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POINTS DE VUE SUR LA THEORIE DES NEUDS

par Georges CALUGAREANU (Cluj)

Le développement moderne de la Géométrie ne peut ignorer une figure
géométrique si familiére que celle du neeud, au sens que I’on donne a ce mot
dans la vie courante. En effet, le nceud sur un fil est une figure géométrique
que chacun de nous réalise plusieurs fois par jour (nouer sa cravate et les
lacets de ses souliers). Il n’est pas douteux que les nceuds sont employés
depuis les dges les plus reculés de ’humanité. Malgré cela, les mathématiciens
ne sont arrivés que trés tard a dégager des méthodes plus ou moins efficaces
pour I’étude des nceuds, pour leur classification d’abord. Il est surprenant
que l'antiquité ne nous ait rien laissé la-dessus, sauf la légende du nceud
gordien, alors que la géométrie de antiquité est si riche en faits géométriques
essentiels. Le probléme des nceuds de I'espace euclidien tridimensionnel
parait avoir €té abordé au xixe siécle par les études de Listing et du physicien
Kirchhoff. Mais les vraies méthodes mathématiques adaptées a cette étude
apparaissent seulement au début de notre si¢cle, aprés le développement de
I’ Analysis situs par les travaux de H. Poincaré, puis, apres la premicre guerre
mondiale, par les travaux de plusieurs mathématiciens allemands. K. Reide-
meister publia la premiére monographie sous le titre « Knotentheorie »,
parue sur ce sujetl. La théorie s’est développée ensuite par I'apport de
nombreux mathématiciens américains et japonais. On peut dire que, a
notre €époque, le probléme des nceuds est loin d’étre épuisé, et forme un
domaine de la topologie algébrique aussi bien que de la géométrie diffé-
rentielle globale.

1. Neuds. Un neeud est une courbe fermée simple de 1’espace R>. Clest
donc I'image homéomorphe d’un cercle, dans R>. Mais cette courbe fermée
peut étre plongée dans R> d’une infinité de maniéres différentes, et c’est ce
qui donne I'infinie variété des nceuds possibles, de plus en plus compliqués.
Avec un fil, faisons un neeud que nous pouvons compliquer a loisir, puis,
afin d’obtenir une figure bien stable, joignons les deux bouts du fil. De quel-
que maniere que 'on déforme alors le fil, le noeud qui y est emmagasiné ne
change pas sa nature, & moins que I’on coupe le fil. C’est cette invariance

! Voir aussi [5] pour une riche bibliographie du sujet.
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vis-a-vis des déformations qui définit le zype du nceud, et I'on voit alors que
le probléme de la classification de ces types exige la recherche des invariants
nécessaires et releve de la topologie. De plus, les déformations que notre
nceud peut subir sans changer de type sont celles pendant lesquelles la
courbe ne se traverse pas elle-méme, donc notre probléme appartient au
domaine de la topologie algébrique nommé théorie de I'isotopie.

On sait que la notion générale de courbe continue dans un espace
euclidien n’exclut pas des complications de la structure locale de la courbe,
que I’on devra éviter d’abord, afin de ne pas alourdir la recherche par des
¢léments en quelque sorte pathologiques. D’ailleurs, toute réalisation phy-
sique d’un type de nceud a ’aide d’un fil exclut les complications de micro-
structure de la courbe et peut nous guider dans le choix des courbes fermées
de R® que 'on devra appeler des neuds de type fini. Ce sont:

1. Les polygones fermés simples de R>, orientés, & un nombre fini de cotés
(nceuds polygonaux).

2. Les courbes simples de R, rectifiables, orientées, ayant une tangente
qui varie d’une maniere continue en fonction de I’arc s sur la courbe
(nceuds différentiables).

On démontre que chaque nceud polygonal peut étre approché unifor-
mément par des nceuds différentiables du méme type, et réciproquement.

