
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: POINTS DE VUE SUR LA THÉORIE DES NŒUDS

Autor: Calugareanu, Georges

DOI: https://doi.org/10.5169/seals-43855

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-43855
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


1

POINTS DE VUE SUR LA THÉORIE DES NŒUDS

par Georges Calugareanu (Cluj)

Le développement moderne de la Géométrie ne peut ignorer une figure

géométrique si familière que celle du nœud, au sens que l'on donne à ce mot
dans la vie courante. En effet, le nœud sur un fil est une figure géométrique

que chacun de nous réalise plusieurs fois par jour (nouer sa cravate et les

lacets de ses souliers). Il n'est pas douteux que les nœuds sont employés

depuis les âges les plus reculés de l'humanité. Malgré cela, les mathématiciens

ne sont arrivés que très tard à dégager des méthodes plus ou moins efficaces

pour l'étude des nœuds, pour leur classification d'abord. Il est surprenant
que l'antiquité ne nous ait rien laissé là-dessus, sauf la légende du nœud

gordien, alors que la géométrie de l'antiquité est si riche en faits géométriques
essentiels. Le problème des nœuds de l'espace euclidien tridimensionnel
paraît avoir été abordé au xixe siècle par les études de Listing et du physicien
Kirchhoff. Mais les vraies méthodes mathématiques adaptées à cette étude

apparaissent seulement au début de notre siècle, après le développement de

1'Analysis situs par les travaux de H. Poincaré, puis, après la première guerre
mondiale, par les travaux de plusieurs mathématiciens allemands. K. Reide-
meister publia la première monographie sous le titre « Knotentheorie »,

parue sur ce sujet h La théorie s'est développée ensuite par l'apport de

nombreux mathématiciens américains et japonais. On peut dire que, à

notre époque, le problème des nœuds est loin d'être épuisé, et forme un
domaine de la topologie algébrique aussi bien que de la géométrie
différentielle globale.

1. Nœuds. Un nœud est une courbe fermée simple de l'espace R3. C'est
donc l'image homéomorphe d'un cercle, dans R3. Mais cette courbe fermée
peut être plongée dans R3 d'une infinité de manières différentes, et c'est ce

qui donne l'infinie variété des nœuds possibles, de plus en plus compliqués.
Avec un fil, faisons un nœud que nous pouvons compliquer à loisir, puis,
afin d'obtenir une figure bien stable, joignons les deux bouts du fil. De quelque

manière que l'on déforme alors le fil, le nœud qui y est emmagasiné ne
change pas sa nature, à moins que l'on coupe le fil. C'est cette invariance

1 Voir aussi [5] pour une riche bibliographie du sujet.
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vis-à-vis des déformations qui définit le type du nœud, et l'on voit alors que
le problème de la classification de ces types exige la recherche des invariants
nécessaires et relève de la topologie. De plus, les déformations que notre
nœud peut subir sans changer de type sont celles pendant lesquelles la
courbe ne se traverse pas elle-même, donc notre problème appartient au
domaine de la topologie algébrique nommé théorie de l'isotopie.

On sait que la notion générale de courbe continue dans un espace
euclidien n'exclut pas des complications de la structure locale de la courbe,

que l'on devra éviter d'abord, afin de ne pas alourdir la recherche par des

éléments en quelque sorte pathologiques. D'ailleurs, toute réalisation
physique d'un type de nœud à l'aide d'un fil exclut les complications de

microstructure de la courbe et peut nous guider dans le choix des courbes fermées

de R3 que l'on devra appeler des nœuds de type fini. Ce sont:

1. Les polygones fermés simples de R3, orientés, à un nombre fini de côtés

(nœuds polygonaux).

2. Les courbes simples de R3, rectifiables, orientées, ayant une tangente
qui varie d'une manière continue en fonction de l'arc s sur la courbe

(nœuds differentiates).

On démontre que chaque nœud polygonal peut être approché
uniformément par des nœuds differentiates du même type, et réciproquement.

