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vol
(5.2) carc (Pig)inf y„pp vol Y, g), quot (Pi g) —

La question qui se pose d'abord est le calcul des quot pour
/ 1, c'est fait. Pour i2,4, 8, voir le n° 6. Ensuite, introduisons les

assertions:

(5.3) « I (n;i)»:y g:quot(P",g)^ quot g0);

(5.4) « IC (n ;i) » : « I (n ;i) » et « quot (P-, g) quot (Pni9 g0) entraîne

(F", g) et (F", g0) sont isométriques »;

(5.5) « P (;n;i) »: 3 k > 0 telle que y g: quot (P", g) ^ k.

Voir le tableau, page 85.

6. Le cas kâhlérien.

Soit (M, g) une variété hermitienne, c'est-à-dire que M possède

une structure analytique complexe, dont on notera J la multiplication
par (—1)1/2 sur le fibré réel TM, et que g commute avec J : y x, y :

g (.J (x), J (y)) g (x, y). On en déduit sur M une forme alternée de degré
deux co, par

(6.1) y x, y : œ (x, y)g(x,J (7)).

L'inégalité de Wirtinger ([7], p. 40) entraîne que si Y est une sous-

I

variété compacte de dimension deux de M, alors

(6.2) : vol Y, g) ^ J coY, Végalité ayant lieu si et seulement si Y est une

sous-variété analytique complexe.

Supposons de plus (M, g) kâhlérienne, c'est-à-dire dœ 0 (on appelle co

la forme de Kähler de (M, g)). Si Y et Z sont homotopes:

| (6.3) j co|F J" co|z
-7. Y z

& d'après la formule de Stokes.
H

| Maintenant, (F^ go) est kâhlérienne, pour la structure complexe
canonique du projectif complexe Pn2 P\C). D'après (6.2) et (6.3), quel que

I soit Y ~ P\ et parce que P\ c P2 est une sous-variété analytique complexe,

pon a pour la forme de Kähler co0 de (.P2, g0):

I vol (7, g0) ^ j co0|y Jp^o|p^ vol (P\, g0).
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Ce qui démontre (voir (2.10)) que carc (Pl, go) Puis fiuot 0°2> go)

Soit maintenant g une s.r. kâhlérienne sur telle que laforme de Kâhler
associée co vérifie co co0 + da, où da est la différentielle extérieure d'une
différentielle a de degré un. De telles s.r. existent: prendre une fonction

/ : M -> R et poser co co0 + (— î)1/23âf; définir g par (6.1) à partir
de co. Pour / assez petite, g est encore définie positive. Pour toute variété

î n

hermitienne on a vg ^ a co, où n est la dimension complexe. On aura
donc:

vol (PI g) i j> a co i J> a vol (PI g0)

d'après la formule de Stokes. Puis, pour Y ~ P\:

vol (7, g) ^ Jy&>|y jp^lp1 ~ Jp^ojp1 carc (^2? go)
2

1

2 J 2
1

2

donc carc (Pl, g) carc (P^, g0). D'où quot (P", g) quot (P^, go) Pour
toute g du type précédent; or en général (P£, g) et (P^, g0) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La même méthode reste valable pour calculer quot (P4, g0) (resp.

quot (Pg, g0)). On considère cette fois-ci la forme canonique alternée de

degré 4 (resp. 8) de P4 (resp. Pg); on aura carc (P4, g0) vol (P4, g0) n2/6,
d'où quot (P4, g0) (voir tableau). De même: carc (Pg, g0) vol (Pg, g0)

vol (S8, g0/4) 7i4/8 .7.5.3. (d'après (2.10)); d'où quot (Pg, g0)

(tableau). Par contre, on ne sait pas ce qu'il en est de « IC (n;4)» ou
« IC (2 ;8) ».

7. Théorèmes de Loewner, Blatter.

La formule (4.1) peut encore servir à définir le carcan carc (M, g) de

n'importe quelle variété riemannienne compacte, puis

vol (M, g)
(7.1) quot (M, g) - n dim M.

(carc (M, g)f

Pour le tore de dimension deux x le résultat suivant a

été obtenu avant celui de Pu :

(7.2): théorème (Loewner, [14]). Pour toute g: quot (S1 x S1, g) ^ ^1;

en outre quot (S1 x S1, g) — — si e

à un tore équilatéral (voir (2.4.2)).

en outre quot (S1 X S1, g) — — si et seulement si (S1 X S1, g) est isométrique
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