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tout cas, que si M, N sont deux variétés compactes, et si a (resp. ß) est la

classe d'homotopie de M X N qui représente M (resp. A), alors on n'a pas

en général: vol(MxA, g) ^ a (g). ß (g) pour toute g. Voir aussi [11 '].

Géodésiques.

8. Définition.

Après les volumes, les invariants riemanniens qui se présentent naturellement

sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points

m, ne M:

j (8.1) d Çm, n) inf c long (c, g)

I (où la longueur est celle définie en (3.5) et la borne est inférieure est prise

| sur l'ensemble des courbes d'extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] réfèrent au
li vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)

est canoniquement un espace métrique. En outre la topologie de variété de

I. M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
I; [1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C1 qui

localement réalisent cette distance et sont à vitesse constante i.e. c : I -» M
fj (/intervalle de R) est une géodésique si \c'\ est constante et si y t e / g t' >
fi > t, t' e I, tel que long (c|[t>n, g) d(c (t), c '))•

Pour (R", g0) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S c R3, ce sont les courbes dont l'accélération

y! est normale à S. 1

;.;j On ne peut guère travailler qu'avec des v.r. complètes, c'est-à-dire
complètes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;

7 [1], p. 235) que si (M, g) est complète:

' (8.2) ym,neMp[c, courbe d'extrémités 777,77, telle que long (c, g)
d (777,77) ;

(8.3) yxeTM il existe une géodésique unique c: R -> M telle que
I c' (0) x.

I Remarques :

i| (8.4): la courbe dont l'existence est affirmée en (8.2) est toujours une
: géodésique; une telle courbe n'est pas unique en général: voir (9.2) et

I prendre sur (S'\ g0) deux points 777, n antipodes. Par contre on démontre
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([13], p. 59; [12], p. 165; [1], p. 224) que si m, n sont assez voisins, cette

plus courte géodésique (i.e. de longeur d (m, n)) est unique.

(8.5): les géodésiques sont invariantes par isométries: si/ : (M, g) (N, h)
est une isométrie et c une géodésique de (N, h)9 alorsfoc est une géodésique
de (M, g).

9. Exemples de géodésiques.

(9.1): les géodésiques de (Sn,g0) sont les grands cercles (parcourus
uniformément.

En effet, soit c une géodésique de (Sn, g0) et m, n deux points de c

assez voisins pour vérifier (8.4). Soit P le sous-espace vectoriel de dimensions
deux de Rn+1 déterminé par m et n, C le grand cercle P n Sn et s la symétrie
euclidienne par rapport à P et restreinte à Sn. Les seuls points fixes de s

sont les points de C. Comme s est une isométrie de (Sn, g0) elle transforme
la restriction c de c de m à n en une géodésique soc (d'après (8.5)); d'après
(8.4), on a donc s o c c, donc c c C. En particulier:

(9.2): les géodésiques de (Sn,g0) sont toutes des courbes simples (sans

point double), périodiques et de longueur 2n.

On va voir en fait que les géodésiques des (P", g0) ont les mêmes

propriétés.

(9.3): géodésiques des submersions riemanniennes.

Soit {M, g) (N, h) une submersion riemannienne (voir (2,5)); alors:

(9.4): si c est une géodésique de (M, g) telle que c' (0) e PTc(0), alors c est

horizontale (voir (3.6));

(9.5): si c est une telle géodésique horizontale de {M, g), alors poc est

une géodésique de (N, h).

(Pratiquement on obtient donc toutes les géodésiques de (N, h) par
projection des géodésiques horizontales de (M, g)).

Ces deux affirmations se démontrent ensemble. Soit c une géodésique
de (N, h) et m, n deux points de c assez voisins pour vérifier (8.4). Soit c

un relèvement horizontal db c et m, n les relèvements de m, n. Soit d la plus
courte géodésique demàiï (voir (8.4)); alors (d'après (3.6)):

long {p o d) rg long (d) ^ long (c w long (c) d (m, n).

Comme p o d est d'extrémités m, n c'est donc (d'après (8.4)) que l'on doit
avoir l'égalité partout d'où (d'après (3.6)) nos assertions.
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(9.6): géodésiques des P] (i= 1, 2, 4).

Considérant les submersions riemanniennes (2.9), on voit que (9,5)

montre que les géodésiques des (P", g0) sont les projections des géodésiques

horizontales (pour la submersion considérée) de Sm+l~1. Il suffit donc

de savoir comment se projettent les grands cercles horizontaux de

Sin+i-i sur pn 0n voit d'abord que les grands cercles de s*1'1 revêtent

tous deux fois les géodésiques de (P", g0), parce que p {-m) p {m) pour
tout m e Sin + i~x. Donc:

(9.7): les géodésiques des (P", g0) sont toutes des courbes simples,
périodiques et de longueur n.

