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Ceci provient simplement de ce qu'un groupe linéaire irréductible ne

peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire l'une de ces formes par rapport à

l'autre.
Par exemple (2.6.2) nous tranquillise, lorsque nous pensions à écrire

les sphères, les projectifs comme espaces homogènes : Sn SO (n+l)/SO (ri),

P%C) - U(n+l)/U(n)x 17(1), P"(H) Sp(n+l)/Sp(n)x Sp(l). Comme les

groupes d'isotropie H agissent dans tous ces cas de façon irréductible, on
n'obtient pas, par cette méthode, d'autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (à un scalaire près).

(2.7): le plan projectif des octaves de Cayley (P2(Ca), g0).

L'espace P2(Ca), peut être défini comme l'espace homogène P4/Spin (9)

(voir [8]); Spin (9) agit de façon irréductible d'où, sur P2(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur n, voir (9.8)): (P2(Ca), g0).

Nous poserons, pour tout n :

(2.8): Pn0 S\ Pf - P\R), Pn2 - P"(C), PI P\H), P2 P2(Ca);

Ainsi que K R, C, H, Ca et i dimR K. Noter que dimRPl /. n. On
aura donc les submersions riemanniennes :

(2.9): (Sin+i~\g0) ^ (PI g0), i= 1,2,4.
On rappelle les difféomorphismes entre P\ et S1 (/= 1, 2, 4, 8). En fait on
a même des isométries entre

(2.10) : {P\,g0)et SJg0),i" 1, 2, 4, 8.

Enfin, en tant qu'espaces homogènes, les P" se caractérisent comme
étant exactement l'ensemble des espaces symétriques de rang égal à 1 :

[11], p. 354 et ii. Ces (P", g0) vont servir de modèles à une grande partie
de ce qui suit.

Volumes, Surfaces, Longueur
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (,M g) admet une mesure canonique, vg.

Heuristiquement, ceci vient de ce qu'un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour Rn), et comme (M, g) est
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partout infinitésimalement un espace euclidien, on a gagné. Plus précisément:

pour un espace vectoriel euclidien, on prend une orientation quelconque
et soit « la dimension de cet espace E\ il existe alors sur E une «-forme
alternée canonique, co; elle vaut œ (e1? en) — 1 sur toute base ortho-
normée directe {<?,} de E (ce qui a un sens parce que le déterminant d'une

rotation est égal à 1). On peut aussi trouver œ en remarquant que a E, d'une

part est euclidien, d'autre part est de dimension un, donc possède un vecteur

unique de norme un correspondant à l'orientation choisie pour E; c'est
co. Soit (M, g) une variété riemannienne, U un ouvert domaine d'une carte;
fixons une orientation sur U. D'après ce qui précède il existe sur U une
«-forme canonique (n=dim M) m i-> œm. Pour / : M -> R à support dans

U on pose J fvg J/co, au sens de l'intégrale sur une variété orientée d'une
M U

forme alternée de degré maximum. Il n'y a plus qu'à remarquer que la
valeur j /co ne change pas si l'on change l'orientation de U, puis que vg se

u
définit pour des fonctions à support compact quelconque à l'aide de partitions

de l'unité.
(3.2): soit (M, g) une v.r. compacte. Le volume de (M, g) est vol (M, g)

Jyg, Eest-à-dire la masse totale de (M, g) pour sa mesure canonique ;
M

si dim M — 1, on dit longueur et écrit long (M, g), si dim M 2, on dit
surface et écrit surf (M, g).

On peut calculer explicitement vol (Pf, g0) pour tous «, /: voir le tableau.
Pour Sn, c'est un vieux résultat. On passe de là à E", revêtu à deux feuillets

par Sn, en divisant par deux.

Par trivialisation locale et le théorème de Fubini on voit que:

(3.3): soit (M, g) (N, h) une submersion riemannienne, qui est une

fibration et supposons M compacte. Alors

vol (M, g) } vol O " \n), g). vh.
neN

Appliquons ceci à PI (resp. P4), pour g0 bien sûr. Les fibres sont des

grands cercles (resp. des sous-sphères de dimension trois) de S2n+1 (resp.