Deux nceuds différentiables N et N’ sont isotopes dans R* s’1l existe une
famille d’homéomorphismes continuement différentiables par rapvort
a (st) di N—-> N, te[0,1], avec Ny = N, N, = N’; d, sera une
déformation isotope de N en N’, et 'on voit que pendant cette déforma-
tion N, ne se traverse pas lui-méme, €tant une courbe sans peints multiples
pour chaque 7 € [0,1]. Lorsque N et N’ sont isotopes, nous écrirons N & N’,
et ’on voit que nous avons la une relation d’équivalence. Les types de
nceuds sont les classes d’équivalence correspondantes. Dans chacune de
ces classes on peut choisir des représentants qui soient des nceuds poly-
gonaux, ou des nceuds différentiables. Mais nous avons démontré que chaque
type de nceuds admet aussi comme représentants des courbes algébriques
unicursales (rationnelles) de R?, car un nceud différentiable peut étre appro-
ché uniformément par des courbes simples unicursales appartenant au méme
type.

Dans le cas des nceuds polygonaux, il a été¢ démontré par W. Graeub
que deux nceuds sont isotopes st et seulement si 1l existe un homéomorphisme
simplicial de R? sur lui-méme qui applique 'un des nceuds sur "autre. Nous
ne connaissons aucun résultat analogue dans le cas des nceuds différentiables.
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L’instrument analytique le plus efficace dans I’étude des types de nceuds
est le groupe fondamental de I’espace complémentaire R3 — N, appelé
groupe du neud N. Ce groupe permet de distinguer entre des types diffé-
rents de nceuds, dans bien des cas, si 'on peut établir que les groupes des
deux nceuds en question ne sont pas isomorphes. Mais cet instrument ne
peut suffire, car il existe aussi des couples de nceuds qui ne sont pas isotopes,
quoique leurs groupes soient isomorphes. Tels sont par exemple les nceuds
que les américains appellent granny knot et square knot.

—-\ ——
-l \_//
granny sQUare

Fi1G. 1

Il ne manque donc pas d’intérét d’essayer, en dehors du concept de
groupe fondamental de R® — N, d’autres éléments topologiques liés au
neeud, qui seraient susceptibles de fournir des informations supplémentaires
sur le type d’un nceud.

2. Surfaces de Seifert. 11 a été démontré par L. Pontryagin et Frankl,
puis par H. Seifert que, un nceud N étant donné, on peut construire une
surface orientable, sans singularités, dont

le bord est N. 1l en résulte que chaque

nceud peut €tre tracé sur une surface fer-

//// // / mée orientable, sans singularités. Car, si
// S est une surface de Seifert pour le neeud
/-\/ N, 1l suffit de construire une seconde
surface S, que l'on obtient en portant

// sur chaque normale positive & S un seg-

ment de longueur ¢; on prendra ¢ — 0 a
mesure que ’on s’approche du bord N, de
FIG. 2 maniere que S’ soit elle aussi une surface



— 100 —

de Seifert de N, ayant en commun avec S les points de N seulement. Alors
S U S’ forme une surface fermée orientable sur laquelle le nceud N se

Fi1G. 3

trouve tracé de maniére a diviser
S u S en deux domaines disjoints.
Or, la classification des surfaces,
orientables ou non, est un probléme
résolu: les surfaces fermées orien-
tables sont des sphéres a anses (ou
coussins troués). Mais, pour un
neeud N donné dans R3, la surface
fermée orientable qui porte N peut,
elle aussi, étre plongée d’une ma-

niére compliquée dans R>, les anses de cette surface pouvant étre nouées
et enlacées. Cependant, il est possible d’éviter cette complication en trans-
formant la surface en une autre, dont les anses ne sont pas nouées ni enlacées;
c’est ce que I’on appelle une surface fermée orientable en position normale

dans R3.