Pour se faire une idée de la géométrie des P" (i=0, 1,2,4), il faut

encore savoir comment se rencontrent deux géodésiques c, d issues d'un

m c (0) d (0). Pour (Sn, g0), elles se rencontrent exactement à la

distance n en l'antipode de m, puis de nouveau en m au temps 2n (et c'est

tout!). On en déduit que pour (PJ, g0), revêtu deux fois par (Sn,g0)9 les

géodésiques issues d'un m e P" ne se rencontrent pas ailleurs qu'en m (ce

sont les droites projectives passant par m). Le milieu (situé à une distance

~ de m) de ces géodésiques de P" passant par m décrit l'hyperplan projectif
dual de m, dans la dualité associée à la structure euclidienne de Kn+1.

Pour les P" (z=2, 4), on note d'abord que TmP}\ est un Pf-espace vectoriel.
La relation d'équivalence sur Kn+1 — {0}, qui donne naissance à P" montre

que ([1], p. 130) c et d ne se rencontrent pas ailleurs qu'en m si

d' (0) $K. c' (0). Si par contre d' (0) eK. c' (0), alors c et d se rencontrent
en plus seulement en leur point à distance | de m. En outre, lorsque d' (0)

parcourt K. c' (0), les géodésiques correspondantes forment une sphère de

dimension i de P", sphère qui n'est autre qu'une droite projective. Et lorsque
ces différentes z-sphères-droites projectives passant par m remplissent P",
les antipodes de m sur ces sphères décrivent l'hyperplan projectif dual de

m (pour la structure hermitienne de /PI+1), hyperplan qui est une sous-
variété de dimension réelle i {n-1) de P". On notera aussi que ces droites
projectives (resp. hyperplans projectifs) sont isométriques (comme sous-
variété de (P", g0)) aux (S\ \g0) (resp. (P'-~ \ g0)) (ce sont même des sous-
variétés totalement géodésiques).

(9.8): le cas de (Pg, g0).

Pour étudier les géodésiques de (Pg, g0), il faut (voir (2.7)) utiliser la
technique des espaces symétriques; on trouvera dans [11], p. 356 et surtout
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dans [4], p. 466, le fait que le comportement des géodésiques de (P\, g0) est

exactement le même que celui décrit précédemment pour les géodésiques
des (F", g0) (i= 1, 2, 4), en prenant K Ca et / 8.

10. Géodésiques périodiques.

(10.1) : définition : une géodésique c : [a, b] -> (M, g) est dite périodique
(ou ferméeJ si c est non constante et si c' (a) c' (b). Elle est dite en outre

simple si est injective.
Le mot périodique est justifié parce que (8.3) montre que c se prolonge

en une géodésique c : R -> M telle que c= c et c(t+b — a) c (t)
pour tout t. La figure 1 ne représente pas une géodésique périodique (mais
seulement un lacet géodésique), la figure 2 représente une géodésique

périodique non simple, la figure 3 représente une géodésique périodique
simple :

c

Fig. 1 Fig. 2

c'facW

Fig. 3

Pour une v.r. (M, g) on introduit les trois assertions:

(10.2): « GPS (m) »: Y x e TmM, x ^ 0, la géodésique c telle que c' (0) x
est périodique, simple et de longueur n ;
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I (10.3): << GPS »: 3 m e M tel que << GPS (m) >>;

(10.4) : « TOPS » : V m e M on a « GPS {m) ».

Exemple : les (S", %g0) et les (P", g0) (/= 1, 2, 4, 8) vérifient « TGPS ».

Ce qui précède conduit naturellement à deux types de problèmes:

(i) : dans quelle mesure « GPS » ou « TGPS » caractérisent-elles les

(P'h £o)? (ii): existence d'une ou plusieurs géodésiques périodiques, voire

une infinité, sur une v.r.

11. Variétés telles que « GPS ».

On peut seulement espérer au plus que « GPS » caractérisent les variétés

differentiates P". En effet, soit m le pôle nord de Sn et G son groupe d'iso-

tropie, c'est-à-dire G {s e SO (w+1): s (m) m} (G est canoniquement

isomorphe à SO («)). Alors, pour n'importe quelle s.r. sur Sn qui est invariante

par G (i.e. toutes les actions de G sont des isométries), on a « GPS (m) »

(laissé au lecteur en exercice: les géodésiques issues de m sont les méridiens).
Et, bien sûr, de telles s.r. n'ont aucune raison d'être isométriques à g0.