Deux nœuds differentiates N et Nf sont isotopes dans R3 s'il existe une
famille d'homéomorphismes continuement differentiates par rapport
à (s,t) dt\ N -* Nt, te [0,1], avec N0 N, N'; dt sera une
déformation isotope de N en N\ et l'on voit que pendant cette déformation

Nt ne se traverse pas lui-même, étant une courbe sans points multiples

pour chaque t e [0,1]. Lorsque N et N' sont isotopes, nous écrirons TV TV',

et l'on voit que nous avons là une relation d'équivalence. Les types de

nœuds sont les classes d'équivalence correspondantes. Dans chacune de

ces classes on peut choisir des représentants qui soient des nœuds

polygonaux, ou des nœuds différentiables. Mais nous avons démontré que chaque

type de nœuds admet aussi comme représentants des courbes algébriques ;

unicursales (rationnelles) de R3, car un nœud differentiate peut être appro- j
ché uniformément par des courbes simples unicursales appartenant au même |
type.

Dans le cas des nœuds polygonaux, il a été démontré par W. Graeub ^

que deux nœuds sont isotopes si et seulement si il existe un homéomorphisme

simplicial de R3 sur lui-même qui applique l'un des nœuds sur l'autre. Nous

ne connaissons aucun résultat analogue dans le cas des nœuds différentiables.
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L'instrument analytique le plus efficace dans l'étude des types de nœuds

est le groupe fondamental de l'espace complémentaire R3 — N, appelé

groupe du nœud N. Ce groupe permet de distinguer entre des types différents

de nœuds, dans bien des cas, si l'on peut établir que les groupes des

deux nœuds en question ne sont pas isomorphes. Mais cet instrument ne

peut suffire, car il existe aussi des couples de nœuds qui ne sont pas isotopes,

quoique leurs groupes soient isomorphes. Tels sont par exemple les nœuds

que les américains appellent granny knot et square knot.

granny sguane
Fig. 1

Il ne manque donc pas d'intérêt d'essayer, en dehors du concept de

groupe fondamental de R3 — N, d'autres éléments topologiques liés au

nœud, qui seraient susceptibles de fournir des informations supplémentaires

sur le type d'un nœud.

2. Surfaces de Seifert. Il a été démontré par L. Pontryagin et Frankl,
puis par H. Seifert que, un nœud N étant donné, on peut construire une

surface orientable, sans singularités, dont
le bord est N. Il en résulte que chaque
nœud peut être tracé sur une surface
fermée orientable, sans singularités. Car, si

S est une surface de Seifert pour le nœud

N, il suffit de construire une seconde
surface S\ que l'on obtient en portant
sur chaque normale positive à S un
segment de longueur s; on prendra s -> 0 à

mesure que l'on s'approche du bord N, de
Fig. 2 manière que S' soit elle aussi une surface



— 100 —

de Seifert de N, ayant en commun avec S les points de N seulement. Alors
S u S' forme une surface fermée orientable sur laquelle le nœud N se

trouve tracé de manière à diviser
S u S' en deux domaines disjoints.
Or, la classification des surfaces,
orientables ou non, est un problème
résolu: les surfaces fermées orientables

sont des sphères à anses (ou
coussins troués). Mais, pour un
nœud N donné dans R3, la surface
fermée orientable qui porte N peut,
elle aussi, être plongée d'une

manière compliquée dans R3, les anses de cette surface pouvant être nouées

et enlacées. Cependant, il est possible d'éviter cette complication en
transformant la surface en une autre, dont les anses ne sont pas nouées ni enlacées ;

c'est ce que l'on appelle une surface fermée orientable en position normale
dans R3.

