Â est énorme, Prim (A) est tout à

j fait calculable. Il est réunion disjointe de 2 sous-ensembles Mu M2\ M1
\ est l'ensemble des noyaux des représentations de dimension 1 de g0; et

: M2 est l'ensemble des noyaux des 7ia (a e C — {0} D'ailleurs, Ker na est

l'idéal bilatère de E (g£) engendré par z — a 1.

Il se trouve que G0 est, pour G0 simplement connexe d'algèbre de

LIE g0, réunion de 2 sous-ensembles: 1) les représentations unitaires de

dimension 1 de G; 2) une famille de représentations unitaires irréductibles pa,

où aeR — {0}. Ce qu'on peut donc espérer, c'est, non pas une

correspondance étroite entre G et E(gc)A, mais entre G et Prim (E (gc)). Effectivement,

on a le théorème suivant: Soit G un groupe de LIE nilpotent simplement

connexe. Soit p e G; p opère dans un espace hilbertien Hp. Soit H
l'ensemble des vecteurs indéfiniment differentiates pour p. Alors on définit
canoniquement une représentation % de g dans HOn peut identifier n à

une représentation de E (gc). Cette représentation n'est pas irréductible.
Mais Ker n est un idéal primitif de E (gc). On a donc une application <P de

G dans Prim (E (gc)). Comme p est unitaire, Ker n est stable par l'anti-
automorphisme principal de E (gc) (celui qui transforme axx ...xn pour
a e C, x1} xn e g, en â — xn) — x^). Alors $ est une bijection de G

sur l'ensemble des éléments de Prim E (gc) fixes pour l'antiautomorphisme
principal.

Si G n'est pas nilpotent, les relations entre G et Prim E (gc) sont plus
compliquées et mal connues. Malgré tout, une étude approfondie de

Prim £(gc) est sûrement utile pour l'étude de G, et est sûrement plus simple.

* • '

La méthode la plus efficace pour construire des éléments de G est la
méthode des représentations induites. Nous allons donc chercher, pour
les représentations de g, une méthode d'induction. Pour cela, nous allons
encore nous ramener à l'algèbre associative. Rappelons d'abord ce qui se

passe pour les groupes.
Soient G un groupe fini, H un sous-groupe, p une représentation de H

dans un espace vectoriel complexe, n Ind (p j G). Soient A l'algèbre de
G, B l'algèbre de 77, de sorte que B est une sous-algèbre de A. Alors n et p
définissent des représentations n\ p' de A, B. Cela posé, 11 est la représentation

de A induite par p' au sens qu'on va rappeler maintenant.
Soit M un espace vectoriel réel. Il est bien connu qu'on peut complexi-

fier M, i.e. étendre les scalaires de R à C; on forme pour cela C (x)R M.

L'Enseignement mathém,. t. XVI, fasc. 2. 12
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Plus généralement, soit M un module à gauche sur un anneau B.

Supposons que B soit un sous-anneau d'un anneau A. On peut étendre
les scalaires de B à A en formant A ®B M; il suffit de considérer A comme
un ^-module à droite. On a obtenu ainsi un A--module à gauche. Les éléments
de A ®b M sont les combinaisons Z-linéaires d'éléments a 0 m, où a e A
et me M, et la règle de calcul essentielle est que ab 0 m a 0 bm pour
ae A, beB et me M.

Soient A une algèbre, B une sous-algèbre, t une représentation de B
dans un espace vectoriel M. Alors on peut considérer M comme un
R-module à gauche. Formons A ®B M, qui est un .^-module à gauche.
On a donc une représentation a de A qu'on dit induite par t. On pose
a Ind (t t A).

Si on revient à G, H, n, p, on a n' Ind (p' j A).
Passons maintenant aux algèbres de LIE. Soient g une algèbre de LIE,

I) une sous-algèbre, p une représentation de I) dans un espace vectoriel F.

On peut considérer p comme une représentation de E (I)) dans F. Or E (ï))

est une sous-algèbre de E (g). Soit n Ind (p ] E (g)). On peut considérer
7i comme une représentation de g qu'on note Ind (p j g). L'espace de n est

E (g) 0 F. Cette représentation est tout à fait calculable. Reprenons
g0 Rx 0 Ry 0 Rz avec [.x, y] z, [x, z] [y, z] 0. Soit I) Ry 0 Rz.

Soient F C, et p défini par la forme linéaire Ay + pz )-» — p. Alors F (1))

est l'algèbre des polynômes en y et en z, et p (/* zp) 0 si n > 0,

p (zp) (— l)p. Comme £ (g 2) admet la base (xmyn zp) sur C, il admet la
base (xm) sur E (l)c). On a

TC (x) (Xn 0 1) Xn+ 1 0 1,

71 (y) (/0 1 y xn 0 1 (i"j+ [y, xn]) 0 1

» x" 0 y 1 — n xn~1 z 0 1 0 — n xn~1 0 z 1

n xn~x 0 1,

71 (z) (x" 0 1) Z x" 0 1 xn Z 0 1 xn 0 Z 1 — Xn 0 1.

Si on identifie x" 0 1 à un monôme Z", l'espace de n s'identifie à C [X],
n (x) est la multiplication par Z, n (y) est la dérivation, et n (z) — 1.

On retrouve la représentation considérée plus haut (avec a =* — 1).

