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Ceci provient simplement de ce qu’un groupe linéaire irréductible ne
peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire I'une de ces formes par rapport a

Iautre.

Par exemple (2.6.2) nous tranquillise, lorsque nous pensions a écrire
les spheéres, les projectifs comme espaces homogénes: S” = SO (n+1)/SO (n),
P(C) = Um+1)/Un)x UQ), P"H) = Sp(n+1)/Sp(n) x Sp(1). Comme les
groupes d’isotropie H agissent dans tous ces cas de fagon irréductible, on
n’obtient pas, par cette méthode, d’autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (a un scalaire pres).

(2.7): le plan projectif des octaves de Cayley (P*(Ca), g,).

L’espace P?*(Ca), peut étre défini comme I’espace homogéne F,/Spin (9)
(voir [8]); Spin (9) agit de fagon irréductible d’ou, sur P?*(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur 7, voir (9.8)): (P*(Ca), g,).

Nous poserons, pour tout n:

(2.8): P, = S", P{ = P"(R), P; = P"(C), Pj = P"(H), P = P?*(Ca);

Ainsi que K= R, C,H, Ca et i = dimy K. Noter que dimgP{ = i.n. On
aura donc les submersions riemanniennes:

(2.9): (S™"7 1 g0) ) (P g0), i=1,24.
On rappelle les diffSomorphismes entre P; et S (i=1, 2, 4, 8). En fait on
a méme des isométries entre

(2‘10) (Pfa gO) et (Sia %gO)a [ = 17 29 4> 8

Enfin, en tant qu’espaces homogénes, les P! se caractérisent comme
¢tant exactement I’ensemble des espaces symétriques de rang égal & 1:
[11], p. 354 et ii. Ces (P}, go) vont servir de modéles 2 une grande partie
de ce qui suit.

VOLUMES, SURFACES, LONGUEUR
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (M g) admet une mesure canonique, V.

Heuristiquement, ceci vient de ce qu’un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour R"), et comme (M, g) est
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partout infinitésimalement un espace euclidien, on a gagné. Plus précisément:
pour un espace vectoriel euclidien, on prend une orientation quelconque
et soit » la dimension de cet espace F; il existe alors sur E une n-forme
alternée canonique, w; elle vaut w (e, ..., ¢,) = 1 sur toute base ortho-
normée directe {e;} de E (ce qui a un sens parce que le déterminant d’une

rotation est égal a 1). On peut aussi trouver w en remarquant que AE, d’une
part est euclidien, d’autre part est de dimension un, donc posséde un vecteur
unique de norme un correspondant a I’orientation choisie pour E; c’est
. Soit (M, g) une variété riemannienne, U un ouvert domaine d’une carte;
fixons une orientation sur U. D’aprés ce qui précéde il existe sur U une
n-forme canonique (n=dim M) m \» w,,. Pour f: M — R a support dans

U on pose [ fv, = [ fo, ausens de lintégrale sur une variété orientée d’une
M U

forme alternée de degré maximum. Il n’y a plus qu’a remarquer que la
valeur | fw ne change pas si 'on change l’orientation de U, puis que v, se
U

définit pour des fonctions a support compact quelconque a I’aide de parti-

tions de I'unité.

(3.2): soit (M, g) une v.r. compacte. Le volume de (M, g) est vol (M, g) =

= [v,, C’est-d-dire la masse totale de (M, g) pour sa mesure canonique
M

si dim M = 1, on dit longueur et écrit long (M, g), si dim M = 2, on dit
surface et écrit surf (M, g).

On peut calculer explicitement vol (P}, g,) pour tous n, i: voir le tableau.
Pour S”, c’est un vieux résultat. On passe de 1a a Py, revétu a deux feuillets
par S”, en divisant par deux.

Par trivialisation locale et le théoréme de Fubini on voit que:

(3.3): soit (M, g) _1_; (N, h) une submersion riemannienne, qui est une
fibration et supposons M compacte. Alors

vol(M, g) = [ vol(p™'(n), g). v

ne N

Appliquons ceci a P; (resp. Pj), pour g, bien siir. Les fibres sont des
grands cercles (resp. des sous-sphéres de dimension trois) de S*"*' (resp.
S4n*3) fibres ayant toutes méme longueur (resp. volume) égale a 27 (resp.
égal 4 272, voir tableau). D’ou les valeurs de la premicre ligne du tableau.

Pour (P2, g,), il faut employer d’autres méthodes; on en trouvera une
dans [1], p. 209.