Fig. 3

Fig. 4

Fig. 5

Par exemple, le tore de rotation que l'on étudie en géométrie est homéo-

morphe à un tore noué, et ne diffère de celui-ci que par le plongement dans
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R3. Une surface fermée orientable sans singularités divisant R3 en deux

domaines disjoints, on peut caractériser les surfaces en position normale

dans R3 par cette propriété: Si S3 est la sphère tridimensionnelle, obtenue

en compactifiant R3 par l'adjonction d'un point, une surface est en position

normale dans R3 si elle divise S3 en deux domaines, dont les groupes

fondamentaux sont libres et alors seulement. Or, si une sphère à anses n'est

pas en position normale, il suffit d'aplatir cette surface par déformation
continue en permettant à deux canaux qui se touchent de se joindre pour
former un seul canal ramifié. On voit que l'on obtient ainsi une surface en position

normale dans J^3, et la transformation peut être effectuée de manière que
le nœud TV, qui est tracé sur la surface en question, ne se traverse pas lui-même

pendant la transformation, son type restant donc inchangé. Déplus, avant la

jonction des canaux, le nœud TV peut être déformé sur la surface de manière

que, sur la surface finale, TV sépare celle-ci en deux domaines disjoints; ou bien,
ou peut choisir cette déformation de TV de manière que TV ne sépare pas la
surface finale Z, en position normale dans R3. Ainsi, chaque nœud N peut
être placé sur une surface fermée orientable Z, en position normale dans R3,
et ceci de deux manières : comme courbe séparatrice de Z, ou comme non-
séparatrice. En ce qui concerne le genre de Z (nombre des anses), on voit que
ce nombre peut être augmenté à volonté, car on peut toujours ajouter de

nouvelles anses à une telle surface. Mais ce nombre ne peut être diminué

/V N
Fig. 6
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au dessous d'une valeur minimale qui dépend du type [TV]. A chaque type
[A] il correspond donc deux nombres, qui sont des invariants d'isotopie:
1. le genre Pi(N) minimum d'une surface fermée simple Z, en position
normale dans R3, sur laquelle on peut tracer un nœud de type [A] de manière

que ce nœud ne sépare pas Z; et 2. le genre p2{N) minimum d'une surface

analogue que le nœud sépare en deux domaines disjoints. En outre, il y a

un autre invariant important: c'est h, le genre du nœud, donné par la
caractéristique d'Euler de la surface de Seifert inscrite dans le nœud, nombre
qui diffère en général de pt et p2.

Dans nos recherches, nous avons tâché d'analyser de plus près les

surfaces Z qui portent un nœud A comme courbe séparatrice ou non-
séparatrice de Z; ayant en vue qu'une telle surface est un élément
topologique lié d'une manière intrinsèque au nœud A, on peut espérer que son

emploi puisse fournir des informations sur le type [A] éventuellement plus
abondantes que celles qui sont données par le groupe fondamental de
R3 - A.

Or, on peut affirmer que ce point de vue conduit à un système complet
d'invariants d'isotopie, pour chaque type [A]. C'est une suite finie, ordonnée,
de nombres entiers, dont la connaissance permet de retrouver le type [A].
En effet, A étant tracé sur sa surface Zp (resp. ZP2), prenons un point de A
comme point de base pour le groupe fondamental nt(Z) de la surface Z.

On sait que ce groupe est engendré par 2p1 (resp. 2p2) générateurs, liés

par une seule relation. Ces générateurs sont donnés par les coupures
canoniques de Z. La courbe orientée A appartient alors à une classe d'homotopie
qui s'exprime par un mot formé avec les générateurs de n^Z). La suite des

exposants de ce mot

m g\"QT 9??1 9î12•• ï1" ••

forment une suite d'entiers (l'ordre est essentiel) dont la connaissance permet
évidemment d'obtenir un représentant du type [A]. Le point de base pouvant

être choisi arbitrairement sur A, le mot m est déterminé à une permutation

circulaire près; c'est ce que l'on appelle un mot cyclique. La suite
des exposants qui détermine m, donc [A], subit, elle aussi, une permutation

circulaire, sans cesser de représenter le type [A].

