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Ce qui démontre (voir (2.10)) que carc (Pl, go) Puis fiuot 0°2> go)

Soit maintenant g une s.r. kâhlérienne sur telle que laforme de Kâhler
associée co vérifie co co0 + da, où da est la différentielle extérieure d'une
différentielle a de degré un. De telles s.r. existent: prendre une fonction

/ : M -> R et poser co co0 + (— î)1/23âf; définir g par (6.1) à partir
de co. Pour / assez petite, g est encore définie positive. Pour toute variété

î n

hermitienne on a vg ^ a co, où n est la dimension complexe. On aura
donc:

vol (PI g) i j> a co i J> a vol (PI g0)

d'après la formule de Stokes. Puis, pour Y ~ P\:

vol (7, g) ^ Jy&>|y jp^lp1 ~ Jp^ojp1 carc (^2? go)
2

1

2 J 2
1

2

donc carc (Pl, g) carc (P^, g0). D'où quot (P", g) quot (P^, go) Pour
toute g du type précédent; or en général (P£, g) et (P^, g0) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La même méthode reste valable pour calculer quot (P4, g0) (resp.

quot (Pg, g0)). On considère cette fois-ci la forme canonique alternée de

degré 4 (resp. 8) de P4 (resp. Pg); on aura carc (P4, g0) vol (P4, g0) n2/6,
d'où quot (P4, g0) (voir tableau). De même: carc (Pg, g0) vol (Pg, g0)

vol (S8, g0/4) 7i4/8 .7.5.3. (d'après (2.10)); d'où quot (Pg, g0)

(tableau). Par contre, on ne sait pas ce qu'il en est de « IC (n;4)» ou
« IC (2 ;8) ».

7. Théorèmes de Loewner, Blatter.

La formule (4.1) peut encore servir à définir le carcan carc (M, g) de

n'importe quelle variété riemannienne compacte, puis

vol (M, g)
(7.1) quot (M, g) - n dim M.

(carc (M, g)f

Pour le tore de dimension deux x le résultat suivant a

été obtenu avant celui de Pu :

(7.2): théorème (Loewner, [14]). Pour toute g: quot (S1 x S1, g) ^ ^1;

en outre quot (S1 x S1, g) — — si e

à un tore équilatéral (voir (2.4.2)).

en outre quot (S1 X S1, g) — — si et seulement si (S1 X S1, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu'il n'y a même

pas à prendre de revêtement. On aboutit à quot (S1 X S1, g) ^
quot (R2/G, go/G), quotient d'un tore plat associé au réseau G de R2. Il
reste ensuite le problème de géométrie élémentaire: étudier les quotients
des tores plats.

Soit Gq la surface compacte orientable à q trous (ou surface orientable
de genre q, toutes ces surfaces sont difféomorphes à Gq).

(7.3): théorème (Blatter, [3]). Pour tout q quelle que soit la s.r. sur Gq:

quot (Gq9 g) ^ (t2q)1Iq (où les tn sont ceux définis par (7.4)).
La démonstration diffère radicalement de celles de (4.2) et (7.2); elle

repose sur l'emploi des formes harmoniques; et l'on intègre sur leurs
courbes de niveau.

Pour q ^ 2, la situation diffère de celle de (7.2); les bq sont bien les

meilleures possibles: bq inf
Q s r sur Gq quot (Gq, g), mais cette borne

n'est jamais atteinte si q ^ 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) y g: quot ((S1)", g) ^ inf quot (R"/G, tn.

G réseau de R"
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques tn ne sont pas connus, sauf pour 2 ^ n g 8 (voir [5], p. 332).
On sait aussi que tn > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que tn tend vers zéro lorsque n tend vers l'infini:
[5], p. 247.

Enfin, on voit bien quel est le problème type dont ceux qui précèdent
ne sont que des cas particuliers; soit M une variété C00 compacte et a, ß,...
différentes classes d'homologie, d'homotopie (libre) de M. Pour toute
telle classe on définit, pour toute s.r. g sur M:

(7.5) a (g) inf Ye0L vol F, g)

où la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent à la classe a considérée. Remarquons en passant que l'on
ne se préoccupe pas de la réalisation de a (g) par une sous-variété Y ; mais

ce n'est pas par manque d'intérêt! Le problème général est: existe-t-il, sur
certaines variétés, des relations entre oc (g), ß (g), indépendantes delà
s.r. g sur Ml Le théorème de Pu est relatif au cas où a est la classe

fondamentale (de dimension deux) de P\ M et ß la classe des droites projectives;
on a a (g) ^ | (ß (g))2 pour toute g. Le théorème de Loewner montre, en



tout cas, que si M, N sont deux variétés compactes, et si a (resp. ß) est la

classe d'homotopie de M X N qui représente M (resp. A), alors on n'a pas

en général: vol(MxA, g) ^ a (g). ß (g) pour toute g. Voir aussi [11 '].

Géodésiques.

8. Définition.

Après les volumes, les invariants riemanniens qui se présentent naturellement

sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points

m, ne M:

j (8.1) d Çm, n) inf c long (c, g)

I (où la longueur est celle définie en (3.5) et la borne est inférieure est prise

| sur l'ensemble des courbes d'extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] réfèrent au
li vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)

est canoniquement un espace métrique. En outre la topologie de variété de

I. M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
I; [1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C1 qui

localement réalisent cette distance et sont à vitesse constante i.e. c : I -» M
fj (/intervalle de R) est une géodésique si \c'\ est constante et si y t e / g t' >
fi > t, t' e I, tel que long (c|[t>n, g) d(c (t), c '))•

Pour (R", g0) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S c R3, ce sont les courbes dont l'accélération

y! est normale à S. 1

;.;j On ne peut guère travailler qu'avec des v.r. complètes, c'est-à-dire
complètes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;

7 [1], p. 235) que si (M, g) est complète:

' (8.2) ym,neMp[c, courbe d'extrémités 777,77, telle que long (c, g)
d (777,77) ;

(8.3) yxeTM il existe une géodésique unique c: R -> M telle que
I c' (0) x.

I Remarques :

i| (8.4): la courbe dont l'existence est affirmée en (8.2) est toujours une
: géodésique; une telle courbe n'est pas unique en général: voir (9.2) et

I prendre sur (S'\ g0) deux points 777, n antipodes. Par contre on démontre
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