Si N = M est une sous-variété de (M, g), on posera (voir (2.3)):

(3.4) vol (N, g) = vol (N, gly).

el
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Soit ¢ : [a, b] = M une courbe d’une v.r. (M, g); méme si ¢ ([a, b))
n’est pas une sous-variété de M on peut définir la longueur de ¢ par:

3.5 long(c,g) = [ |¢’ (®)|dt.

‘" Exemple : soit (M, g) (N, k) une submersion riemannienne; une courbe

¢ de M sera dite hor zzontale sic’ (t) € H ; pour tout 7. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long(poc, h) < long(c, g); en outre long (p o ¢, h) = long (¢, ) s
- et seulement si ¢ est horizontale.

4. Le théoréme de Pu.

Avec cette seule notion de volume se posent déja des problémes naturels,

~ loin d’étre résolus en général. Commengons par un des rares cas ou l’on

ait un résultat. Soit g une s.r. sur P2, le plan projectif réel. A (P7, g) on

r 2
 peut attacher deux nombres réels, son volume vol (P, g) et son carcan,

carc (P, g), égal a4 la borne inférieure de la longueur des courbes fermées

de P; non homotopes a zéro:

(4.1) carc (P, g) = inf ,non ~ , long (¢, g)

~ou il s’agit de I’homotopie des courbes fermées (c’est-a-dire des lacets sans
- point base). Il est naturel d’espérer que si carc (P}, g) = k, alors surf (P3, g)

est supérieur ou égal a un nombre ne dépendant que de k. Définissons le

- quotient de (P%, g) comme le rapport homogéne de degré zéro:

- (42)  quot(Pi,g) =

surf (P3, 8)
(carc (P7, 2))*

La premiére chose 2 faire est de calculer quot (P73, g,). Le tableau donne

- le numérateur; pour carc (P37, g,), on utilise le théoréme (13.1) et (9.1)
- (i1 est bien naturel que les plus petites courbes non homotopes a zéro de

(P, g,) soient les droites projectives!). Donc quot (P2, g,) = 2/ (voir
tableau). L’interrogation précédente est complétement résolue par le:
(4.3): théoréme (Pu, [14]). Quel que soit las.r. g sur P71, on a quot (P2, g) =

- = quot (Pf, g0). En outre, si quot (Pi‘, g) = quot (P%, go0), alors (Pf, g) et
(P3, g,) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le

~revétement riemannien (voir (2.4)) (S?, g) de (P1, g). D’aprés le théoréme
fondamental de la représentation conforme, appliqué a (S?, g), il existe

HE
B,
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un difféomorphisme f: §? — S tel que £* g = « . g, Ol g, est la s.r.
‘canonique de S? et « une fonction sur S2. On peut modifier f de fagon a
pouvoir passer au quotient et trouver un difféomorphisme f de P; tel que
f¥*g=0a.g, a:P; > R. Les deux v.r. (P, g) et (P, a.g,) sont iso-
métriques, donc ont méme volumes et carcans. On est donc ramené en
fait & deux s.r. g, et a. g, sur P3; maintenant SO (3) agit sur (P}, g,) par
1sométries; on fait la moyenne par cette action et pour la mesure de Haar
de SO (3), de la fonction «!/?. Ceci donne une fonction &; la longueur
d’une courbe ¢ pour &.g, est la moyenne de la longueur des courbes
Y 0 cpour a . g,, y parcourant SO (3); donc carc (P, & .g,) = carc (P71, «. g).
L’inégalité de Schwarz (pour I'intégrale sur SO (3)) dit que surf (P7, dg,) <
< surf(Pi, a.g,). Donc quot(PZ &.g,) < quot(Pi, «.g,). Mais, en
fait, & est une constante, puisque SO (3) agit transitivement sur P;; donc
surf (P, & . g,) = & . surf (P2, g,) et carc (P, & . g,) = (%)'/?. carc(Pi, o).
D’ou la premiére partie du théoréme; la seconde se montre en suivant les
¢galités a la trace dans les inégalités.

Remarques : (1): on peut considérer (4.3) comme une espéce d’inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de
la frontiére étant remplacée ici par le carcan pour la variété sans bord P3;
(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P3.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P71, g) exactement par la formule
(4.1) et remplacer (4.2) par

vol (P{, 2) .

