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un difféomorphisme f: §? — S tel que £* g = « . g, Ol g, est la s.r.
‘canonique de S? et « une fonction sur S2. On peut modifier f de fagon a
pouvoir passer au quotient et trouver un difféomorphisme f de P; tel que
f¥*g=0a.g, a:P; > R. Les deux v.r. (P, g) et (P, a.g,) sont iso-
métriques, donc ont méme volumes et carcans. On est donc ramené en
fait & deux s.r. g, et a. g, sur P3; maintenant SO (3) agit sur (P}, g,) par
1sométries; on fait la moyenne par cette action et pour la mesure de Haar
de SO (3), de la fonction «!/?. Ceci donne une fonction &; la longueur
d’une courbe ¢ pour &.g, est la moyenne de la longueur des courbes
Y 0 cpour a . g,, y parcourant SO (3); donc carc (P, & .g,) = carc (P71, «. g).
L’inégalité de Schwarz (pour I'intégrale sur SO (3)) dit que surf (P7, dg,) <
< surf(Pi, a.g,). Donc quot(PZ &.g,) < quot(Pi, «.g,). Mais, en
fait, & est une constante, puisque SO (3) agit transitivement sur P;; donc
surf (P, & . g,) = & . surf (P2, g,) et carc (P, & . g,) = (%)'/?. carc(Pi, o).
D’ou la premiére partie du théoréme; la seconde se montre en suivant les
¢galités a la trace dans les inégalités.

Remarques : (1): on peut considérer (4.3) comme une espéce d’inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de
la frontiére étant remplacée ici par le carcan pour la variété sans bord P3;
(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P3.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P71, g) exactement par la formule
(4.1) et remplacer (4.2) par

vol (P{, 2) .

(5.1 quot (P{,g) = o
(carc (Py, g))

On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complétement ouvert; on ne sait pas si quot (P{, g) = quot (P1, g¢)
pour toute g (pour les variations conformes « . g,, c’est facile, démonstra-
tion analogue a celle de (4.3): voir [14]). A fortiori on ne sait pas si ’égalité
est caractéristique de g,. En fait on ne sait méme pas si la borne inférieure
inf , quot (P1, g), pour g parcourant toutes les s.r. sur Py, est strictement
positive.

En fait on peut encore généraliser toutes ces questions aux P;. Remar-
quons pour ce faire que, dans P7, dire qu'une courbe ¢ n’est pas homotope
A zéro est équivalent & dire qu’elle est homotope a P1, la droite projective
pour linclusion héréditaire P; = P}. On a aussi des inclusions P} < P'
pour tout i. Posons donc:
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vol (P}, 8)
(carc (P}, g))"
La question qui se pose d’abord est le calcul des quot (P3, go); pour

i = 1, c’est fait. Pour i = 2,4, 8, voir le n° 6. Ensuite, introduisons les
assertions:

(5.2) carc(P},g) = infy.pr vol(Y,g), quot(Pi,g) =

| (5.3)  «I(n;i)»: v g:quot (P}, g = quot (P} go);

(5.4) « IC (n;i)»: « I (n;i)» et «quot (P}, g) = quot (P}, go) entraine
(P, g) et (P, go) sont isométriques »;

| (5.5) «P(n;i)»: gk > 0 telle que vy g: quot (P}, g) = k.
Voir le tableau, page 85.

6. Le cas kdhlérien.

Soit (M, g) une variété hermitienne, c’est-a-dire que M possede
une structure analytique complexe, dont on notera J la multiplication
par (—1)Y? sur le fibré réel TM, et que g commute avec J:y X,y :
g(J (%), J(») = g (x,»). On en déduit sur M une forme alternée de degré
B deux w, par

[ 61)  vxy:ioky) =gk J0)
L’inégalité de Wirtinger ([7], p. 40) entraine que si Y est une sous-
variété compacte de dimension deux de M, alors

(6.2): vol (Y, g) = [ wy, Iégalité ayant lieu si et seulement si Y est une
: Y
sous-variété analytique complexe.

&' (6.3) fwlY = jwlz
i Y z

TR

d’aprés la formule de Stokes.
.. Maintenant, (F5, go) est kihlérienne, pour la structure complexe cano-
w nique du projectif complexe P; = P"(C). D’aprés (6.2) et (6.3), quel que
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i soit ¥ ~ P, et parce que P, = P; est une sous-variété analytique complexe,

@% 1
%%on a pour la forme de Kihler w, de (P, g,):

o

bl B

vol (Y, go) = jwo|1’ == jP;wOlP; = vol (Péa go)-
Y
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