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tout cas, que si M, N sont deux variétés compactes, et si a (resp. ß) est la

classe d'homotopie de M X N qui représente M (resp. A), alors on n'a pas

en général: vol(MxA, g) ^ a (g). ß (g) pour toute g. Voir aussi [11 '].

Géodésiques.

8. Définition.

Après les volumes, les invariants riemanniens qui se présentent naturellement

sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points

m, ne M:

j (8.1) d Çm, n) inf c long (c, g)

I (où la longueur est celle définie en (3.5) et la borne est inférieure est prise

| sur l'ensemble des courbes d'extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] réfèrent au
li vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)

est canoniquement un espace métrique. En outre la topologie de variété de

I. M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
I; [1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C1 qui

localement réalisent cette distance et sont à vitesse constante i.e. c : I -» M
fj (/intervalle de R) est une géodésique si \c'\ est constante et si y t e / g t' >
fi > t, t' e I, tel que long (c|[t>n, g) d(c (t), c '))•

Pour (R", g0) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S c R3, ce sont les courbes dont l'accélération

y! est normale à S. 1

;.;j On ne peut guère travailler qu'avec des v.r. complètes, c'est-à-dire
complètes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;

7 [1], p. 235) que si (M, g) est complète:

' (8.2) ym,neMp[c, courbe d'extrémités 777,77, telle que long (c, g)
d (777,77) ;

(8.3) yxeTM il existe une géodésique unique c: R -> M telle que
I c' (0) x.

I Remarques :

i| (8.4): la courbe dont l'existence est affirmée en (8.2) est toujours une
: géodésique; une telle courbe n'est pas unique en général: voir (9.2) et

I prendre sur (S'\ g0) deux points 777, n antipodes. Par contre on démontre
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([13], p. 59; [12], p. 165; [1], p. 224) que si m, n sont assez voisins, cette

plus courte géodésique (i.e. de longeur d (m, n)) est unique.

(8.5): les géodésiques sont invariantes par isométries: si/ : (M, g) (N, h)
est une isométrie et c une géodésique de (N, h)9 alorsfoc est une géodésique
de (M, g).

9. Exemples de géodésiques.

(9.1): les géodésiques de (Sn,g0) sont les grands cercles (parcourus
uniformément.

En effet, soit c une géodésique de (Sn, g0) et m, n deux points de c

assez voisins pour vérifier (8.4). Soit P le sous-espace vectoriel de dimensions
deux de Rn+1 déterminé par m et n, C le grand cercle P n Sn et s la symétrie
euclidienne par rapport à P et restreinte à Sn. Les seuls points fixes de s

sont les points de C. Comme s est une isométrie de (Sn, g0) elle transforme
la restriction c de c de m à n en une géodésique soc (d'après (8.5)); d'après
(8.4), on a donc s o c c, donc c c C. En particulier:

(9.2): les géodésiques de (Sn,g0) sont toutes des courbes simples (sans

point double), périodiques et de longueur 2n.

On va voir en fait que les géodésiques des (P", g0) ont les mêmes

propriétés.

(9.3): géodésiques des submersions riemanniennes.

Soit {M, g) (N, h) une submersion riemannienne (voir (2,5)); alors:

(9.4): si c est une géodésique de (M, g) telle que c' (0) e PTc(0), alors c est

horizontale (voir (3.6));

(9.5): si c est une telle géodésique horizontale de {M, g), alors poc est

une géodésique de (N, h).

(Pratiquement on obtient donc toutes les géodésiques de (N, h) par
projection des géodésiques horizontales de (M, g)).

Ces deux affirmations se démontrent ensemble. Soit c une géodésique
de (N, h) et m, n deux points de c assez voisins pour vérifier (8.4). Soit c

un relèvement horizontal db c et m, n les relèvements de m, n. Soit d la plus
courte géodésique demàiï (voir (8.4)); alors (d'après (3.6)):

long {p o d) rg long (d) ^ long (c w long (c) d (m, n).

Comme p o d est d'extrémités m, n c'est donc (d'après (8.4)) que l'on doit
avoir l'égalité partout d'où (d'après (3.6)) nos assertions.
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