(€

>/

Fic. 4
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F1G. §

Par exemple, le tore de rotation que ’on étudie en géométrie est homéo-
morphe a un tore noué, et ne différe de celui-ci que par le plongement dans

]
2]
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R3. Une surface fermée orientable sans singularités divisant R> en deux
domaines disjoints, on peut caractériser les surfaces en position normale
dans R? par cette propriété: Si S est la sphére tridimensionnelle, obtenue
en compactifiant R® par ’adjonction d’un point, une surface est en position
normale dans R? si elle divise S° en deux domaines, dont les groupes
fondamentaux sont libres et alors seulement. Or, si une sphére a anses n’est

1 x”#

FiG. 6

pas en position normale, il suffit d’aplatir cette surface par déformation
continue en permettant & deux canaux qui se touchent de se joindre pour for-
mer un seul canal ramifié. On voit que I’on obtient ainsi une surface en posi-
tion normale dans R?, et la transformation peut étre effectuée de maniére que
le nceud N, qui est tracé sur la surface en question, ne se traverse pas lui-méme
pendant la transformation, son type restant doncinchangé. De plus, avant la
jonction des canaux, le noeud N peut €tre déformé sur la surface de maniéere
que, sur la surface finale, N sépare celle-ci en deux domaines disjoints; ou bien,
ou peut choisir cette déformation de N de maniére que N ne sépare pas la
surface finale X, en position normale dans R>. Ainsi, chaque neud N peut
éire placé sur une surface fermée orientable X, en position normale dans R3,
et ceci de deux maniéres : comme courbe séparatrice de X, ou comme non-
séparatrice. En ce qui concerne le genre de X (nombre des anses), on voit que
ce nombre peut €tre augmenté a volonté, car on peut toujours ajouter de
nouvelles anses a une telle surface. Mais ce nombre ne peut étre diminué
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au dessous d’une valeur minimale qui dépend du type [ N]. A chaque type
[N] 1l correspond donc deux nombres, qui sont des invariants d’isotopie:
1. le genre p,(N) minimum d’une surface fermée simple X, en position
normale dans R?, sur laquelle on peut tracer un nceud de type [ N] de maniére
que ce nceud ne sépare pas X; et 2. le genre p,(/N) minimum d’une surface
analogue que le nceud sépare en deux domaines disjoints. En outre, il y a
un autre invariant important: c’est A, le genre du neud, donné par la
caractéristique d’Euler de la surface de Seifert inscrite dans le nceud, nombre
qui différe en général de p et p,.

Dans nos recherches, nous avons tiché d’analyser de plus prés les
surfaces 2 qui portent un nceud N comme courbe séparatrice ou non-
séparatrice de X; ayant en vue qu’une telle surface est un élément topo-
logique 1ié d’une maniére intrinséque au nceud N, on peut espérer que son
emploi puisse fournir des informations sur le type [ N] éventuellement plus
abondantes que celles qui sont données par le groupe fondamental de
R? — N.

Or, on peut affirmer que ce point de vue conduit a un systéme complet
d’invariants d’isotopie, pour chaque type [N]. C’est une suite finie, ordonnée,
de nombres entiers, dont la connaissance permet de retrouver le type [N].
En effet, N étant tracé sur sa surface X, (resp. X,,), prenons un point de N
comme point de base pour le groupe fondamental n,(2) de la surface X.
On sait que ce groupe est engendré par 2p, (resp. 2p,) générateurs, liés
par une seule relation. Ces générateurs sont donnés par les coupures cano-
niques de Y. La courbe orientée N appartient alors a une classe d’homotopie
qui s’exprime par un mot formé avec les générateurs de 7,(2). La suite des
exposants de ce mot

m =gt g5 . 92t g1 . g1t gt L GO
forment une suite d’entiers (I’ordre est essentiel) dont la connaissance permet
évidemment d’obtenir un représentant du type [N]. Le point de base pou-
vant étre choisi arbitrairement sur N, le mot m est déterminé a une permu-
tation circulaire prés; c’est ce que I’on appelle un mot cyclique. La suite
des exposants {o;;} qui détermine m, donc [N], subit, elle aussi, une permu-
tation circulaire, sans cesser de représenter le type [N].

