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Ceci provient simplement de ce qu’un groupe linéaire irréductible ne
peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire I'une de ces formes par rapport a

Iautre.

Par exemple (2.6.2) nous tranquillise, lorsque nous pensions a écrire
les spheéres, les projectifs comme espaces homogénes: S” = SO (n+1)/SO (n),
P(C) = Um+1)/Un)x UQ), P"H) = Sp(n+1)/Sp(n) x Sp(1). Comme les
groupes d’isotropie H agissent dans tous ces cas de fagon irréductible, on
n’obtient pas, par cette méthode, d’autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (a un scalaire pres).

(2.7): le plan projectif des octaves de Cayley (P*(Ca), g,).

L’espace P?*(Ca), peut étre défini comme I’espace homogéne F,/Spin (9)
(voir [8]); Spin (9) agit de fagon irréductible d’ou, sur P?*(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur 7, voir (9.8)): (P*(Ca), g,).

Nous poserons, pour tout n:

(2.8): P, = S", P{ = P"(R), P; = P"(C), Pj = P"(H), P = P?*(Ca);

Ainsi que K= R, C,H, Ca et i = dimy K. Noter que dimgP{ = i.n. On
aura donc les submersions riemanniennes:

(2.9): (S™"7 1 g0) ) (P g0), i=1,24.
On rappelle les diffSomorphismes entre P; et S (i=1, 2, 4, 8). En fait on
a méme des isométries entre

(2‘10) (Pfa gO) et (Sia %gO)a [ = 17 29 4> 8

Enfin, en tant qu’espaces homogénes, les P! se caractérisent comme
¢tant exactement I’ensemble des espaces symétriques de rang égal & 1:
[11], p. 354 et ii. Ces (P}, go) vont servir de modéles 2 une grande partie
de ce qui suit.

VOLUMES, SURFACES, LONGUEUR
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (M g) admet une mesure canonique, V.

Heuristiquement, ceci vient de ce qu’un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour R"), et comme (M, g) est
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partout infinitésimalement un espace euclidien, on a gagné. Plus précisément:
pour un espace vectoriel euclidien, on prend une orientation quelconque
et soit » la dimension de cet espace F; il existe alors sur E une n-forme
alternée canonique, w; elle vaut w (e, ..., ¢,) = 1 sur toute base ortho-
normée directe {e;} de E (ce qui a un sens parce que le déterminant d’une

rotation est égal a 1). On peut aussi trouver w en remarquant que AE, d’une
part est euclidien, d’autre part est de dimension un, donc posséde un vecteur
unique de norme un correspondant a I’orientation choisie pour E; c’est
. Soit (M, g) une variété riemannienne, U un ouvert domaine d’une carte;
fixons une orientation sur U. D’aprés ce qui précéde il existe sur U une
n-forme canonique (n=dim M) m \» w,,. Pour f: M — R a support dans

U on pose [ fv, = [ fo, ausens de lintégrale sur une variété orientée d’une
M U

forme alternée de degré maximum. Il n’y a plus qu’a remarquer que la
valeur | fw ne change pas si 'on change l’orientation de U, puis que v, se
U

définit pour des fonctions a support compact quelconque a I’aide de parti-

tions de I'unité.

(3.2): soit (M, g) une v.r. compacte. Le volume de (M, g) est vol (M, g) =

= [v,, C’est-d-dire la masse totale de (M, g) pour sa mesure canonique
M

si dim M = 1, on dit longueur et écrit long (M, g), si dim M = 2, on dit
surface et écrit surf (M, g).

On peut calculer explicitement vol (P}, g,) pour tous n, i: voir le tableau.
Pour S”, c’est un vieux résultat. On passe de 1a a Py, revétu a deux feuillets
par S”, en divisant par deux.

Par trivialisation locale et le théoréme de Fubini on voit que:

(3.3): soit (M, g) _1_; (N, h) une submersion riemannienne, qui est une
fibration et supposons M compacte. Alors

vol(M, g) = [ vol(p™'(n), g). v

ne N

Appliquons ceci a P; (resp. Pj), pour g, bien siir. Les fibres sont des
grands cercles (resp. des sous-sphéres de dimension trois) de S*"*' (resp.
S4n*3) fibres ayant toutes méme longueur (resp. volume) égale a 27 (resp.
égal 4 272, voir tableau). D’ou les valeurs de la premicre ligne du tableau.

Pour (P2, g,), il faut employer d’autres méthodes; on en trouvera une
dans [1], p. 209.

Si N = M est une sous-variété de (M, g), on posera (voir (2.3)):

(3.4) vol (N, g) = vol (N, gly).

el
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Soit ¢ : [a, b] = M une courbe d’une v.r. (M, g); méme si ¢ ([a, b))
n’est pas une sous-variété de M on peut définir la longueur de ¢ par:

3.5 long(c,g) = [ |¢’ (®)|dt.

‘" Exemple : soit (M, g) (N, k) une submersion riemannienne; une courbe

¢ de M sera dite hor zzontale sic’ (t) € H ; pour tout 7. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long(poc, h) < long(c, g); en outre long (p o ¢, h) = long (¢, ) s
- et seulement si ¢ est horizontale.

4. Le théoréme de Pu.

Avec cette seule notion de volume se posent déja des problémes naturels,

~ loin d’étre résolus en général. Commengons par un des rares cas ou l’on

ait un résultat. Soit g une s.r. sur P2, le plan projectif réel. A (P7, g) on

r 2
 peut attacher deux nombres réels, son volume vol (P, g) et son carcan,

carc (P, g), égal a4 la borne inférieure de la longueur des courbes fermées

de P; non homotopes a zéro:

(4.1) carc (P, g) = inf ,non ~ , long (¢, g)

~ou il s’agit de I’homotopie des courbes fermées (c’est-a-dire des lacets sans
- point base). Il est naturel d’espérer que si carc (P}, g) = k, alors surf (P3, g)

est supérieur ou égal a un nombre ne dépendant que de k. Définissons le

- quotient de (P%, g) comme le rapport homogéne de degré zéro:

- (42)  quot(Pi,g) =

surf (P3, 8)
(carc (P7, 2))*

La premiére chose 2 faire est de calculer quot (P73, g,). Le tableau donne

- le numérateur; pour carc (P37, g,), on utilise le théoréme (13.1) et (9.1)
- (i1 est bien naturel que les plus petites courbes non homotopes a zéro de

(P, g,) soient les droites projectives!). Donc quot (P2, g,) = 2/ (voir
tableau). L’interrogation précédente est complétement résolue par le:
(4.3): théoréme (Pu, [14]). Quel que soit las.r. g sur P71, on a quot (P2, g) =

- = quot (Pf, g0). En outre, si quot (Pi‘, g) = quot (P%, go0), alors (Pf, g) et
(P3, g,) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le

~revétement riemannien (voir (2.4)) (S?, g) de (P1, g). D’aprés le théoréme
fondamental de la représentation conforme, appliqué a (S?, g), il existe
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