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tout cas, que si M, N sont deux variétés compactes, et si o (resp. ) est la
classe d’homotopie de M x N qui représente M (resp. N), alors on n’a pas
en général: vol (MX N, g) = a(g). B (g) pour toute g. Voir aussi [11'].

GEODESIQUES.
8. Définition.

Aprés les volumes, les invariants riemanniens qui se présentent naturelle-
ment sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points
mneM:

(8.1) d (m, n) = inf _long (¢, g)
(ou la longueur est celle définie en (3.5) et la borne est inférieure est prise
sur ’ensemble des courbes d’extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] référent au
vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)
est canoniquement un espace métrique. En outre la topologie de variété de
M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
[1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C! qui
localement réalisent cette distance et sont a vitesse constante i.e. ¢ : [ — M
(I intervalle de R) est une géodésique si |c’| est constante et siy re [q ¢ >
> 1, ' €1, tel que long (c| . &) = d(c(2), c ().

Pour (R g,) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S = R, ce sont les courbes dont I’accélération
est normale a S. o

On ne peut guere travailler qu’avec des v.r. complétes, c’est-a-dire
complétes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;
[1], p. 235) que si (M, g) est compléte:

(8.2) ym,ne Mqgec, courbe d’extrémités m, n, telle que long (c, g) =

d (m, n);

(8.3) v xeTM il existe une géodésique unique c: R — M telle que
¢’ (0) = x.

Remarques :

(8.4): la courbe dont ’existence est affirmée en (8.2) est toujours une
géodésique; une telle courbe n’est pas unique en général: voir (9.2) et
prendre sur (S", go) deux points m, n antipodes. Par contre on démontre
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([13], p.-59; [12], p. 165; [1], p. 224) que si m, n sont assez voisins, cette
plus courte géodésique (i.e. de longeur d (m, n)) est uniqgue.

(8.5): les géodésiques sont invariantes par isométries: si f : (M, g) — (N, h)
est une isométrie et ¢ une géodésique de (N, 1), alors f o ¢ est une géodésique
de (M, g).

9. Exemples de géodésiques.

(9.1): les géodeésiques de (S", g,) sont les grands cercles (parcourus uni-
formément.

En effet, soit ¢ une géodésique de (S", g,) et m, n deux points de ¢
assez voisins pour vérifier (8.4). Soit P le sous-espace vectoriel de dimensions
deux de R** ! déterminé par m et n, C le grand cercle P n S" et s la symétrie
euclidienne par rapport a P et restreinte a S”. Les seuls points fixes de s
sont les points de C. Comme s est une isométrie de (S”, g,) elle transforme
la restriction ¢ de ¢ de m a n en une géodésique s o ¢ (d’aprés (8.5)); d’aprés
(8.4), on a donc so ¢ = ¢, donc ¢ = C. En particulier:

(9.2): les géodésiques de (S", go) sont toutes des courbes simples (sans
point double), périodiques et de longueur 27.

On va voir en fait que les géodésiques des (P}, g,) ont les mémes
propriétés.

(9.3): géodésiques des submersions riemanniennes.

Soit (M, g) *, (N, h) une submersion riemannienne (voir (2,5)); alors:

(9.4): si c est une géodésique de (M, g) telle que ¢’ (0) € H ), alors ¢ est
horizontale (voir (3.6));

(9.5): si ¢ est une telle géodésique horizontale de (M, g), alors poc est
une géodésique de (N, h).

(Pratiquement on obtient donc toutes les géodésiques de (N, i) par
projection des géodésiques horizontales de (M, g)).

Ces deux affirmations se démontrent ensemble. Soit ¢ une géodésique
de (N, h) et m, n deux points de ¢ assez voisins pour vérifier (8.4). Soit ¢
un relévement horizontal d& ¢ et m, 7 les relévements de m, n. Soit d la plus
courte géodésique de m a #i (voir (8.4)); alors (d’aprés (3.6)):

long(pod) < long(d) < long(c) = long(¢) = d(m, n).
Comme p o d est d’extrémités m, n c’est donc (d’apres (8.4)) que 'on doit
avoir I’égalité partout d’ou (d’aprés (3.6)) nos assertions.
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(9.6): géodésiques des P’ (i=1, 2, 4).

Considérant les submersions riemanniennes (2.9), on voit que (9,5)
montre que les géodésiques des (P, g,) sont les projections des géodésiques
horizontales (pour la submersion considérée) de S” '~ ' Il suffit donc
de savoir comment se projettent les grands cercles horizontaux de
Sin+i=1 gur P On voit d’abord que les grands cercles de S™*'7! revétent
tous deux fois les géodésiques de (P}, g,), parce que p (—m) = p (m) pour
tout me S™**~1, Donc:

(9.7): les géodésiques des (P, g,) sont toutes des courbes simples, pério-
diques et de longueur .