3. Théoréeme de Zieschang. Le nceud N étant tracé sur la surface 2, et
les générateurs de n,(2) étant liés par la relation

(g1, 2] [g35 &4l - [gZp—1> gzp] =1, [g:s gj] = gigjg-uilg—jl
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la classe d’homotopie de N est représentée dans m;(2) par une classe de
mots formss avec les g;, équivalents en vertu de la relation ci-dessus. Or,
une classe d’homotopie ne contient pas nécessairement des courbes simples
tracées sur Y. Ceci pose les problémes suivants:

I. Trouver les classes d’homotopie de X qui contiennent des courbes
simples tracées sur X, que nous appellerons classes simples.

II. Trouver les classes simples de X qui contiennent des neeuds isotopes
dans R?.

Le premier probléme est résolu par un théoréme de H. Zieschang,
suivant lequel chaque courbe simple non-séparatrice tracée sur 2 résulte

/3

O
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d’une coupure canonique de X (g, ou g,) par un automorphisme de la
surface X; c’est donc une application homéomorphe de 2 sur elle-méme
qui applique I'un des générateurs g; sur une courbe homotope a N. St N
est une séparatrice de 2, il existe, suivant le méme théoreme, un automor-
phisme de X qui applique I'une des séparatrices canoniques I'y, I'5, ... de
Y sur une courbe homotope a N. Ceci nous donne le moyen de trouver
toutes les classes d’homotopie de X qui contiennent des courbes simples,
donc des nceuds, si I’on connait le groupe Aut 2 des automorphismes de 2.
On obtiendra alors tous les types de nceuds qui peuvent étre tracés sur une
surface X' de genre donné, en appliquant a une courbe g; (ou I';) les auto-
morphismes de 2. Le probléme II, qui parait étre difficile, s’impose & cause
du fait qu’il existe des classes d’homotopie de X qui ne sont pas conjuguées
dans 7 ,(2) et contiennent quand méme des nceuds isotopes dans R>. Ceci
fait que la suite d’invariants que nous avons attachés a un nceud (suite des
exposants du mot m) n’est pas définie d’une maniére univoque.

4. Les groupes Aut X et Aut ,(2). Les automorphismes d’une surface
2 se divisent en deux especes. Il y a des automorphismes @ € Aut X qui sont
des déformations isotopes de X en elle-méme; il existe alors une famille
a,€ Aut X, t € [0,1] ol a, est continue par rapport a ¢, telle que a, = id;,
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ay = a. Or, chaque automorphisme a € Aut 2 induit un automorphisme
o € Aut n4(2); a applique une courbe appartenant a la classe d’homotopie
g; € n,(2) sur une courbe C; = ¥ qui appartient a une autre classe d’homo-
topie h; e (2). Alors afg;) = h; définit 'automorphisme o€ Aut 7,(2)
induit par a € Aut Z. On établit que si a est une déformation de X en elle-
méme, o est un automorphisme intérieur de 7w,(X), et réciproquement.
Mais en dehors des déformations, il existe d’autres automorphismes de 2,
et les automorphismes « qu’ils induisent sont des automorphismes extérieurs
de m((2). Or, si a est une déformation de X, a applique le nceud N < X sur
un nceud N’ qui résulte de N par déformation isotope sur X (car, d’apres
Baer, homotope sur 2 signifie isotope sur 2); on a donc N’ =~ N. Toute
déformation de X applique donc les générateurs g;, et les courbes I';, qui
sont des cercles de R?, sur des nceuds qui sont aussi des cercles de R>. Les
seuls automorphismes de X qui peuvent intéresser sont donc ceux qui
correspondent aux automorphismes extérieurs de n,(X). La connaissance
du grouve Aut 7,(X) nous permettra donc de trouver toutes les classes
d’homotopie des nceuds que I’on peut tracer sur 2. Les mots correspondents
m € w{(2) nous fourniront alors les systémes complets d’invariants, donnés
par les exposants de chaque m.