Actuellement, d'une part on ne connait pas d'autres variétés que les

P] à posséder une s.r. telle que « GPS ». D'autre part, on a le résultat

suivant, dans lequel H* ; Z) représente l'anneau de cohomologie entière :

(11.1): théorème (Bott: [2], Samelson: [15]): soit (M, g) telle que « GPS ».

Alors 3 n et 3 i tels que H* (M ; Z) soit isomorphe en tant qu'anneau à

H*(P";Z).
Il faut remarquer qu'il existe ([6]) des variétés M, non homéomorphes

à Pl, mais cependant telles que H* (M; Z) et H* (Pl; Z) soient isomorphes
en tant qu'anneaux. C'est pourquoi il faudrait décider si, oui ou non, il
existe sur une de ces M, une s.r. telle que « GPS ».

La démonstration complète de (11.1) est colossale. Le point de départ
est la théorie de Morse usuelle. La condition « GPS» assure ceci: il existe

une filtration convenable de Q • (M), l'espace des lacets à point base de M,
par des sous-espaces Qk (M), filtration telle que les nombres de Betti
relatifs bk{Q{l + 1{M\Qjl{M)) soient tous nuls sauf un précis, qui est en
plus égal à un. La suite spectrale de cette filtration permet alors de déterminer

exactement ZT* (Ü • (M); Z) (à l'aide d'un seul entier encore inconnu
i). De H* (Q • (M); Z) on passe, par la suite spectrale de la fibration de

Serre, à H* (M; Z), dont on montre que c'est un anneau de polynômes
tronquée, le générateur est de degré i. Un résultat très profond de topologie
algébrique assure que ceci ne peut se produire que pour i + 0, 1, 2, 4 et n

quelconque ou si i 8 pour n 1,2 (où dim M ni). C.Q.F.D.
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12. Variétés telles que « TGPS ».

Un exemple surprenant est la surface de Zoll :

(12.1): théorème (Zoll, [16]): sur S2 il existe des s.r. g telles que « TGPS »

et que (S2, g) ne soit pas isométrique à (S2, g0).
Ainsi « TGPS » n'est pas caractéristique des (P", g0) en toute généralité.

D'ailleurs (communication de A. Weinstein) on peut construire des s.r.

analogues sur les Sny n ^ 2. Cependant « TGPS » caractérise (P2, g0):

(12.2): théorème (Green, [9]): si (P2, g0) est telle que «TGPS», alors
(P2, g) est isométrique à (P,2 go)-

Toutes les généralisations possibles de (12.2), pour différents n et i,

sont des problèmes entièrement ouverts. La démonstration de (12.2) est

absolument particulière à la dimension deux; elle utilise, pour vol (P2, g),
deux inégalités en sens contraire; la première est basée sur la formule de

Gauss-Bonnet en dimension deux et une inégalité dont l'extension en

dimension plus grande ne correspond plus à la formule de Gauss-Bonnet.

La deuxième inégalité utilise une formule de géométrie intégrale de Santalo

dont l'extension en dimension plus grande ne fonctionne que si le projectif
(P", g) (pour lequel on voudrait démontrer une généralisation du théorème

(12.2)) possédait une hypersurface homotope à P"-1 et totalement géo-

désique, ce qui n'est pas le cas en général.

13. Existence d'une géodésique périodique.

Une variété complète, non compacte, même non simplement connexe,
n'admet pas nécessairement de géodésique périodique (g.p.); exemple la

surface de révolution ci-après :

\
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Un théorème folklorique est le:

(13.1): soit (M, g) compacte. Alors, quelle que soit la classe d'homotopie

libre a (voir (7.4)) de M, a 0, il existe une g.p. c e a. En particulier si

| M est non simplement connexe compacte, elle admet toujours une g.p.

La démonstration est simple; on montre que la borne inférieure

a (g) inf cea long (c, g) est réalisée, parce que M est compacte ; et une
courbe réalisant cette borne inférieure est nécessairement une g.p.

Par contre, si Af, toujours compacte, est simplement connexe, la question
de l'existence d'au moins une g.p. est beaucoup plus difficile. Poincaré fut
le premier à démontrer une telle existence en 1905, pour (S2, g) avec g
analytique (Birkhoff étendit ce résultat à S11, g toujours analytique, en

1927). Mais il fallut attendre jusqu'en 1952 pour le:

(13.2): théorème (Fet-Lyusternik) : toute v.r. compacte admet une g.p.

