Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HOW TO WRITE MATHEMATICS

Autor: Halmos, P. R.

Kapitel: 2. Say something

DOI: https://doi.org/10.5169/seals-43857

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

thanks. I am not the less grateful for that, and not the less eager to acknowledge that without their help this essay would have been worse.

"Hier stehe ich; ich kann nicht anders."

1. There is no recipe and what it is

I think I can tell someone how to write, but I can't think who would want to listen. The ability to communicate effectively, the power to be intelligible, is congenital, I believe, or, in any event, it is so early acquired that by the time someone reads my wisdom on the subject he is likely to be invariant under it. To understand a syllogism is not something you can learn; you are either born with the ability or you are not. In the same way, effective exposition is not a teachable art; some can do it and some cannot. There is no usable recipe for good writing.

Then why go on? A small reason is the hope that what I said isn't quite right; and, anyway, I'd like a chance to try to do what perhaps cannot be done. A more practical reason is that in the other arts that require innate talent, even the gifted ones who are born with it are not usually born with full knowledge of all the tricks of the trade. A few essays such as this may serve to "remind" (in the sense of Plato) the ones who want to be and are destined to be the expositors of the future of the techniques found useful by the expositors of the past.

The basic problem in writing mathematics is the same as in writing biology, writing a novel, or writing directions for assembling a harpsichord: the problem is to communicate an idea. To do so, and to do it clearly, you must have something to say, and you must have someone to say it to, you must organize what you want to say, and you must arrange it in the order you want it said in, you must write it, rewrite it, and re-rewrite it several times, and you must be willing to think hard about and work hard on mechanical details such as diction, notation, and punctuation. That's all there is to it.

· 2. SAY SOMETHING

It might seem unnecessary to insist that in order to say something well you must have something to say, but it's no joke. Much bad writing, mathematical and otherwise, is caused by a violation of that first principle. Just as there are two ways for a sequence not to have a limit (no cluster points or too many), there are two ways for a piece of writing not to have a subject (no ideas or too many).

The first disease is the harder one to catch. It is hard to write many words about nothing, especially in mathematics, but it can be done, and the result is bound to be hard to read. There is a classic crank book by Carl Theodore Heisel [5] that serves as an example. It is full of correctly spelled words strung together in grammatical sentences, but after three decades of looking at it every now and then I still cannot read two consecutive pages and make a one-paragraph abstract of what they say; the reason is, I think, that they don't say anything.

The second disease is very common: there are many books that violate the principle of having something to say by trying to say too many things. Teachers of elementary mathematics in the U.S.A. frequently complain that all calculus books are bad. That is a case in point. Calculus books are bad because there is no such subject as calculus; it is not a subject because it is many subjects. What we call calculus nowadays is the union of a dab of logic and set theory, some axiomatic theory of complete ordered fields, analytic geometry and topology, the latter in both the "general" sense (limits and continuous functions) and the algebraic sense (orientation), real-variable theory properly so called (differentiation), the combinatoric symbol manipulation called formal integration, the first steps of lowdimensional measure theory, some differential geometry, the first steps of the classical analysis of the trigonometric, exponential, and logarithmic functions, and, depending on the space available and the personal inclinations of the author, some cook-book differential equations, elementary mechanics, and a small assortment of applied mathematics. Any one of these is hard to write a good book on; the mixture is impossible.

Nelson's little gem of a proof that a bounded harmonic function is a constant [7] and Dunford and Schwartz's monumental treatise on functional analysis [3] are examples of mathematical writings that have something to say. Nelson's work is not quite half a page and Dunford-Schwartz is more than four thousand times as long, but it is plain in each case that the authors had an unambiguous idea of what they wanted to say. The subject is clearly delineated; it is a subject; it hangs together; it is something to say.

To have something to say is by far the most important ingredient of good exposition—so much so that if the idea is important enough, the work has a chance to be immortal even if it is confusingly misorganized

and awkwardly expressed. Birkhoff's proof of the ergopic theorem [1] is almost maximally confusing, and Vanzetti's "last letter" [9] is halting and awkward, but surely anyone who reads them is glad that they were written. To get by on the first principle alone is, however, only rarely possible and never desirable.

3. Speak to someone

The second principle of good writing is to write for someone. When you decide to write something, ask yourself who it is that you want to reach. Are you writing a diary note to be read by yourself only, a letter to a friend, a research announcement for specialists, or a textbook for undergraduates? The problems are much the same in any case; what varies is the amount of motivation you need to put in, the extent of informality you may allow yourself, the fussiness of the detail that is necessary, and the number of times things have to be repeated. All writing is influenced by the audience, but, given the audience, an author's problem is to communicate with it as best he can.

Publishers know that 25 years is a respectable old age for most mathematical books; for research papers five years (at a guess) is the average age of obsolescence. (Of course there can be 50-year old papers that remain alive and books that die in five.) Mathematical writing is ephemeral, to be sure, but if you want to reach your audience now, you must write as if for the ages.

I like to specify my audience not only in some vague, large sense (e.g., professional topologists, or second year graduate students), but also in a very specific, personal sense. It helps me to think of a person, perhaps someone I discussed the subject with two years ago, or perhaps a deliberately obtuse, friendly colleague, and then to keep him in mind as I write. In this essay, for instance, I am hoping to reach mathematics students who are near the beginning of their thesis work, but, at the same time, I am keeping my mental eye on a colleague whose ways can stand mending. Of course I hope that (a)-he'll be converted to my ways, but (b) he won't take offence if and when he realizes that I am writing for him.

There are advantages and disadvantages to addressing a very sharply specified audience. A great advantage is that it makes easier the mind reading that is necessary; a disadvantage is that it becomes tempting to indulge in snide polemic comments and heavy-handed "in" jokes. It is