Or, connaitre le groupe Aut n,(2) c’est connaitre un systéme de généra-
teurs de ce groupe, et les relations qui lient ces générateurs. Ce probléme
a fait I'objet des recherches de L. Goritz, Max Dehn et W. Lickorish.
On doit & Goéritz la notion de torsion (Schraubung chez Dehn, twist chez
Lickorish); c’est un automorphisme de X d’une nature spéciale. Soit C une
courbe fermée simple tracée sur 2, et C’ une courbe paralléle a C, située
aussi sur X, de maniére que C et C’ forment le bord d’une bande mince

Fi1G. 8

placée sur X, bande sans autosections (abréviation de: intersection avec
elle-méme). Soit 4 un homéomorphisme qui applique une couronne circu-
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laire (¢, ¢’) du plan sur la bande (C, C’), avec h(c) = C, h(c') = C’. Donnons
4 (c, ¢’) une déformation continue qui laisse fixe le bord c¢ et fait tourner
de 27 le bord ¢’ sur lui-méme. Chaque segment radial de la couronne (c, ¢')
~sera appliqué finalement sur un arc de spirale aux mémes extrémites.

F1G. 9

L’image par & de cette déformation laisse fixe la courbe C, et fait glisser C’
sur elle-méme, chaque point revenant a sa position initiale, aprés avoir
décrit une fois la courbe C’. Cette déformation de la bande (C, C’) est ce
que ’on appelle une torsion de X le long de (C, C’), et représente un auto-
morphisme de X si 'on compléte cette application par l'identité sur
X — (C, C"). Or, Goritz et Dehn ont démontré que le groupe Aut,2 des
automorphismes de X qui ne sont pas des déformations est engendré par
un nombre fini de torsions, le long de certaines courbes convenablement
- choisies sur 2. Les résultats de Dehn ont été simplifiés par Lickorish, qui
- a montré que, X étant de genre p, il suffit de 3p — 1 torsions pour engendrer
Aut,X. Ce sont les torsions le long des générateurs g;, i = 1,2p et le long
- de p — 1 courbes y;, ou y; coupe g; et g, ; seulement. En partant de ce
résultat de Lickorish, j’ai pu traduire les torsions en question par les auto-
morphismes de 7,(2) qu’elles induisent, et obtenir ainsi un systéme de
générateurs de Aut,m,(Y), contenant tous les automorphismes extérieurs
de m4(2). Il m’a été possible de réduire a 2 le nombre des générateurs pour
p=2,eta 3 pourp > 2.

5. Présentation intrinséque du groupe d’un neud. Comme une derniére
section de cet exposé, je montrerai comment, en utilisant la surface X de
genre p; qui porte le nceud N, on obtient une présentation du groupe du

neeud N que jai qualifiée de présentation intrinséque.
| En effet, le procédé que I'on emploie couramment pour obtenir une
présentation du groupe d’un nceud consiste & projeter orthogonalement ce
- neeud sur un plan, choisir les générateurs de n,(R®> — N) a Paide de cette
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projection, et former alors sans difficulté les relations que la structure du |
nceud impose entre ces générateurs. Or, il entre ici un élément étranger au
nceud, un systeme de référence, qui est le plan de projection. Par contre, la
surface ¥ de genre minimum, en position normale dans R>, qui porte le
nceud, est un élément entiérement topologique lié d’une maniére intrinséque
au nceud.

Pour choisir les générateurs intrinséques du groupe 7n,(R> — N),
considérons la surface X en position normale, de genre minimum p; = p
sur laquelle N n’est pas une séparatrice, donc ¥ — N est un domaine
connexe 4. Désignons par # le domaine de R? intérieur & X, et par & le
domaine extérieur & X. Posons #' = ¢ — N, & = & — N.