S4n+3), fibres ayant toutes même longueur (resp. volume) égale à 2n (resp.

égal à 2712, voir tableau). D'où les valeurs de la première ligne du tableau.

Pour (P£,g0), il faut employer d'autres méthodes; on en trouvera une
dans [1], p. 209.

Si N a M est une sous-variété de (M, g), on posera (voir (2.3)):

(3.4) vol (A, g) vol (A, g\N).
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Soit c : [a, b] -> M une courbe d'une v.r. (M, g); même si c ([<a, b})

n'est pas une sous-variété de M on peut définir la longueur de c par:

b

(3.5) long [c, g) | \c' (t)\dt.
a

Exemple : soit (M, g) [N, h) une submersion riemannienne ; une courbe

c de M sera dite horizontale sic' (t) e Hc^ pour tout t. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long [p o c, h) ^ long (c, g); en outre long [p o c, h) long [c, g) si

et seulement si c est horizontale.

4. Le théorème de Pu.

Avec cette seule notion de volume se posent déjà des problèmes naturels,
loin d'être résolus en général. Commençons par un des rares cas où l'on
ait un résultat. Soit g une s.r. sur Pl le plan projectif réel. A [Pl g) on

peut attacher deux nombres réels, son volume vol [P2, g) et son carcan,

carc [Pl g), égal à la borne inférieure de la longueur des courbes fermées

de P\ non homotopes à zéro:

(4.1) carc (P{, g) inf cnon ~ 0 long (c, g)

où il s'agit de l'homotopie des courbes fermées (c'est-à-dire des lacets sans

point base). Il est naturel d'espérer que si carc [Pl g) ^ k, alors surf (Pjf, g)
est supérieur ou égal à un nombre ne dépendant que de k. Définissons le

quotient de [Pu g) comme le rapport homogène de degré zéro:

0 surf [Pi, g)
(4.2) quot [Pu g) 2 2.(carc [Pl g))2

La première chose à faire est de calculer quot [Pl g0). Le tableau donne
le numérateur; pour carc [Pl g0), on utilise le théorème (13.1) et (9.1)
(il est bien naturel que les plus petites courbes non homotopes à zéro de

[P2u g0) soient les droites projectives Donc quot [Pl g0) 2/n (voir
tableau). L'interrogation précédente est complètement résolue par le:
(4.3): théorème (Pu, [14]). Quel que soit la s.r. g sur Pj, on a quot (Pj, g) ^
^ quot (Pi, g0). En outre, si quot [?l g) quot (Pj, g0), alors (P?, g) et
(Pi, g0) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le
revêtement riemannien (voir (2.4)) [S2, ~g) de [Pl g). D'après le théorème
fondamental de la représentation conforme, appliqué à [S2, g), il existe

;à: L'Enseignement mathém,. t. XVI, fasc. 1.t 6
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un difféomorphisme / : S2 -> S2 tel que f * g a g0i où g0 est la s.r.

canonique de S2 et a une fonction sur S2. On peut modifier / de façon à

pouvoir passer au quotient et trouver un difféomorphisme / de P2 tel que

f* g — & - g0, a : P2 -» R. Les deux v.r. (P2, g) et (P2, a g0) sont
isométriques, donc ont même volumes et carcans. On est donc ramené en

fait à deux s.r. g0 et a g0 sur P2; maintenant SO (3) agit sur (P2, g0) par
isométries ; on fait la moyenne par cette action et pour la mesure de Haar
de £0 (3), de la fonction a1/2. Ceci donne une fonction â; la longueur
d'une courbe c pour ä. g0 est la moyenne de la longueur des courbes

y o c pour a g0, y parcourant SO (3) ; donc carc (P2, 5 g0) ^ carc (P 2, a g).

L'inégalité de Schwarz (pour l'intégrale sur SO (3)) dit que surf (P2, âg0) g
^ surf (P2, a g0). Donc quot (P2, ä g0) ^ quot (P2, a g0). Mais, en

fait, ä est une constante, puisque SO (3) agit transitivement surP2; donc
surf (P2, d.g0) à. surf (P2, g0) et carc (P2, ä.g0) (â)1/2. carc(P2, g0)-

D'où la première partie du théorème; la seconde se montre en suivant les

égalités à la trace dans les inégalités.