3. Théorème de Zieschang. Le nœud A étant tracé sur la surface I, et
les générateurs de nx(Z) étant liés par la relation

[gligÀ [<^3' ^4] ••• flT 2p— 15 g2p\ \.gi> §j\ gigjg ig j
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la classe d'homotopie de N est représentée dans par une classe de

mots formés avec les gi, équivalents en vertu de la relation ci-dessus. Or,

une classe d'homotopie ne contient pas nécessairement des courbes simples

tracées sur I. Ceci pose les problèmes suivants:

I. Trouver les classes d'homotopie de I qui contiennent des courbes

simples tracées sur T, que nous appellerons classes simples.

II. Trouver les classes simples de I qui contiennent des nœuds isotopes

dans R3.

Le premier problème est résolu par un théorème de H. Zieschang,

suivant lequel chaque courbe simple non-séparatrice tracée sur I résulte

d'une coupure canonique de I (g1 ou g2) par un automorphisme de la

surface T; c'est donc une application homéomorphe de 1 sur elle-même

qui applique l'un des générateurs gt sur une courbe homotope à N. Si N
est une séparatrice de T, il existe, suivant le même théorème, un automorphisme

de I qui applique l'une des séparatrices canoniques rl5 T2, de

I sur une courbe homotope à N. Ceci nous donne le moyen de trouver
toutes les classes d'homotopie de I qui contiennent des courbes simples,
donc des nœuds, si l'on connaît le groupe Aut I des automorphismes de I.
On obtiendra alors tous les types de nœuds qui peuvent être tracés sur une
surface I de genre donné, en appliquant à une courbe gt (ou r les

automorphismes de I. Le problème II, qui paraît être difficile, s'impose à cause
du fait qu'il existe des classes d'homotopie de T qui ne sont pas conjuguées
dans n^I) et contiennent quand même des nœuds isotopes dans R3. Ceci

fait que la suite d'invariants que nous avons attachés à un nœud (suite des

exposants du mot m) n'est pas définie d'une manière univoque.
4. Les groupes Aut 1 et Aut 7i1(T). Les automorphismes d'une surface

I se divisent en deux espèces. Il y a des automorphismes a e Aut L qui sont
des déformations isotopes de 1 en elle-même; il existe alors une famille
at e Aut L, t e [0,1] où at est continue par rapport à t, telle que a0 ich,

Fig. 7
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al a. Or, chaque automorphisme a g Aut 2 induit un automorphisme
a g Aut 7r1(Z); a applique une courbe appartenant à la classe d'homotopie
gi g 7^(2) sur une courbe Ct c= 2 qui appartient à une autre classe d'homotopie

hiGTi^I). Alors oc(gi) ~hi définit l'automorphisme a g Aut 7^(2)
induit par a g Aut 2. On établit que si a est une déformation de 2 en elle-

même, a est un automorphisme intérieur de %x(2), et réciproquement.
Mais en dehors des déformations, il existe d'autres automorphismes de 2,
et les automorphismes a qu'ils induisent sont des automorphismes extérieurs
de 7^(2). Or, si a est une déformation de 2, a applique le nœud N c 2 sur
un nœud N' qui résulte de N par déformation isotope sur 2 (car, d'après
Baer, homotope sur 2 signifie isotope sur Z); on a donc N' Toute
déformation de 2 applique donc les générateurs gb et les courbes Fh qui
sont des cercles de R3, sur des nœuds qui sont aussi des cercles de R3. Les

seuls automorphismes de I qui peuvent intéresser sont donc ceux qui
correspondent aux automorphismes extérieurs de 7^(2). La connaissance

du groupe Aut tc^I) nous permettra donc de trouver toutes les classes

d'homotopie des nœuds que l'on peut tracer sur 1. Les mots correspondents
m g 71 x(2) nous fourniront alors les systèmes complets d'invariants, donnés

par les exposants de chaque m.