On a #'"né&" =2 — N=A4. Pour former le groupe fondamental
n,(R?> — N), prenons un point de base O € 4, qui appartient donc aussi
a ¢ et &. Soit I' un chemin fermé partant de O et situé dans R> — N.
Ce chemin peut €tre déformé sans rencontrer N, de maniére qu’il coupe
2 en un nombre fini de points py, p,, ..., pr—1, que I'on rencontre dans
cet ordre quand on parcourt I' dans le sens positif. Désignons par 7y,
I’arc Op, < I', par y, arc p, p, = I' . . par y, ’arc p,_, O < I'. Joignons
chaque pointp;a O parunarco; < 4 (i = 1,2, ..., kK — 1), ce qui est possible
puisque 4 est connexe. Le chemin I” se présente alors comme produit des che-
mins 0 1", ot y200 5" ooy 24— 1 V4. Considérons ’un de ces chemins or;_ (y,005"
Siy;, = #', le chemin peut étre ramené dans £, a ’exception du seul point O,
sans rencontrer N. 1l pourra donc étre exprimé par un produit des géné-
rateurs de n,(#). De méme, si y; < &', ce chemin pourra €tre ramené
dans &, a 'exception du point O, et sera exprimable avec les générateurs
de 7 ,(&). Le chemin I" sera donc représenté par un produit des générateurs
de n,(#) et n,(&), groupes qui n’ont en commun que I’élément unité,
correspondant aux chemins contractibles au point O, dans R®> — N. Or,
les groupes m;(¢) et n(&) sont des groupes libres & p générateurs, la surface
Y étant en position normale dans R®. Désignons par ay, as, ..., ayp—1
les générateurs de n (#), et par a,, ay, ..., a,, les générateurs de m, (&).
Le raisonnement que nous venons d’exposer est celui qui conduit au théoréme
de van Kampen sur le groupe fondamental de la réunion de deux espaces
linéairement connexes dont 'intersection est connexe.

Les générateurs a; (i =1, 2, ...,2p) engendrent donc m,(R® — N),
mais dans ce groupe ils sont liés par certaines relations. Conformément au
théoréme de van Kampen, on obtient ces relations en considérant les chemins
fermés partant de O et situés entierement sur 4, car un tel chemin, apparte-
nant 4 ¢, mais aussi & &, admet une double expression, I'une avec les
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ay, ds, ..., Gy,-1, lautre avec les
a,, Uy, ..., 45, 1l suffira d’€crire ces
relations pour les générateurs de 7,
(4), pour obtenir les relations du
groupe n,(R®> — N). Or, m,(4) est
aussi un groupe libre, & 2p — 1 géné-
rateurs. On le voit en construisant un
graphe ¢ sur X qui est un rétracte de
déformation de 4, doncn,(4) = m,
Fia. 10 (%). Pour construire ¥, considérons
un automorphisme a € Aut X qui

applique une courbe simple C = X, homotope a g; € n(2), sur le nceud
N. On voit sans peine que la réunion des gén€rateurs g, g3, 4 -+
g,, est un graphe sur X qui est un rétracte de déformation de 2 — C.
L’automorphisme a applique C sur N et g, U g3 U g4 U ... U
g,, sur le graphe %, qui est donc la réunion de 2p — 1 courbes
fermées simples, passant par O et
disjointes en dehors de O. Or, 'auto-
morphisme a induit un automorphis-
me o € Aut 7,(2) qui applique g, sur
la classe d’homotopie de N; o est
défini par ses 2p composantes,
a[my, my, ..., m,,l, ces composantes
m; ¢tant des mots formés avec les
€15 82, - &2, Alors my représente la
classe d’homotopie de N, et le graphe
4 est formé par 2p — 1 courbes simples passant par O, disjointes, appar-
tenant aux classes d’homotopie my, ms, my, ..., m,,. Il en résulte que
7 (%), donc aussi m(4), est un groupe libre a 2p — 1 générateurs. On
obtient donc les relations du groupe 7;(R> — N) de la maniére suivante:
m; étant une composante de o, avec i # 2, et C; = 4 étant un chemin
fermé, orienté, partant de O et appartenant & la classe d’homotopie m1;,
on fait passer C; dans #(2), a I'exception du point O, puis on exprime C;
a 'aide des générateurs a4, as, ..., a,,_ 1, ce qui donne un mot 4;. Ensuite,
on fait passer C; dans £(2), a 'exception du point O, et on 'exprime a
l'aide des générateurs a,, ay, ..., a,,, ce qui donne un mot B;. Alors
A; = B; est une relation correspondant a cette valeur de 7. Les 2p — 1
relations ainsi obtenues fournissent la présentation intrinséque du groupe
n,(R> — N) sous la forme
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. -1 -1 -1 _1
(ay, asy.nay,; AB ', A3B 5, AyB 4, ..., A5,B3,).