Pour se faire une idée de la géométrie des P" (i=0, 1, 2, 4), il faut
encore savoir comment se rencontrent deux géodésiques ¢, d issues d’un
m = ¢ (0) = d (0). Pour (8", g,), elles se rencontrent exactement a la
distance 7 en I’antipode de m, puis de nouveau en m au temps 2n (et c’est
tout!). On en déduit que pour (P, g,), revétu deux fois par (8", go), les
géodésiques issues d’un m € P] ne se rencontrent pas ailleurs qu’en m (ce
sont les droites projectives passant par m). Le milieu (situé a une distance
;' de m) de ces géodésiques de Py passant par m décrit I’hyperplan projectif
dual de m, dans la dualité associée a la structure euclidienne de K"**.

Pour les P} (i=2, 4), on note d’abord que T,, P} est un K-espace vectoriel.
La relation d’équivalence sur K" ' —{0}, qui donne naissance a P} montre
que ([1], p. 130) ¢ et d ne se rencontrent pas ailleurs qu’en m si
d' (0) ¢ K. c'(0). Si par contre d’ (0) e K. ¢’ (0), alors ¢ et d se rencontrent
en plus seulement en leur point a distance g de m. En outre, lorsque d’ (0)

parcourt K . ¢’ (0), les géodésiques correspondantes forment une sphére de
dimension 7 de P}, sphére qui n’est autre qu’une droite projective. Et lorsque
ces différentes i-sphéres-droites projectives passant par m remplissent P,
les antipodes de m sur ces spheres décrivent I’hyperplan projectif dual de
m (pour la structure hermitienne de K"*1'), hyperplan qui est une sous-
variété de dimension réelle i (n—1) de P}. On notera aussi que ces droites
projectives (resp. hyperplans projectifs) sont isométriques (comme sous-
variété de (P71, go)) aux (S%, 1g,) (resp. (P~ 1, g,)) (ce sont méme des sous-
variétés totalement géodésiques).

(9.8): le cas de (Pg, g,).

Pour étudier les géodésiques de (Pg, g,), il faut (voir (2.7)) utiliser la
technique des espaces symétriques; on trouvera dans [11], p. 356 et surtout
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dans [4], p. 466, le fait que le comportement des géodésiques de (Pg, g,) est
exactement le méme que celui décrit précédemment pour les géodésiques
des (P}, go) (i=1, 2, 4), en prenant K = Ca et i = 8.

10. Géodésiques périodiques.

(10.1): définition: une géodésique c : [a, b] > (M, g) est dite périodique
(ou fermée ) si c est non constante et si ¢’ (a) = ¢’ (b). Elle est dite en outre
simple si cl[a,b[ est injective.

Le mot périodique est justifié parce que (8.3) montre que ¢ se prolonge
en une géodésique ¢ :R —» M telle que €|y, = c et c(t+b—a) = c(t)
pour tout ¢. La figure 1 ne représente pas une géodésique périodique (mais
seulement un lacet géodésique), la figure 2 représente une géodésique

périodique non simple, la figure 3 représente une géodésique périodique
simple:

C,(O.’:CI(G’)

c'(a)
c(8)
Fig. 1 Fig. 2

(o '(a) = C'(G')

Fig. 3

Pour une v.r. (M, g) on introduit les trois assertions:

(10.2): « GPS(m)»:V xe T, M, x # 0, la géodésique c telle que ¢’ (0) = x
est périodique, simple et de longueur =;
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(10.3): « GPS»: A me M tel que « GPS (m) »;

(10.4): « TGPS»: Vme M on a « GPS (m) ».

Exemple: les (S, 1g,) et les (P}, go) (i=1, 2, 4, 8) vérifient « TGPS ».

Ce qui précéde conduit naturellement & deux types de problémes:
(i): dans quelle mesure « GPS» ou «TGPS» caractérisent-elles les
(P", g,)? (ii): existence d’une ou plusieurs géodésiques périodiques, voire
une infinité, sur une Vv.r.

11. Variétés telles que « GPS ».

On peut seulement espérer au plus que « GPS » caractérisent les variétes
différentiables P’. En effet, soit m le pdle nord de S” et G son groupe d’iso-
tropie, c’est-a-dire G = {s€ SO (n+1): s (m) = m} (G est canoniquement
isomorphe 4 S0 (n)). Alors, pour n’importe quelle s.r. sur S” qui est invariante
par G (i.e. toutes les actions de G sont des isométries), on a « GPS (m) »
(laissé au lecteur en exercice: les géodésiques issues de m sont les méridiens).
Et, bien siir, de telles s.r. n’ont aucune raison d’étre isométriques a g,.