(5.1 quot (P{,g) = o
(carc (Py, g))

On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complétement ouvert; on ne sait pas si quot (P{, g) = quot (P1, g¢)
pour toute g (pour les variations conformes « . g,, c’est facile, démonstra-
tion analogue a celle de (4.3): voir [14]). A fortiori on ne sait pas si ’égalité
est caractéristique de g,. En fait on ne sait méme pas si la borne inférieure
inf , quot (P1, g), pour g parcourant toutes les s.r. sur Py, est strictement
positive.

En fait on peut encore généraliser toutes ces questions aux P;. Remar-
quons pour ce faire que, dans P7, dire qu'une courbe ¢ n’est pas homotope
A zéro est équivalent & dire qu’elle est homotope a P1, la droite projective
pour linclusion héréditaire P; = P}. On a aussi des inclusions P} < P'
pour tout i. Posons donc:
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vol (P}, 8)
(carc (P}, g))"
La question qui se pose d’abord est le calcul des quot (P3, go); pour

i = 1, c’est fait. Pour i = 2,4, 8, voir le n° 6. Ensuite, introduisons les
assertions:

(5.2) carc(P},g) = infy.pr vol(Y,g), quot(Pi,g) =

| (5.3)  «I(n;i)»: v g:quot (P}, g = quot (P} go);

(5.4) « IC (n;i)»: « I (n;i)» et «quot (P}, g) = quot (P}, go) entraine
(P, g) et (P, go) sont isométriques »;

| (5.5) «P(n;i)»: gk > 0 telle que vy g: quot (P}, g) = k.
Voir le tableau, page 85.

6. Le cas kdhlérien.

Soit (M, g) une variété hermitienne, c’est-a-dire que M possede
une structure analytique complexe, dont on notera J la multiplication
par (—1)Y? sur le fibré réel TM, et que g commute avec J:y X,y :
g(J (%), J(») = g (x,»). On en déduit sur M une forme alternée de degré
B deux w, par

[ 61)  vxy:ioky) =gk J0)
L’inégalité de Wirtinger ([7], p. 40) entraine que si Y est une sous-
variété compacte de dimension deux de M, alors

(6.2): vol (Y, g) = [ wy, Iégalité ayant lieu si et seulement si Y est une
: Y
sous-variété analytique complexe.

&' (6.3) fwlY = jwlz
i Y z

TR

d’aprés la formule de Stokes.
.. Maintenant, (F5, go) est kihlérienne, pour la structure complexe cano-
w nique du projectif complexe P; = P"(C). D’aprés (6.2) et (6.3), quel que

™%

B

*;

Mre
e

i o 1 1 cr,r .
i soit ¥ ~ P, et parce que P, = P; est une sous-variété analytique complexe,

@% 1
%%on a pour la forme de Kihler w, de (P, g,):

o

bl B

vol (Y, go) = jwo|1’ == jP;wOlP; = vol (Péa go)-
Y
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Ce qui démontre (voir (2.10)) que carc (P3, g,) = 7, puis quot (P}, g,) = '_f-'

Soit maintenant g une s.r. kihlérienne sur P; telle que laforme de Kahler
associée w vérifie v = w, + du, ol du est la différentielle extérieure d’une
différentielle « de degré un. De telles s.r. existent: prendre une fonction
f:M - R et poser @ = wy + (—1)"265f; définir g par (6.1) & partir

de w. Pour f assez petite, g est encore définie positive. Pour toute variété
n

.. 1 . . .
hermitienne on a v, = 3 Aw, ol n est la dimension complexe. On aura
donc:

vol (P}, 8) = 1 [ A @ = 1 [ A @0 = vol (P}, go)

d’aprés la formule de Stokes. Puis, pour ¥ ~ P;:

vol (Y, g) = jYCOIY = jP;wIP; = jP;wOIP; = carc (P3, go)

donc carc (P;, g) = carc (P3, g,). D’ou quot (P3, g) = quot (P3, g,) pour
toute g du type précédent; or en général (P3, g) et (P3, g,) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La méme méthode reste valable pour calculer quot (P}, g,) (resp.
quot (P3, go)). On considére cette fois-ci la forme canonique alternée de
degré 4 (resp. 8) de P} (resp. P3); on aura carc (P}, g,) = vol (P}, g,) = 12/6,
d’ou quot (P}, g,) (voir tableau). De méme: carc (P2, g,) = vol (Pg, g,) =
— vol (S8, go/4) = 7*/8.7.5.3. (daprés (2.10)); d’ou quot (P2, g,)
(tableau). Par contre, on ne sait pas ce qu’il en est de « IC (n;4) » ou
« IC (2;8) ».