Or, connaître le groupe Aut 7^(2) c'est connaître un système de générateurs

de ce groupe, et les relations qui lient ces générateurs. Ce problème
a fait l'objet des recherches de L. Göritz, Max Dehn et W. Lickorish.
On doit à Göritz la notion de torsion (Schraubung chez Dehn, twist chez

Lickorish) ; c'est un automorphisme de 2 d'une nature spéciale. Soit C une
courbe fermée simple tracée sur 2, et C' une courbe parallèle à C, située

aussi sur 2, de manière que C et C' forment le bord d'une bande mince

Fig. 8

placée sur 2, bande sans autosections (abréviation de: intersection avec

elle-même). Soit h un homéomorphisme qui applique une couronne circu-
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laire (c, c') du plan sur la bande (C, C'), avec h(c) C, h(c') C'. Donnons

à (c, c') une déformation continue qui laisse fixe le bord c et fait tourner
de 27i le bord c' sur lui-même. Chaque segment radial de la couronne (c, c')

sera appliqué finalement sur un arc de spirale aux mêmes extrémités.

Fig. 9

L'image par h de cette déformation laisse fixe la courbe C, et fait glisser C
sur elle-même, chaque point revenant à sa position initiale, après avoir
décrit une fois la courbe C'. Cette déformation de la bande (C, C') est ce

que l'on appelle une torsion de Z le long de (C, C), et représente un auto-

morphisme de Z si l'on complète cette application par l'identité sur
Z — (C, C'). Or, Göritz et Dehn ont démontré que le groupe AuteI des

automorphismes de Z qui ne sont pas des déformations est engendré par
un nombre fini de torsions, le long de certaines courbes convenablement
choisies sur Z. Les résultats de Dehn ont été simplifiés par Lickorish, qui
a montré que, Z étant de genre p, il suffit de 3p — 1 torsions pour engendrer
AuteL. Ce sont les torsions le long des générateurs gb i 1,2p et le long
de p — 1 courbes yh où yt coupe gt et gi+1 seulement. En partant de ce

résultat de Lickorish, j'ai pu traduire les torsions en question par les

automorphismes de 7i i(Z) qu'elles induisent, et obtenir ainsi un système de

générateurs de Aut^^Z), contenant tous les automorphismes extérieurs
de 7i 1(r). Il m'a été possible de réduire à 2 le nombre des générateurs pour
p 2, et à 3 pour p > 2.

5. Présentation intrinsèque du groupe d'un nœud. Comme une dernière
section de cet exposé, je montrerai comment, en utilisant la surface Z de

genre p1 qui porte le nœud N, on obtient une présentation du groupe du
nœud N que j'ai qualifiée de présentation intrinsèque.

En effet, le procédé que l'on emploie couramment pour obtenir une
présentation du groupe d'un nœud consiste à projeter orthogonalement ce
nœud sur un plan, choisir les générateurs de 7r 1(i^3 - N) à l'aide de cette
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projection, et former alors sans difficulté les relations que la structure du
nœud impose entre ces générateurs. Or, il entre ici un élément étranger au
nœud, un système de référence, qui est le plan de projection. Par contre, la
surface I de genre minimum, en position normale dans R3, qui porte le

nœud, est un élément entièrement topologique lié d'une manière intrinsèque
au nœud.

Pour choisir les générateurs intrinsèques du groupe nx(R3 — N),
considérons la surface I en position normale, de genre minimum p1 p
sur laquelle TV n'est pas une séparatrice, donc I — TV est un domaine

connexe A. Désignons par f le domaine de R3 intérieur à I, et par S le

domaine extérieur à I. Posons —

On a f n F — N A. Pour former le groupe fondamental
tt1(jR3 — TV), prenons un point de base OeA, qui appartient donc aussi
à £// et S". Soit r un chemin fermé partant de O et situé dans R3 — TV.

