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Soit ¢ : [a, b] = M une courbe d’une v.r. (M, g); méme si ¢ ([a, b))
n’est pas une sous-variété de M on peut définir la longueur de ¢ par:

3.5 long(c,g) = [ |¢’ (®)|dt.

‘" Exemple : soit (M, g) (N, k) une submersion riemannienne; une courbe

¢ de M sera dite hor zzontale sic’ (t) € H ; pour tout 7. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long(poc, h) < long(c, g); en outre long (p o ¢, h) = long (¢, ) s
- et seulement si ¢ est horizontale.

4. Le théoréme de Pu.

Avec cette seule notion de volume se posent déja des problémes naturels,

~ loin d’étre résolus en général. Commengons par un des rares cas ou l’on

ait un résultat. Soit g une s.r. sur P2, le plan projectif réel. A (P7, g) on

r 2
 peut attacher deux nombres réels, son volume vol (P, g) et son carcan,

carc (P, g), égal a4 la borne inférieure de la longueur des courbes fermées

de P; non homotopes a zéro:

(4.1) carc (P, g) = inf ,non ~ , long (¢, g)

~ou il s’agit de I’homotopie des courbes fermées (c’est-a-dire des lacets sans
- point base). Il est naturel d’espérer que si carc (P}, g) = k, alors surf (P3, g)

est supérieur ou égal a un nombre ne dépendant que de k. Définissons le

- quotient de (P%, g) comme le rapport homogéne de degré zéro:

- (42)  quot(Pi,g) =

surf (P3, 8)
(carc (P7, 2))*

La premiére chose 2 faire est de calculer quot (P73, g,). Le tableau donne

- le numérateur; pour carc (P37, g,), on utilise le théoréme (13.1) et (9.1)
- (i1 est bien naturel que les plus petites courbes non homotopes a zéro de

(P, g,) soient les droites projectives!). Donc quot (P2, g,) = 2/ (voir
tableau). L’interrogation précédente est complétement résolue par le:
(4.3): théoréme (Pu, [14]). Quel que soit las.r. g sur P71, on a quot (P2, g) =

- = quot (Pf, g0). En outre, si quot (Pi‘, g) = quot (P%, go0), alors (Pf, g) et
(P3, g,) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le

~revétement riemannien (voir (2.4)) (S?, g) de (P1, g). D’aprés le théoréme
fondamental de la représentation conforme, appliqué a (S?, g), il existe
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un difféomorphisme f: §? — S tel que £* g = « . g, Ol g, est la s.r.
‘canonique de S? et « une fonction sur S2. On peut modifier f de fagon a
pouvoir passer au quotient et trouver un difféomorphisme f de P; tel que
f¥*g=0a.g, a:P; > R. Les deux v.r. (P, g) et (P, a.g,) sont iso-
métriques, donc ont méme volumes et carcans. On est donc ramené en
fait & deux s.r. g, et a. g, sur P3; maintenant SO (3) agit sur (P}, g,) par
1sométries; on fait la moyenne par cette action et pour la mesure de Haar
de SO (3), de la fonction «!/?. Ceci donne une fonction &; la longueur
d’une courbe ¢ pour &.g, est la moyenne de la longueur des courbes
Y 0 cpour a . g,, y parcourant SO (3); donc carc (P, & .g,) = carc (P71, «. g).
L’inégalité de Schwarz (pour I'intégrale sur SO (3)) dit que surf (P7, dg,) <
< surf(Pi, a.g,). Donc quot(PZ &.g,) < quot(Pi, «.g,). Mais, en
fait, & est une constante, puisque SO (3) agit transitivement sur P;; donc
surf (P, & . g,) = & . surf (P2, g,) et carc (P, & . g,) = (%)'/?. carc(Pi, o).
D’ou la premiére partie du théoréme; la seconde se montre en suivant les
¢galités a la trace dans les inégalités.

Remarques : (1): on peut considérer (4.3) comme une espéce d’inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de
la frontiére étant remplacée ici par le carcan pour la variété sans bord P3;
(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P3.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P71, g) exactement par la formule
(4.1) et remplacer (4.2) par

vol (P{, 2) .

(5.1 quot (P{,g) = o
(carc (Py, g))

On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complétement ouvert; on ne sait pas si quot (P{, g) = quot (P1, g¢)
pour toute g (pour les variations conformes « . g,, c’est facile, démonstra-
tion analogue a celle de (4.3): voir [14]). A fortiori on ne sait pas si ’égalité
est caractéristique de g,. En fait on ne sait méme pas si la borne inférieure
inf , quot (P1, g), pour g parcourant toutes les s.r. sur Py, est strictement
positive.

En fait on peut encore généraliser toutes ces questions aux P;. Remar-
quons pour ce faire que, dans P7, dire qu'une courbe ¢ n’est pas homotope
A zéro est équivalent & dire qu’elle est homotope a P1, la droite projective
pour linclusion héréditaire P; = P}. On a aussi des inclusions P} < P'
pour tout i. Posons donc:
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