Actuellement, d’une part on ne connait pas d’autres variétés que les
P a posséder une s.r. telle que « GPS ». D’autre part, on a le résultat
suivant, dans lequel H* (.; Z) représente I’anneau de cohomologie enticre:
(11.1): théoréme (Bott: [2], Samelson: [15]): soit (M, g) telle que « GPS ».
Alors An et Hi tels que H* (M; Z) soit isomorphe en tant qu’anneau a
H* (P}; Z).

Il faut remarquer qu’il existe ([6]) des variétés M, non homéomorphes
a P;, mais cependant telles que H* (M; Z) et H* (P ; Z) soient isomorphes
en tant qu'anneaux. C’est pourquoi il faudrait décider si, oui ou non, il
existe sur une de ces M, une s.r. telle que « GPS ».

La démonstration compléte de (11.1) est colossale. Le point de départ
est la théorie de Morse usuelle. La condition « GPS » assure ceci: il existe
une filtration convenable de Q - (M), I’espace des lacets a point base de M,
par des sous-espaces (2; (M), filtration telle que les nombres de Betti
relatifs b, (@2 1 {(M), Q,(M)) soient tous nuls sauf un précis, qui est en
plus égal & un. La suite spectrale de cette filtration permet alors de déter-
miner exactement H* (Q + (M); Z) (a I’aide d’un seul entier encore inconnu
i). De H* (Q - (M); Z) on passe, par la suite spectrale de la fibration de
Serre, & H* (M;Z), dont on montre que c’est un anneau de polyndmes
tronquée, le générateur est de degré i. Un résultat trés profond de topologie
algébrique assure que ceci ne peut se produire que pour i + 0, 1,2, 4 et n
quelconque ou si i =8 pour n = 1,2 (ot dim M = ni). C.Q.F.D.
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12. Variétés telles que « TGPS ».

Un exémple surprenant est la surface de Zoll:

(12.1): théoréme (Zoll, [16]): sur S* il existe des s.r. g telles que « TGPS »
et que (S?, g) ne soit pas isométrique a (S2, g,).

Ainsi « TGPS » n’est pas caractéristique des (P}, g,) en toute généralité.
D’ailleurs (communication de A. Weinstein) on peut construire des s.r.
analogues sur les S" v n = 2. Cependant « TGPS » caractérise (P31, g,):

(12.2): théoréme (Green, [9]): si (P, g,) est telle que « TGPS », alors
(P%, g) est isométrique a (P, g,).

Toutes les généralisations possibles de (12.2), pour différents n et i,
sont des problémes entiérement ouverts. La démonstration de (12.2) est
absolument particuliére & la dimension deux; elle utilise, pour vol (P%, g),
deux inégalités en sens contraire; la premicre est basée sur la formule de
Gauss-Bonnet en dimension deux et une inégalité dont [’extension en
dimension plus grande ne correspond plus a la formule de Gauss-Bonnet.
La deuxiéme inégalité utilise une formule de géométrie intégrale de Santalo
dont I’extension en dimension plus grande ne fonctionne que si le projectif
(P71, g) (pour lequel on voudrait démontrer une généralisation du théoréme
(12.2)) possédait une hypersurface homotope a4 P;~ ! et totalement géo-
désique, ce qui n’est pas le cas en général.

13. Existence d’une géodésique périodique.

Une variété compléte, non compacte, méme non simplement connexe,
n’admet pas nécessairement de géodésique périodique (g.p.); exemple la
surface de révolution ci-apres:

|

P A

P
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Un théoréme folklorique est le:

(13.1): soit (M, g) compacte. Alors, quelle que soit la classe d’homotopie
libre o (voir (7.4)) de M, o # 0, il existe une g.p. C € o. Ln particulier si
M est non simplement connexe compacte, elle admet toujours une g.p.

§
4y
Pe
it

o0

La démonstration est simple; on montre que la borne inférieure
o (g) = inf ., long (c, g) est réalisée, parce que M est compacte; et une
courbe réalisant cette borne inférieure est nécessairement une g.p.

Par contre, si M, toujours compacte, est simplement connexe, la question
de I’existence d’au moins une g.p. est beaucoup plus difficile. Poincaré fut
le premier & démontrer une telle existence en 1905, pour (S?, g) avec g
analytique (Birkhoff étendit ce résultat a S”, g toujours analytique, en
1927). Mais il fallut attendre jusqu’en 1952 pour le:

(13.2): théoreme (Fet-Lyusternik): toute v.r. compacte admet une g.p.