Remarques : (i): on peut considérer (4.3) comme une espèce d'inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de

la frontière étant remplacée ici par le carcan pour la variété sans bord P2 ;

(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P2.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P", g) exactement par la formule
(4.1) et remplacer (4.2) par

vol(PÏ,g)
(5.1) quot (P", g)

(carc {PI g)f
On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complètement ouvert; on ne sait pas si quot (P", g) ^ quot (P", g0)

pour toute g (pour les variations conformes a g0, c'est facile, démonstration

analogue à celle de (4.3): voir [14]). A fortiori on ne sait pas si l'égalité
est caractéristique de g0. En fait on ne sait même pas si la borne inférieure

inf g quot (P?, g), pour g parcourant toutes les s.r. sur P", est strictement

positive.
En fait on peut encore généraliser toutes ces questions aux P". Remarquons

pour ce faire que, dans P", dire qu'une courbe c n'est pas homotope
à zéro est équivalent à dire qu'elle est homotope à P\, la droite projective

pour l'inclusion héréditaire P\ a P". On a aussi des inclusions P\ a P"

pour tout i. Posons donc:
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vol
(5.2) carc (Pig)inf y„pp vol Y, g), quot (Pi g) —

La question qui se pose d'abord est le calcul des quot pour
/ 1, c'est fait. Pour i2,4, 8, voir le n° 6. Ensuite, introduisons les

assertions:

(5.3) « I (n;i)»:y g:quot(P",g)^ quot g0);

(5.4) « IC (n ;i) » : « I (n ;i) » et « quot (P-, g) quot (Pni9 g0) entraîne

(F", g) et (F", g0) sont isométriques »;

(5.5) « P (;n;i) »: 3 k > 0 telle que y g: quot (P", g) ^ k.

Voir le tableau, page 85.

6. Le cas kâhlérien.

Soit (M, g) une variété hermitienne, c'est-à-dire que M possède

une structure analytique complexe, dont on notera J la multiplication
par (—1)1/2 sur le fibré réel TM, et que g commute avec J : y x, y :

g (.J (x), J (y)) g (x, y). On en déduit sur M une forme alternée de degré
deux co, par

(6.1) y x, y : œ (x, y)g(x,J (7)).

L'inégalité de Wirtinger ([7], p. 40) entraîne que si Y est une sous-

I

variété compacte de dimension deux de M, alors

(6.2) : vol Y, g) ^ J coY, Végalité ayant lieu si et seulement si Y est une

sous-variété analytique complexe.

Supposons de plus (M, g) kâhlérienne, c'est-à-dire dœ 0 (on appelle co

la forme de Kähler de (M, g)). Si Y et Z sont homotopes:

| (6.3) j co|F J" co|z
-7. Y z

& d'après la formule de Stokes.
H

| Maintenant, (F^ go) est kâhlérienne, pour la structure complexe
canonique du projectif complexe Pn2 P\C). D'après (6.2) et (6.3), quel que

I soit Y ~ P\ et parce que P\ c P2 est une sous-variété analytique complexe,

pon a pour la forme de Kähler co0 de (.P2, g0):

I vol (7, g0) ^ j co0|y Jp^o|p^ vol (P\, g0).
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Ce qui démontre (voir (2.10)) que carc (Pl, go) Puis fiuot 0°2> go)

Soit maintenant g une s.r. kâhlérienne sur telle que laforme de Kâhler
associée co vérifie co co0 + da, où da est la différentielle extérieure d'une
différentielle a de degré un. De telles s.r. existent: prendre une fonction

/ : M -> R et poser co co0 + (— î)1/23âf; définir g par (6.1) à partir
de co. Pour / assez petite, g est encore définie positive. Pour toute variété

î n

hermitienne on a vg ^ a co, où n est la dimension complexe. On aura
donc:

vol (PI g) i j> a co i J> a vol (PI g0)

d'après la formule de Stokes. Puis, pour Y ~ P\:

vol (7, g) ^ Jy&>|y jp^lp1 ~ Jp^ojp1 carc (^2? go)
2

1

2 J 2
1

2

donc carc (Pl, g) carc (P^, g0). D'où quot (P", g) quot (P^, go) Pour
toute g du type précédent; or en général (P£, g) et (P^, g0) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La même méthode reste valable pour calculer quot (P4, g0) (resp.