Ce chemin peut être déformé sans rencontrer TV, de manière qu'il coupe

I en un nombre fini de points pu p2, ...,pk-t, que l'on rencontre dans

cet ordre quand on parcourt r dans le sens positif. Désignons par
l'arc Opt c= r, par y2 l'arc p1 p2 c= F par yk l'arc pk-x O a T. Joignons
chaque point pth O par un arc oq c A (i — 1, 2, k — 1), ce qui est possible
puisque A est connexe. Le chemin r se présente alors comme produit des
chemins ypx~11, oc1y2a~21, a/c_ xyk. Considérons l'un de ces chemins oq_ V.
Si y i c le chemin peut être ramené dans/", à l'exception du seul point D,
sans rencontrer TV. Il pourra donc être exprimé par un produit des

générateurs de n^f). De même, si yt c S', ce chemin pourra être ramené
dans ê, à l'exception du point O, et sera exprimable avec les générateurs
de n^S). Le chemin F sera donc représenté par un produit des générateurs
de nx{f) et Tt±($), groupes qui n'ont en commun que l'élément unité,
correspondant aux chemins contractibles au point O, dans R3 — TV. Or,
les groupes net n(ê) sont des groupes libres à p générateurs, la surface

I étant en position normale dans R3. Désignons par al9 a3, a2p-1
les générateurs de et par a2, •••, a2p les générateurs de n1{S).
Le raisonnement que nous venons d'exposer est celui qui conduit au théorème
de van Kampen sur le groupe fondamental de la réunion de deux espaces
linéairement connexes dont l'intersection est connexe.

Les générateurs at (z 1, 2, 2p) engendrent donc n^R3 — TV),

mais dans ce groupe ils sont liés par certaines relations. Conformément au
théorème de van Kampen, on obtient ces relations en considérant les chemins

fermés partant de O et situés entièrement sur A, car un tel chemin, appartenant

à mais aussi à <f, admet une double expression, l'une avec les
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3

^4?

a2p-1, l'autre avec les

a2p. Il suffira d'écrire ces

Fig. 10

a2, a,

relations pour les générateurs de 71t

(A), pour obtenir les relations du

groupe 7liiR3 — A). Or, nx(A) est

aussi un groupe libre, à 2/7 — 1

générateurs. On le voit en construisant un

graphe ^ sur I qui est un rétracte de

déformation de A, donc ^(d) n1

{$). Pour construire considérons

un automorphisme a e Aut I qui

applique une courbe simple Cal, homotope à gL e sur le nœud

A. On voit sans peine que la réunion des générateurs gu g3, g4,

g2p est un graphe sur 1 qui est un rétracte de déformation de 1 — C.

L'automorphisme a applique C sur A et g1 u g3 u g4 u u
g2p sur le graphe qui est donc la réunion de 2p — 1 courbes

fermées simples, passant par O et

disjointes en dehors de O. Or,
l'automorphisme a induit un automorphisme

a e Aut n^I) qui applique g1 sur
la classe d'homotopie de A; a est

défini par ses 2p composantes,
a[m1, m2, m2p\, ces composantes

mt étant des mots formés avec les

gu £2, -, gir Alors mx représente la

classe d'homotopie de A, et le graphe

^ est formé par 2p — 1 courbes simples passant par O, disjointes, appartenant

aux classes d'homotopie mu m3, m4, m2p. Il en résulte que
7i 1(^), donc aussi 7ix(A)f est un groupe libre à 2p — 1 générateurs. On
obtient donc les relations du groupe tc^R3 — A) de la manière suivante:

mt étant une composante de oc, avec i ^ 2, et Ct cz A étant un chemin
fermé, orienté, partant de O et appartenant à la classe d'homotopie mh
on fait passer Ct dans /(X), à l'exception du point O, puis on exprime Cj
à l'aide des générateurs al9 a5, a2p- 1, ce qui donne un mot A-r Ensuite,
on fait passer Ct dans S'(E), à l'exception du point O, et on l'exprime à

l'aide des générateurs a2, a4, a2p, ce qui donne un mot Bt. Alors
At Bt est une relation correspondant à cette valeur de /. Les 2p — 1

relations ainsi obtenues fournissent la présentation intrinsèque du groupe
71 i(R3 — A) sous la forme

Fig. 11
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(«i, a2y ci 2 pi AlB l A3B 3 A4B 4 A2pB2p).

