Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HOW TO WRITE MATHEMATICS

Autor: Halmos, P. R.

Kapitel: 8. Write good english

DOI: https://doi.org/10.5169/seals-43857

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

The historical novelist's plots and subplots and the detective story writer's hints and clues all have their mathematical analogues. To make the point by way of an example: much of the theory of metric spaces could be developed as a "subplot" in a book on general topology, in unpretentious comments, parenthetical asides, and illustrative exercises. Such an organization would give the reader more firmly founded motivation and more insight than can be obtained by inexorable generality, and with no visible extra effort. As for clues: a single word, first mentioned several chapters earlier than its definition, and then re-mentioned, with more and more detail each time as the official treatment comes closer and closer, can serve as an inconspicuous, subliminal preparation for its full-dress introduction. Such a procedure can greatly help the reader, and, at the same time, make the author's formal work much easier, at the expense, to be sure, of greatly increasing the thought and preparation that goes into his informal prose writing. It's worth it. If you work eight hours to save five minutes of the reader's time, you have saved over 80 man-hours for each 1000 readers, and your name will be deservedly blessed down the corridors of many mathematics buildings. But remember: for an effective use of subplots and clues, something very like the spiral plan of organization is indispensable.

The last, least, but still very important aspect of organization that deserves mention here is the correct arrangement of the mathematics from the purely logical point of view. There is not much that one mathematician can teach another about that, except to warn that as the size of the job increases, its complexity increases in frightening proportion. At one stage of writing a 300-page book, I had 1000 sheets of paper, each with a mathematical statement on it, a theorem, a lemma, or even a minor comment, complete with proof. The sheets were numbered, any which way. My job was to indicate on each sheet the numbers of the sheets whose statement must logically come before, and then to arrange the sheets in linear order so that no sheet comes after one on which it's mentioned. That problem had, apparently, uncountably many solutions; the difficulty was to pick one that was as efficient and pleasant as possible.

8. Write good english

Everything I've said so far has to do with writing in the large, global sense; it is time to turn to the local aspects of the subject.

Why shouldn't an author spell "continuous" as "continuous"? There is no chance at all that it will be misunderstood, and it is one letter shorter, so why not? The answer that probably everyone would agree on, even the most libertarian among modern linguists, is that whenever the "reform" is introduced it is bound to cause distraction, and therefore a waste of time, and the "saving" is not worth it. A random example such as this one is probably not convincing; more people would agree that an entire book written in reformed spelling, with, for instance, "izi" for "easy" is not likely to be an effective teaching instrument for mathematics. Whatever the merits of spelling reform may be, words that are misspelled according to currently accepted dictionary standards detract from the good a book can do: they delay and distract the reader, and possibly confuse or anger him.

The reason for mentioning spelling is not that it is a common danger or a serious one for most authors, but that it serves to illustrate and emphasize a much more important point. I should like to argue that it is important that mathematical books (and papers, and letters, and lectures) be written in good English style, where good means "correct" according to currently and commonly accepted public standards. (French, Japanese, or Russian authors please substitute "French", "Japanese", or "Russian" for "English".) I do not mean that the style is to be pedantic, or heavy-handed, or formal, or bureaucratic, or flowery, or academic jargon. I do mean that it should be completely unobtrusive, like good background music for a movie, so that the reader may proceed with no conscious or unconscious blocks caused by the instrument of communication and not its content.

Good English style implies correct grammar, correct choice of words, correct punctuation, and, perhaps above all, common sense. There is a difference between "that" and "which", and "less" and "fewer" are not the same, and a good mathematical author must know such things. The reader may not be able to define the difference, but a hundred pages of colloquial misusage, or worse, has a cumulative abrasive effect that the author surely does not want to produce. Fowler [4], Roget [8], and Webster [10] are next to Dunford-Schwartz on my desk; they belong in a similar position on every author's desk. It is unlikely that a single missing comma will convert a correct proof into a wrong one, but consistent mistreatment of such small things has large effects.

The English language can be a beautiful and powerful instrument for interesting, clear, and completely precise information, and I have faith that the same is true for French or Japanese or Russian. It is just as important for an expositor to familiarize himself with that instrument as for a

surgeon to know his tools. Euclid can be explained in bad grammar and bad diction, and a vermiform appendix can be removed with a rusty pocket knife, but the victim, even if he is unconscious of the reason for his discomfort, would surely prefer better treatment than that.

All mathematicians, even very young students very near the beginning of their mathematical learning, know that mathematics has a language of its own (in fact it is one), and an author must have thorough mastery of the grammar and vocabulary of that language as well as of the vernacular. There is no Berlitz course for the language of mathematics; apparently the only way to learn it is to live with it for years. What follows is not, it cannot be, a mathematical analogue of Fowler, Roget, and Webster, but it may perhaps serve to indicate a dozen or two of the thousands of items that those analogues would contain.

9. Honesty is the best policy

The purpose of using good mathematical language is, of course, to make the understanding of the subject easy for the reader, and perhaps even pleasant. The style should be good not in the sense of flashy brilliance, but good in the sense of perfect unobtrusiveness. The purpose is to smooth the reader's way, to anticipate his difficulties and to forestall them. Clarity is what's wanted, not pedantry; understanding, not fuss.

The emphasis in the preceding paragraph, while perhaps necessary, might seem to point in an undesirable direction, and I hasten to correct a possible misinterpretation. While avoiding pedantry and fuss, I do not want to avoid rigor and precision; I believe that these aims are reconcilable. I do not mean to advise a young author to be ever so slightly but very very cleverly dishonest and to gloss over difficulties. Sometimes, for instance, there may be no better way to get a result than a cumbersome computation. In that case it is the author's duty to carry it out, in public; the best he can do to alleviate it is to extend his sympathy to the reader by some phrase such as "unfortunately the only known proof is the following cumbersome computation".

Here is the sort of thing I mean by less than complete honesty. At a certain point, having proudly proved a proposition p, you feel moved to say: "Note, however, that p does not imply q", and then, thinking that you've done a good expository job, go happily on to other things. Your motives may be perfectly pure, but the reader may feel cheated just the same. If he knew all about the subject, he wouldn't be reading you; for him the non-