La démonstration est un usage typique de la théorie de Morse. Cette
démonstration consiste & mettre en forme 1'idée suivante, que nous pré-
sentons sur S2. Soit Q (S?) = C°(S'; $%) I'espace des courbes fermées
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(lacets sans point base) de S?. Dans Q (S?) on considére le chemin ®, dont
'origine est la courbe constante pole nord et I’extrémité la courbe constante
pole sud, constitué par les paralléles de S2. Sur Q (S?) on a la fonction
longueur; si w ne contient aucune géodésique, on peut le déformer conti-
nliment en des chemins o/, de méme extrémités, déformation dans laquelle
chaque courbe diminue strictement en longueur. Continuant ainsi, ou on
a trouvé une g.p., ou on a déformé w en un chemin dont toutes les courbes
sont constantes (de longueur nulle). Or cette derni¢re possibilité est exclue
parceque w est précisément un générateur de 7,(S*) # 0. C’est donc que
notre chemin w reste « accroché » et le point d’accrochage est précisément

une g.p.

n(sY

/
I& POLML’ A accroc_e\a%e,
\\ “.\
AN N N

coorbes contonles

14. Existence de plusieurs géodésiques périodiques.

De nombreux auteurs (Lusternik, Schnirelmann, Morse, Fet, Alber,
Klingenberg) ont obtenu des résultats partiels d’existence, sur une Vv.r.
compacte donnée, de plusieurs (2, 3,...) g.p. géométriquement distinctes
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(des g.p. ¢y, ..., ¢, sont dites géométriquement distinctes si les sous-ensembles
i ci(R), ..., c(R) de M sont distincts). Nous ne donnons pas le détail de
1 leurs résultats; en effet il est actuellement raisonnable de conjecturer que
© toute v.r. compacte admet une infinité de g.p. géométriquement distinctes.
D’abord, bien sfir, on ne connait pas de v.r. compacte, de dimension
=2, dont on ait pu montrer qu’elle n’a qu'un nombre fini de g.p. géo-
~ métriquement distinctes. Ensuite d’une part on dispose maintenant du:
- (14.1): théoréme (Gromoll-Meyer, [10]): soit {b(Q(M))} la suite des
- nombres de Betti de I'espace Q (M) = C° (S1; M). Soit M une variété
 compacte simplement connexe telle que la suite {b,(Q(M))} n’est pas bornée
(i.e. yaeNgk tel que b, (QM)) > a. Alors, quelle que soit la s.r. sur
M, la v.r. (M, g) admet une infinité de g.p. géométriquement distinctes.

(Noter que les nombres de Betti b, (2(M)) pour une variété M compacte
~simplement connexe sont tous finis.)

D’autre part, bien que I’on ne sache pas exactement quelles sont les

variétés compactes M pour lesquelles la suite {6,(2(M))} n’est pas bornée,
on a ceci: (1) plusieurs classes assez larges de M compactes ayant une telle
suite non bornée; (ii) les seules variétés simplement connexes connues pour
~lesquelles cette suite est bornée sont les P}. Or les P} ont, a vrai dire pour
leur s.r. canonique g,, une bonne infinité de g.p. géométriquement distinctes!
-~ Remarquer que 'on ne sait pas’, méme pour des s.r. g voisines de g,, si
(P%, g) admet une infinité de g.p. géométriquement distinctes.
Quant a la démonstration de (14.1), elle est fine et technique. En voici
- un schéma heuristique, seulement dans le cas «non dégénéré » (le cas
- dégénéré est cependant essentiel et complique grandement la démonstration).
- Il faut connaitre la théorie de Morse pour les sous-variétés critiques non-
dégénérées et pour les variétés de dimension infinie. On procéde par
~ 'absurde: s’il n’y a qu’un nombre fini de g.p. géométriquement distinctes,
- Cest qu’il existe k géodésiques périodiques simples ¢y, ..., cg, telles que toute
- g.p. soit un recouvrement fini de I'une d’entre elles. A chaque g.p. on
" associe un index k; les inégalités de Morse disent que le nombre de g.p.
d’index €gal a k est supérieur ou égal a b, (Q(M)). Etudiant les index k (1)
- d’une g.p. recouvrant m fois une g.p. donnée, on trouve que k (m) croit,
~ ¢n gros, comme une progression arithmétique. Ceci montre donc que les
b (Q(M)) sont bornés. C.Q.F.D.
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