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vol (P}, 8)
(carc (P}, g))"
La question qui se pose d’abord est le calcul des quot (P3, go); pour

i = 1, c’est fait. Pour i = 2,4, 8, voir le n° 6. Ensuite, introduisons les
assertions:

(5.2) carc(P},g) = infy.pr vol(Y,g), quot(Pi,g) =

| (5.3)  «I(n;i)»: v g:quot (P}, g = quot (P} go);

(5.4) « IC (n;i)»: « I (n;i)» et «quot (P}, g) = quot (P}, go) entraine
(P, g) et (P, go) sont isométriques »;

| (5.5) «P(n;i)»: gk > 0 telle que vy g: quot (P}, g) = k.
Voir le tableau, page 85.

6. Le cas kdhlérien.

Soit (M, g) une variété hermitienne, c’est-a-dire que M possede
une structure analytique complexe, dont on notera J la multiplication
par (—1)Y? sur le fibré réel TM, et que g commute avec J:y X,y :
g(J (%), J(») = g (x,»). On en déduit sur M une forme alternée de degré
B deux w, par

[ 61)  vxy:ioky) =gk J0)
L’inégalité de Wirtinger ([7], p. 40) entraine que si Y est une sous-
variété compacte de dimension deux de M, alors

(6.2): vol (Y, g) = [ wy, Iégalité ayant lieu si et seulement si Y est une
: Y
sous-variété analytique complexe.

&' (6.3) fwlY = jwlz
i Y z

TR

d’aprés la formule de Stokes.
.. Maintenant, (F5, go) est kihlérienne, pour la structure complexe cano-
w nique du projectif complexe P; = P"(C). D’aprés (6.2) et (6.3), quel que
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i soit ¥ ~ P, et parce que P, = P; est une sous-variété analytique complexe,

@% 1
%%on a pour la forme de Kihler w, de (P, g,):

o
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vol (Y, go) = jwo|1’ == jP;wOlP; = vol (Péa go)-
Y
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Ce qui démontre (voir (2.10)) que carc (P3, g,) = 7, puis quot (P}, g,) = '_f-'

Soit maintenant g une s.r. kihlérienne sur P; telle que laforme de Kahler
associée w vérifie v = w, + du, ol du est la différentielle extérieure d’une
différentielle « de degré un. De telles s.r. existent: prendre une fonction
f:M - R et poser @ = wy + (—1)"265f; définir g par (6.1) & partir

de w. Pour f assez petite, g est encore définie positive. Pour toute variété
n

.. 1 . . .
hermitienne on a v, = 3 Aw, ol n est la dimension complexe. On aura
donc:

vol (P}, 8) = 1 [ A @ = 1 [ A @0 = vol (P}, go)

d’aprés la formule de Stokes. Puis, pour ¥ ~ P;:

vol (Y, g) = jYCOIY = jP;wIP; = jP;wOIP; = carc (P3, go)

donc carc (P;, g) = carc (P3, g,). D’ou quot (P3, g) = quot (P3, g,) pour
toute g du type précédent; or en général (P3, g) et (P3, g,) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La méme méthode reste valable pour calculer quot (P}, g,) (resp.
quot (P3, go)). On considére cette fois-ci la forme canonique alternée de
degré 4 (resp. 8) de P} (resp. P3); on aura carc (P}, g,) = vol (P}, g,) = 12/6,
d’ou quot (P}, g,) (voir tableau). De méme: carc (P2, g,) = vol (Pg, g,) =
— vol (S8, go/4) = 7*/8.7.5.3. (daprés (2.10)); d’ou quot (P2, g,)
(tableau). Par contre, on ne sait pas ce qu’il en est de « IC (n;4) » ou
« IC (2;8) ».

7. Théorémes de Loewner, Blatter.

La formule (4.1) peut encore servir a définir le carcan carc (M, g) de
n’importe quelle variété riemannienne compacte, puis
vol (M, g)

(7.1) quot (M, g) = (carc (M. ) n = dim M.

Pour le tore de dimension deux S' = S!' x S!, le résultat suivant a
été obtenu avant celui de Pu:

(7.2): théoréeme (Loewner, [14]). Pour toute g: quot (S'xS', 2) = %3—1
en outre quot (S* xS*, g) = -“-/2—3—

a un tore équilatéral (voir (2.4.2)).

si et seulement si (S* X S, g) est isométrique
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