Revenons à g, 1), p quelconques, et n Ind (p t g). Soit J le noyau
de p dans E (1)). Soit / le noyau de n dans E (g). Alors I ne dépend que de

J: c'est le plus grand idéal bilatère de E (g) contenu dans E (g) J. On

posera / Ind (/ f g), et on dira que c'est l'idéal bilatère de E (g) induit

par J.
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Dans le cas des groupes, dans quelle mesure la méthode des représentations

induites est-elle efficace pour la recherche de G

1) Partant d'un sous-groupe fermé 77 de G, et d'une représentation
unitaire p de 77, formons n Ind (p f G). Obtient-on une représentation
unitaire irréductible Il est nécessaire que p soit irréductible. Malheureusement,

ce n'est pas suffisant.

2) Supposons (77, p) bien choisi. Obtient-on pour n une représentation
unitaire irréductible arbitraire de G Autrement dit, toute représentation
unitaire irréductible n de G est-elle induite La réponse est trivialement
oui: prendre 77 G, p n. La vraie question est: peut-on trouver
(77, p) assez simple tel que n Ind (p f G) Par exemple, peut-on imposer
à p d'être de dimension finie ou même de dimension 1

Pour résoudre ce genre de question, on dispose de 2 théorèmes de

Mackey :

Soient G un groupe localement compact séparable, K un sous-groupe
distingué fermé de G tel que K soit de type 7.

a) Soit g eK. Soit 77 le sous-groupe (fermé) des g e G tels que g a — a.

Soit p e H tel que p | K soit un multiple de a. Alors Ind (p î G) est
irréductible.

b) Soit tie G. Supposons K régulièrement plongé dans G, de sorte que
7i | K est concentrée sur une G-orbite dans K. Soit o un point de cette
orbite. Soit 77 le sous-groupe (fermé) des g e G tels que g g g. Il existe

p e H tel que p | K soit un multiple de g et tel que n Ind (p | G).

Cela permet de prouver par exemple que, pour G nilpotent simplement

connexe, toute n e G est induite par une représentation de dimension 1

d'un sous-groupe fermé (par récurrence sur la dimension de G).
Nous voudrions maintenant des théorèmes analogues aux résultats a)

et b) pour les algèbres de LIE.
Cas du théorème a).

Il existe un bon analogue, dû à Blattner. Introduisons d'abord une
notation. Soient g une algèbre de LIE sur C, ï un idéal de g, a une
représentation de ï dans un espace vectoriel complexe A. Nous noterons
s t (a, g) l'ensemble des y e g tels qu'il existe a e Horn (A, A) vérifiant

(b, x]) [6-, a (x)] pour tout x e ï. Alors s t (a, g) est une sous-algèbre
de g contenant I.
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Théorème. Soient g une algèbre de LIE complexe, ï un idéal de g, g

une représentation irréductible de I, I) s t (g, g), p une représentation
irréductible de 1) telle que p | I soit un multiple de g. Alors Ind (p î g)
est irréductible.

Cas du théorème b).
Si on part d'une représentation irréductible de g, il n'y a pas d'espoir

de pouvoir affirmer qu'elle est induite comme dans le théorème b), d'après
ce qu'on a dit plus haut. Mais on peut espérer un résultat analogue pour
les idéaux primitifs de E (g). Soient g une algèbre de LIE complexe, I un
idéal de g, I un idéal primitif de E (g). Il faut définir d'abord l'analogue
de a. Ce sera un idéal primitif L de E (ï) possédant la propriété suivante :

1 n E est le plus grand des idéaux bilatères L' de E (I) contenus dans L
et tels que [g, L'] a L'. Il est probable qu'un tel L existe toujours. C'est
en tous cas démontré pour g résoluble.

Soit donc un tel L, et soit g une représentation irréductible de ï de

noyau L dans E (ï). Soit î) s t (g, g). Conjecture: il existe une
représentation irréductible p de t) telle que p | î soit un multiple de g et telle que
Ind (p t g) ait pour noyau /.

Cela, malheureusement, n'est démontré que dans divers cas particuliers,
notamment:

(i) ï est résoluble, / est maximal.
Les idéaux maximaux sont des cas particuliers des idéaux primitifs.

Dans l'algèbre enveloppante d'une algèbre de LIE nilpotente complexe, les

2 notions coïncident. On a donc un analogue complet du théorème b) pour
g nilpotente. On en déduit facilement que, pour g nilpotente, tout idéal

primitif de E (g) est induit par une représentation de dimension 1 d'une
sous-algèbre.

(ii) g est résoluble, ï est nilpotent.
On en déduit, un peu plus difficilement cette fois, que, pour g résoluble

complexe, tout idéal primitif de E (g) est induit par une représentation de

dimension 1 d'une sous-algèbre.

* *

Les résultats qui précèdent permettent de décrire Prim E (g), complètement

pour g nilpotente, partiellement pour g résoluble. Pour le cas général,

il faudrait savoir décrire Prim £ (g) pour g semi-simple complexe. Voici des

conjectures. Soit Z (g) le centre de E (g); soit L un idéal de codimension 1

de Z(g). Alors l'idéal bilatère / de E (g) engendré par L est primitif;
E (g) / / n'a qu'un nombre fini d'idéaux bilatères, et, pour presque tout L,



— 175 —

E(§) /1 est en fait simple. Tout idéal primitif de E (g) est induit par une

représentation irréductible de dimension finie d'une sous-algèbre
parabolique. Presque tout idéal primitif de E (g) est induit par une représentation

de dimension 1 d'une sous-algèbre de Borel. Ces conjectures ne sont
à l'heure actuelle démontrées que pour les idéaux « génériques ».

Reçu le 30 juin 1970)

Jaques Dixmier,
Université de Paris,
Dépt. de mathématiques
9, quai St. Bernard, Tour 45-55
Paris 5 e
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