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Ce qui démontre (voir (2.10)) que carc (P3, g,) = 7, puis quot (P}, g,) = '_f-'

Soit maintenant g une s.r. kihlérienne sur P; telle que laforme de Kahler
associée w vérifie v = w, + du, ol du est la différentielle extérieure d’une
différentielle « de degré un. De telles s.r. existent: prendre une fonction
f:M - R et poser @ = wy + (—1)"265f; définir g par (6.1) & partir

de w. Pour f assez petite, g est encore définie positive. Pour toute variété
n

.. 1 . . .
hermitienne on a v, = 3 Aw, ol n est la dimension complexe. On aura
donc:

vol (P}, 8) = 1 [ A @ = 1 [ A @0 = vol (P}, go)

d’aprés la formule de Stokes. Puis, pour ¥ ~ P;:

vol (Y, g) = jYCOIY = jP;wIP; = jP;wOIP; = carc (P3, go)

donc carc (P;, g) = carc (P3, g,). D’ou quot (P3, g) = quot (P3, g,) pour
toute g du type précédent; or en général (P3, g) et (P3, g,) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La méme méthode reste valable pour calculer quot (P}, g,) (resp.
quot (P3, go)). On considére cette fois-ci la forme canonique alternée de
degré 4 (resp. 8) de P} (resp. P3); on aura carc (P}, g,) = vol (P}, g,) = 12/6,
d’ou quot (P}, g,) (voir tableau). De méme: carc (P2, g,) = vol (Pg, g,) =
— vol (S8, go/4) = 7*/8.7.5.3. (daprés (2.10)); d’ou quot (P2, g,)
(tableau). Par contre, on ne sait pas ce qu’il en est de « IC (n;4) » ou
« IC (2;8) ».

7. Théorémes de Loewner, Blatter.

La formule (4.1) peut encore servir a définir le carcan carc (M, g) de
n’importe quelle variété riemannienne compacte, puis
vol (M, g)

(7.1) quot (M, g) = (carc (M. ) n = dim M.

Pour le tore de dimension deux S' = S!' x S!, le résultat suivant a
été obtenu avant celui de Pu:

(7.2): théoréeme (Loewner, [14]). Pour toute g: quot (S'xS', 2) = %3—1
en outre quot (S* xS*, g) = -“-/2—3—

a un tore équilatéral (voir (2.4.2)).

si et seulement si (S* X S, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu’il n’y a méme
pas & prendre de revétement. On aboutit a quot(S'xS!, g) =
quot (R?/G, g,/G), quotient d’un tore plat associé au réseau G de R2. 1l
reste ensuite le probléme de géométrie élémentaire: étudier les quotients
des tores plats.

Soit G, la surface compacte orientable a ¢ trous (ou surface orientable
de genre g, toutes ces surfaces sont difféomorphes a G ).

(7.3): théoréme (Blatter, [3]). Pour tout q quelle que soit la s.x. sur G,
quot (G,, g = (t,,)"/? (o les t, sont ceux définis par (7.4)).

La démonstration différe radicalement de celles de (4.2) et (7.2); elle
repose sur ’emploi des formes harmoniques; et 'on intégre sur leurs
courbes de niveau.

Pour g = 2, la situation différe de celle de (7.2); les b, sont bien les

meilleures possibles: b, = inf , ;, sur 4, quot (G, g), mais cette borne
n’est jamais atteinte si ¢ = 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) v g:quot((S),g) = inf quot (R"/G, g0/G) = t,.
G réseau de R”
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques ¢, ne sont pas connus, sauf pour 2 < n < 8 (voir [5], p. 332).
On sait aussi que £, > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que ¢, tend vers zéro lorsque » tend vers 'infini:
[5], p. 247.

Enfin, on voit bien quel est le probléme type dont ceux qui précédent
ne sont que des cas particuliers; soit M une variété C* compacte et «, S, ...
différentes classes d’homologie, d’homotopie (libre) de M. Pour toute

telle classe on définit, pour toute s.r. g sur M:

(7'5) o (g) — Il'lf Yea VO] (Ya g)

ou la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent a la classe o considérée. Remarquons en passant que 1’on
ne se préoccupe pas de la réalisation de « (g) par une sous-variété Y; mais
ce n’est pas par manque d’intérét! Le probléme général est: existe-t-il, sur
certaines variétés, des relations entre o (g), B (g), ..., indépendantes de la
s.r. g sur M? Le théoreme de Pu est relatif au cas ot « est la classe fonda-
mentale (de dimension deux) de P = M et f3 la classe des droites projectives;
ona a(g) = %(ﬁ (2))* pour toute g. Le théoréme de Loewner montre, en

TR




e e N g i s st s Py s e

T B e w e S

__ 87 —

tout cas, que si M, N sont deux variétés compactes, et si o (resp. ) est la
classe d’homotopie de M x N qui représente M (resp. N), alors on n’a pas
en général: vol (MX N, g) = a(g). B (g) pour toute g. Voir aussi [11'].

GEODESIQUES.
8. Définition.

Aprés les volumes, les invariants riemanniens qui se présentent naturelle-
ment sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points
mneM:

(8.1) d (m, n) = inf _long (¢, g)
(ou la longueur est celle définie en (3.5) et la borne est inférieure est prise
sur ’ensemble des courbes d’extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] référent au
vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)
est canoniquement un espace métrique. En outre la topologie de variété de
M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
[1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C! qui
localement réalisent cette distance et sont a vitesse constante i.e. ¢ : [ — M
(I intervalle de R) est une géodésique si |c’| est constante et siy re [q ¢ >
> 1, ' €1, tel que long (c| . &) = d(c(2), c ().

Pour (R g,) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S = R, ce sont les courbes dont I’accélération
est normale a S. o

On ne peut guere travailler qu’avec des v.r. complétes, c’est-a-dire
complétes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;
[1], p. 235) que si (M, g) est compléte:

(8.2) ym,ne Mqgec, courbe d’extrémités m, n, telle que long (c, g) =

d (m, n);

(8.3) v xeTM il existe une géodésique unique c: R — M telle que
¢’ (0) = x.

Remarques :

(8.4): la courbe dont ’existence est affirmée en (8.2) est toujours une
géodésique; une telle courbe n’est pas unique en général: voir (9.2) et
prendre sur (S", go) deux points m, n antipodes. Par contre on démontre
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