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12. Variétés telles que « TGPS ».

Un exémple surprenant est la surface de Zoll:

(12.1): théoréme (Zoll, [16]): sur S* il existe des s.r. g telles que « TGPS »
et que (S?, g) ne soit pas isométrique a (S2, g,).

Ainsi « TGPS » n’est pas caractéristique des (P}, g,) en toute généralité.
D’ailleurs (communication de A. Weinstein) on peut construire des s.r.
analogues sur les S" v n = 2. Cependant « TGPS » caractérise (P31, g,):

(12.2): théoréme (Green, [9]): si (P, g,) est telle que « TGPS », alors
(P%, g) est isométrique a (P, g,).

Toutes les généralisations possibles de (12.2), pour différents n et i,
sont des problémes entiérement ouverts. La démonstration de (12.2) est
absolument particuliére & la dimension deux; elle utilise, pour vol (P%, g),
deux inégalités en sens contraire; la premicre est basée sur la formule de
Gauss-Bonnet en dimension deux et une inégalité dont [’extension en
dimension plus grande ne correspond plus a la formule de Gauss-Bonnet.
La deuxiéme inégalité utilise une formule de géométrie intégrale de Santalo
dont I’extension en dimension plus grande ne fonctionne que si le projectif
(P71, g) (pour lequel on voudrait démontrer une généralisation du théoréme
(12.2)) possédait une hypersurface homotope a4 P;~ ! et totalement géo-
désique, ce qui n’est pas le cas en général.

13. Existence d’une géodésique périodique.

Une variété compléte, non compacte, méme non simplement connexe,
n’admet pas nécessairement de géodésique périodique (g.p.); exemple la
surface de révolution ci-apres:
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Un théoréme folklorique est le:

(13.1): soit (M, g) compacte. Alors, quelle que soit la classe d’homotopie
libre o (voir (7.4)) de M, o # 0, il existe une g.p. C € o. Ln particulier si
M est non simplement connexe compacte, elle admet toujours une g.p.
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La démonstration est simple; on montre que la borne inférieure
o (g) = inf ., long (c, g) est réalisée, parce que M est compacte; et une
courbe réalisant cette borne inférieure est nécessairement une g.p.

Par contre, si M, toujours compacte, est simplement connexe, la question
de I’existence d’au moins une g.p. est beaucoup plus difficile. Poincaré fut
le premier & démontrer une telle existence en 1905, pour (S?, g) avec g
analytique (Birkhoff étendit ce résultat a S”, g toujours analytique, en
1927). Mais il fallut attendre jusqu’en 1952 pour le:

(13.2): théoreme (Fet-Lyusternik): toute v.r. compacte admet une g.p.

La démonstration est un usage typique de la théorie de Morse. Cette
démonstration consiste & mettre en forme 1'idée suivante, que nous pré-
sentons sur S2. Soit Q (S?) = C°(S'; $%) I'espace des courbes fermées
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(lacets sans point base) de S?. Dans Q (S?) on considére le chemin ®, dont
'origine est la courbe constante pole nord et I’extrémité la courbe constante
pole sud, constitué par les paralléles de S2. Sur Q (S?) on a la fonction
longueur; si w ne contient aucune géodésique, on peut le déformer conti-
nliment en des chemins o/, de méme extrémités, déformation dans laquelle
chaque courbe diminue strictement en longueur. Continuant ainsi, ou on
a trouvé une g.p., ou on a déformé w en un chemin dont toutes les courbes
sont constantes (de longueur nulle). Or cette derni¢re possibilité est exclue
parceque w est précisément un générateur de 7,(S*) # 0. C’est donc que
notre chemin w reste « accroché » et le point d’accrochage est précisément

une g.p.
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14. Existence de plusieurs géodésiques périodiques.

De nombreux auteurs (Lusternik, Schnirelmann, Morse, Fet, Alber,
Klingenberg) ont obtenu des résultats partiels d’existence, sur une Vv.r.
compacte donnée, de plusieurs (2, 3,...) g.p. géométriquement distinctes
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