Or, les mots A h Bt peuvent être facilement obtenus à partir du mot mr
En effet, faisons passer Cf dans /(Z) en nous maintenant dans un voisinage
restreint de la surface 1. Si mi gt gi2 gik, on pourra décomposer le

chemin Ct en produit de chemins civ cik appartenant respectivement
aux classes d'homotopie giv gi2, gik. En faisant passer Ct dans /(Z),
chacun des circuits ci 9 cik subira une petite déformation, et le chemin
déformé Q sera encore le produit des chemins déformés civ cîk. Mais,
dans ce produit, chaque chemin ch où / est pair, est contractible au point O,

et peut être supprimé. On obtient donc le mot A{ en supprimant dans mt
chaque gj avec j pair et en remplaçant chaque gj avec j impair par aj. On
voit d'une manière analogue que l'on obtient Bt en supprimant dans

les gj avec j impair et en remplaçant chaque gj avec j pair par ajr Ainsi,
un nœud N étant donné, on obtient facilement la présentation intrinsèque
de son groupe si l'on connaît:

1. Le genre minimum p1 d'une surface fermée orientable Z, en position
normale dans R3, sur laquelle N peut être tracé sans séparer cette
surface.

2. Un automorphisme a e Aut n x (Z) qui applique un générateur

g; 6 7^(1") sur la classe d'homotopie de N.

La présentation intrinsèque ainsi définie possède cette particularité que
les relateurs ont la forme spéciale A où A{ est un mot en an a3,

a2p~\ et Bi est un mot en a2, a4, a2p.
Terminons avec un problème, non-résolu à notre connaissance: On sait

que deux nœuds N, N' appartenant à une même classe d'homotopie de la
surface S ont isotopes sur S, donc aussi isotopes dans S3 ; dans quelles
conditions deux nœuds appartenant à des classes d'homotopie différentes
de 5 sont-ils isotopes dans S3 (donc sans être isotopes sur S)

Notre planche finale fait voir la manière dont on peut engendrer les

nœuds possibles sur une surface fermée 5 de genre 2, en partant d'un
générateur canonique gt ou d'une séparatrice canonique T, et en appliquant
des torsions de S suivant des générateurs de Lickorish convenablement
choisis. Un même nœud (3X ou 4J apparaît ainsi soit comme non-séparatrice

de 5, soit comme séparatrice. La bande de torsion est représentée

par deux courbes rapprochées dont l'une reste fixe et l'autre (celle qui

porte une flèche) glisse sur elle-même dans le sens de la flèche, chaque
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point revenant à sa position initiale. La courbe de départ (g1 sur la fig. Al)
se transforme en une autre, représentée sur la figure suivante (Al — A2),
et sur celle-ci se trouve représentée aussi la torsion suivante à appliquer,
etc. L'indication NS à côté de la courbe finale signifie « non-séparatrice »

et S signifie « séparatrice » de la surface.

REFERENCES

[1]. H. Zieschang. Algorithmen für einfache Kurven auf Flächen. Mathematica
Scandinavica, 17 (1965), 17-40.

[2]. L. Göritz. Die Abbildungen der Bretzelfläche und der Vollkugel vom Geschlecht 2.

Abhandl. d. math. Sem. Hamburg, 9 (1933), 244-259.
[3]. M. Dehn. Die Gruppe der Abbildungsklassen. Acta math., 69 (1938), 135-206.

[4]' W. B. R. Lickorish. A finite set of generators for the homeotopy group of a

2-manifold. Proc. Cambridge Phil. Soc., 60 (1964), 769-778.

Corrigendum. Proc. Cambr. Ph. Soc., 62 (1966), 679-681.

[5]. R. H. Crowell and R. H. Fox. Introduction to Knot Theory. Ginn and Co.,
New-York, 1963.

G. Calugareanu
st. Caragiale 10

CLUJ (Roumanie)
(Reçu le 7er novembre 1969)


	POINTS DE VUE SUR LA THÉORIE DES NŒUDS
	...


