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un difféomorphisme / : S2 -> S2 tel que f * g a g0i où g0 est la s.r.

canonique de S2 et a une fonction sur S2. On peut modifier / de façon à

pouvoir passer au quotient et trouver un difféomorphisme / de P2 tel que

f* g — & - g0, a : P2 -» R. Les deux v.r. (P2, g) et (P2, a g0) sont
isométriques, donc ont même volumes et carcans. On est donc ramené en

fait à deux s.r. g0 et a g0 sur P2; maintenant SO (3) agit sur (P2, g0) par
isométries ; on fait la moyenne par cette action et pour la mesure de Haar
de £0 (3), de la fonction a1/2. Ceci donne une fonction â; la longueur
d'une courbe c pour ä. g0 est la moyenne de la longueur des courbes

y o c pour a g0, y parcourant SO (3) ; donc carc (P2, 5 g0) ^ carc (P 2, a g).

L'inégalité de Schwarz (pour l'intégrale sur SO (3)) dit que surf (P2, âg0) g
^ surf (P2, a g0). Donc quot (P2, ä g0) ^ quot (P2, a g0). Mais, en

fait, ä est une constante, puisque SO (3) agit transitivement surP2; donc
surf (P2, d.g0) à. surf (P2, g0) et carc (P2, ä.g0) (â)1/2. carc(P2, g0)-

D'où la première partie du théorème; la seconde se montre en suivant les

égalités à la trace dans les inégalités.

Remarques : (i): on peut considérer (4.3) comme une espèce d'inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de

la frontière étant remplacée ici par le carcan pour la variété sans bord P2 ;

(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P2.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P", g) exactement par la formule
(4.1) et remplacer (4.2) par

vol(PÏ,g)
(5.1) quot (P", g)

(carc {PI g)f
On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complètement ouvert; on ne sait pas si quot (P", g) ^ quot (P", g0)

pour toute g (pour les variations conformes a g0, c'est facile, démonstration

analogue à celle de (4.3): voir [14]). A fortiori on ne sait pas si l'égalité
est caractéristique de g0. En fait on ne sait même pas si la borne inférieure

inf g quot (P?, g), pour g parcourant toutes les s.r. sur P", est strictement

positive.
En fait on peut encore généraliser toutes ces questions aux P". Remarquons

pour ce faire que, dans P", dire qu'une courbe c n'est pas homotope
à zéro est équivalent à dire qu'elle est homotope à P\, la droite projective

pour l'inclusion héréditaire P\ a P". On a aussi des inclusions P\ a P"

pour tout i. Posons donc:
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vol
(5.2) carc (Pig)inf y„pp vol Y, g), quot (Pi g) —

La question qui se pose d'abord est le calcul des quot pour
/ 1, c'est fait. Pour i2,4, 8, voir le n° 6. Ensuite, introduisons les

assertions:

(5.3) « I (n;i)»:y g:quot(P",g)^ quot g0);

(5.4) « IC (n ;i) » : « I (n ;i) » et « quot (P-, g) quot (Pni9 g0) entraîne

(F", g) et (F", g0) sont isométriques »;

(5.5) « P (;n;i) »: 3 k > 0 telle que y g: quot (P", g) ^ k.

Voir le tableau, page 85.

6. Le cas kâhlérien.

Soit (M, g) une variété hermitienne, c'est-à-dire que M possède

une structure analytique complexe, dont on notera J la multiplication
par (—1)1/2 sur le fibré réel TM, et que g commute avec J : y x, y :

g (.J (x), J (y)) g (x, y). On en déduit sur M une forme alternée de degré
deux co, par

(6.1) y x, y : œ (x, y)g(x,J (7)).

L'inégalité de Wirtinger ([7], p. 40) entraîne que si Y est une sous-

I

variété compacte de dimension deux de M, alors

(6.2) : vol Y, g) ^ J coY, Végalité ayant lieu si et seulement si Y est une

sous-variété analytique complexe.

Supposons de plus (M, g) kâhlérienne, c'est-à-dire dœ 0 (on appelle co

la forme de Kähler de (M, g)). Si Y et Z sont homotopes:

| (6.3) j co|F J" co|z
-7. Y z

& d'après la formule de Stokes.
H

| Maintenant, (F^ go) est kâhlérienne, pour la structure complexe
canonique du projectif complexe Pn2 P\C). D'après (6.2) et (6.3), quel que

I soit Y ~ P\ et parce que P\ c P2 est une sous-variété analytique complexe,

pon a pour la forme de Kähler co0 de (.P2, g0):

I vol (7, g0) ^ j co0|y Jp^o|p^ vol (P\, g0).
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