Or, les mots A;, B; peuvent étre facilement obtenus a partir du mot m,.
En effet, faisons passer C; dans #(X) en nous maintenant dans un voisinage
restreint de la surface 2. Si m; = g;; g;, ... g&;,, on pourra décomposer le
chemin C; en produit de chemins ¢;, ..., ¢, appartenant respectivement
aux classes d’homotopie g;, giy, ..., &;,- En faisant passer C; dans #(2),
chacun des circuits Cij» -+ C;, Subira une petite déformation, et le chemin
déformé C; sera encore le produit des chemins déformés ¢;, ..., ¢;. Malis,
dans ce produit, chaque chemin ¢;, ol i est pair, est contractible au point O,
et peut €tre supprimé. On obtient donc le mot A; en supprimant dans m;
chaque g; avec j pair et en remplagant chaque g; avec j impair par a;. On
voit d'une maniere analogue que l'on obtient B; en supprimant dans m;
les g; avec j impair et en remplagant chaque g; avec j pair par a;. Ainsi,
un nceud N étant donné, on obtient facilement la présentation intrinséque
de son groupe si I'on connait:

1. Le genre minimum p,; d’une surface fermée orientable X, en position
normale dans R?®, sur laquelle N peut étre tracé sans séparer cette
surface.

2. Un automorphisme ze Aut n,(2) qui applique un générateur
g, en(2) sur la classe d’homotopie de N.

La présentation intrinséque ainsi définie possede cette particularité que

les relateurs ont la forme spéciale 4;,B7', ol A, est un mot en a, as,
a,,- €t B; est un mot en a,, dy, ..., d,,.
Terminons avec un probléme, non-résolu a notre connaissance: On sait
que deux nceuds N, N’ appartenant a une méme classe d’homotopie de la
surface S ont isotopes sur S, donc aussi isotopes dans S°; dans quelles
conditions deux nceuds appartenant a des classes d’homotopie différentes
de S sont-ils isotopes dans S* (donc sans étre isotopes sur S) ?

Notre planche finale fait voir la maniére dont on peut engendrer les
nceuds possibles sur une surface fermée S de genre 2, en partant d’un
générateur canonique g, ou d’une séparatrice canonique I, et en appliquant
des torsions de S suivant des générateurs de Lickorish convenablement
choisis. Un méme nceud (3, ou 4,) apparait ainsi soit comme non-sépa-
ratrice de S, soit comme sé€paratrice. La bande de torsion est représentée
par deux courbes rapprochées dent l'une reste fixe et I'autre (celle qui
porte une fleche) glisse sur elle-méme dans le sens de la fleche, chaque

ves
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point revenant a sa position initiale, La courbe de départ (g, sur la fig. Al)
se transforme en une autre, représentée sur la figure suivante (Al — A2),
et sur celle-ci se trouve représentée aussi la torsion suivante a appliquer,
etc. L’indication NS a coté de la courbe finale signifie « non-séparatrice »
et S signifie « séparatrice » de la surface.
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