La démonstration est un usage typique de la théorie de Morse. Cette
démonstration consiste à mettre en forme l'idée suivante, que nous
présentons sur S2. Soit Q (S2) C° (S1 ; S2) l'espace des courbes fermées
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(lacets sans point base) de S2. Dans Q (S2) on considère le chemin œ, dont
l'origine est la courbe constante pôle nord et l'extrémité la courbe constante

pôle sud, constitué par les parallèles de S2. Sur Q (S2) on a la fonction
longueur; si œ ne contient aucune géodésique, on peut le déformer
continûment en des chemins cof, de même extrémités, déformation dans laquelle
chaque courbe diminue strictement en longueur. Continuant ainsi, ou on
a trouvé une g.p., ou on a déformé œ en un chemin dont toutes les courbes

sont constantes (de longueur nulle). Or cette dernière possibilité est exclue

parceque œ est précisément un générateur de 7t2(*S2) # 0. C'est donc que
notre chemin co reste « accroché » et le point d'accrochage est précisément
une g.p.

14. Existence de plusieurs géodésiques périodiques.

De nombreux auteurs (Lusternik, Schnirelmann, Morse, Fet, Alber,
Klingenberg) ont obtenu des résultats partiels d'existence, sur une v.r.

compacte donnée, de plusieurs (2, 3, g.p. géométriquement distinctes
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(des g.p. cu ck sont dites géométriquement distinctes si les sous-ensembles

c1(R),..., ck{R) de M sont distincts). Nous ne donnons pas le détail de

leurs résultats; en effet il est actuellement raisonnable de conjecturer que

toute v.r. compacte admet une infinité de g.p. géométriquement distinctes.

D'abord, bien sûr, on ne connaît pas de v.r. compacte, de dimension

^ 2, dont on ait pu montrer qu'elle n'a qu'un nombre fini de g.p.
géométriquement distinctes. Ensuite d'une part on dispose maintenant du:

(14.1): théorème (Gromoll-Meyer, [10]): soit {bfc(£2(M))} la suite des

nombres de Betti de /'espace Q (M) C° (S1 ; M). Soit M une variété

compacte simplement connexe telle que la suite (bfc(ß(M))} n'est pas bornée

(i.e. y a e N g k tel que bk (ß(M)) > a. Alors, quelle que soit la s.r. sur

M, la v.r. (M, g) admet une infinité de g.p. géométriquement distinctes.

(Noter que les nombres de Betti bh {Q(M)) pour une variété M compacte
simplement connexe sont tous finis.)

D'autre part, bien que l'on ne sache pas exactement quelles sont les

variétés compactes M pour lesquelles la suite {bk(Q{M))} n'est pas bornée,
on a ceci : (i) plusieurs classes assez larges de M compactes ayant une telle
suite non bornée; (ii) les seules variétés simplement connexes connues pour
lesquelles cette suite est bornée sont les P". Or les P" ont, à vrai dire pour
leur s.r. canonique g0, une bonne infinité de g.p. géométriquement distinctes!
Remarquer que l'on ne sait pas, même pour des s.r. g voisines de g0, si

(P", g) admet une infinité de g.p. géométriquement distinctes.

Quant à la démonstration de (14.1), elle est fine et technique. En voici
un schéma heuristique, seulement dans le cas « non dégénéré » (le cas

dégénéré est cependant essentiel et complique grandement la démonstration).
Il faut connaître la théorie de Morse pour les sous-variétés critiques non-
dégénérées et pour les variétés de dimension infinie. On procède par
l'absurde: s'il n'y a qu'un nombre fini de g.p. géométriquement distinctes,
c'est qu'il existe k géodésiques périodiques simples cu es, telles que toute
g.p. soit un recouvrement fini de l'une d'entre elles. A chaque g.p. on
associe un index k; les inégalités de Morse disent que le nombre de g.p.
d'index égal à k est supérieur ou égal à bk (ß(M)). Etudiant les index k (m)
d'une g.p. recouvrant m fois une g.p. donnée, on trouve que k (m) croît,
en gros, comme une progression arithmétique. Ceci montre donc que les
bk sont bornés. C.Q.F.D.


	GÉODÉSIQUES.
	8. Définition.
	9. Exemples de géodésiques.
	10. Géodésiques périodiques.
	11. Variétés telles que « GPS ».
	12. Variétés telles que « TGPS ».
	13. Existence d'une géodésique périodique.
	14. Existence de plusieurs géodésiques périodiques