7. Théorémes de Loewner, Blatter.

La formule (4.1) peut encore servir a définir le carcan carc (M, g) de
n’importe quelle variété riemannienne compacte, puis
vol (M, g)

(7.1) quot (M, g) = (carc (M. ) n = dim M.

Pour le tore de dimension deux S' = S!' x S!, le résultat suivant a
été obtenu avant celui de Pu:

(7.2): théoréeme (Loewner, [14]). Pour toute g: quot (S'xS', 2) = %3—1
en outre quot (S* xS*, g) = -“-/2—3—

a un tore équilatéral (voir (2.4.2)).

si et seulement si (S* X S, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu’il n’y a méme
pas & prendre de revétement. On aboutit a quot(S'xS!, g) =
quot (R?/G, g,/G), quotient d’un tore plat associé au réseau G de R2. 1l
reste ensuite le probléme de géométrie élémentaire: étudier les quotients
des tores plats.

Soit G, la surface compacte orientable a ¢ trous (ou surface orientable
de genre g, toutes ces surfaces sont difféomorphes a G ).

(7.3): théoréme (Blatter, [3]). Pour tout q quelle que soit la s.x. sur G,
quot (G,, g = (t,,)"/? (o les t, sont ceux définis par (7.4)).

La démonstration différe radicalement de celles de (4.2) et (7.2); elle
repose sur ’emploi des formes harmoniques; et 'on intégre sur leurs
courbes de niveau.

Pour g = 2, la situation différe de celle de (7.2); les b, sont bien les

meilleures possibles: b, = inf , ;, sur 4, quot (G, g), mais cette borne
n’est jamais atteinte si ¢ = 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) v g:quot((S),g) = inf quot (R"/G, g0/G) = t,.
G réseau de R”
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques ¢, ne sont pas connus, sauf pour 2 < n < 8 (voir [5], p. 332).
On sait aussi que £, > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que ¢, tend vers zéro lorsque » tend vers 'infini:
[5], p. 247.

Enfin, on voit bien quel est le probléme type dont ceux qui précédent
ne sont que des cas particuliers; soit M une variété C* compacte et «, S, ...
différentes classes d’homologie, d’homotopie (libre) de M. Pour toute

telle classe on définit, pour toute s.r. g sur M:

(7'5) o (g) — Il'lf Yea VO] (Ya g)

ou la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent a la classe o considérée. Remarquons en passant que 1’on
ne se préoccupe pas de la réalisation de « (g) par une sous-variété Y; mais
ce n’est pas par manque d’intérét! Le probléme général est: existe-t-il, sur
certaines variétés, des relations entre o (g), B (g), ..., indépendantes de la
s.r. g sur M? Le théoreme de Pu est relatif au cas ot « est la classe fonda-
mentale (de dimension deux) de P = M et f3 la classe des droites projectives;
ona a(g) = %(ﬁ (2))* pour toute g. Le théoréme de Loewner montre, en

TR
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tout cas, que si M, N sont deux variétés compactes, et si o (resp. ) est la
classe d’homotopie de M x N qui représente M (resp. N), alors on n’a pas
en général: vol (MX N, g) = a(g). B (g) pour toute g. Voir aussi [11'].

GEODESIQUES.
8. Définition.

Aprés les volumes, les invariants riemanniens qui se présentent naturelle-
ment sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points
mneM:

(8.1) d (m, n) = inf _long (¢, g)
(ou la longueur est celle définie en (3.5) et la borne est inférieure est prise
sur ’ensemble des courbes d’extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] référent au
vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)
est canoniquement un espace métrique. En outre la topologie de variété de
M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
[1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C! qui
localement réalisent cette distance et sont a vitesse constante i.e. ¢ : [ — M
(I intervalle de R) est une géodésique si |c’| est constante et siy re [q ¢ >
> 1, ' €1, tel que long (c| . &) = d(c(2), c ().

Pour (R g,) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S = R, ce sont les courbes dont I’accélération
est normale a S. o

On ne peut guere travailler qu’avec des v.r. complétes, c’est-a-dire
complétes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;
[1], p. 235) que si (M, g) est compléte:

(8.2) ym,ne Mqgec, courbe d’extrémités m, n, telle que long (c, g) =

d (m, n);

(8.3) v xeTM il existe une géodésique unique c: R — M telle que
¢’ (0) = x.

Remarques :

(8.4): la courbe dont ’existence est affirmée en (8.2) est toujours une
géodésique; une telle courbe n’est pas unique en général: voir (9.2) et
prendre sur (S", go) deux points m, n antipodes. Par contre on démontre
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