quot (Pg, g0)). On considère cette fois-ci la forme canonique alternée de

degré 4 (resp. 8) de P4 (resp. Pg); on aura carc (P4, g0) vol (P4, g0) n2/6,
d'où quot (P4, g0) (voir tableau). De même: carc (Pg, g0) vol (Pg, g0)

vol (S8, g0/4) 7i4/8 .7.5.3. (d'après (2.10)); d'où quot (Pg, g0)

(tableau). Par contre, on ne sait pas ce qu'il en est de « IC (n;4)» ou
« IC (2 ;8) ».

7. Théorèmes de Loewner, Blatter.

La formule (4.1) peut encore servir à définir le carcan carc (M, g) de

n'importe quelle variété riemannienne compacte, puis

vol (M, g)
(7.1) quot (M, g) - n dim M.

(carc (M, g)f

Pour le tore de dimension deux x le résultat suivant a

été obtenu avant celui de Pu :

(7.2): théorème (Loewner, [14]). Pour toute g: quot (S1 x S1, g) ^ ^1;

en outre quot (S1 x S1, g) — — si e

à un tore équilatéral (voir (2.4.2)).

en outre quot (S1 X S1, g) — — si et seulement si (S1 X S1, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu'il n'y a même

pas à prendre de revêtement. On aboutit à quot (S1 X S1, g) ^
quot (R2/G, go/G), quotient d'un tore plat associé au réseau G de R2. Il
reste ensuite le problème de géométrie élémentaire: étudier les quotients
des tores plats.

Soit Gq la surface compacte orientable à q trous (ou surface orientable
de genre q, toutes ces surfaces sont difféomorphes à Gq).

(7.3): théorème (Blatter, [3]). Pour tout q quelle que soit la s.r. sur Gq:

quot (Gq9 g) ^ (t2q)1Iq (où les tn sont ceux définis par (7.4)).
La démonstration diffère radicalement de celles de (4.2) et (7.2); elle

repose sur l'emploi des formes harmoniques; et l'on intègre sur leurs
courbes de niveau.

Pour q ^ 2, la situation diffère de celle de (7.2); les bq sont bien les

meilleures possibles: bq inf
Q s r sur Gq quot (Gq, g), mais cette borne

n'est jamais atteinte si q ^ 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) y g: quot ((S1)", g) ^ inf quot (R"/G, tn.

G réseau de R"
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques tn ne sont pas connus, sauf pour 2 ^ n g 8 (voir [5], p. 332).
On sait aussi que tn > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que tn tend vers zéro lorsque n tend vers l'infini:
[5], p. 247.

Enfin, on voit bien quel est le problème type dont ceux qui précèdent
ne sont que des cas particuliers; soit M une variété C00 compacte et a, ß,...
différentes classes d'homologie, d'homotopie (libre) de M. Pour toute
telle classe on définit, pour toute s.r. g sur M:

(7.5) a (g) inf Ye0L vol F, g)

où la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent à la classe a considérée. Remarquons en passant que l'on
ne se préoccupe pas de la réalisation de a (g) par une sous-variété Y ; mais

ce n'est pas par manque d'intérêt! Le problème général est: existe-t-il, sur
certaines variétés, des relations entre oc (g), ß (g), indépendantes delà
s.r. g sur Ml Le théorème de Pu est relatif au cas où a est la classe

fondamentale (de dimension deux) de P\ M et ß la classe des droites projectives;
on a a (g) ^ | (ß (g))2 pour toute g. Le théorème de Loewner montre, en



tout cas, que si M, N sont deux variétés compactes, et si a (resp. ß) est la

classe d'homotopie de M X N qui représente M (resp. A), alors on n'a pas

en général: vol(MxA, g) ^ a (g). ß (g) pour toute g. Voir aussi [11 '].

Géodésiques.

8. Définition.

Après les volumes, les invariants riemanniens qui se présentent naturellement

sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points

m, ne M:

j (8.1) d Çm, n) inf c long (c, g)

I (où la longueur est celle définie en (3.5) et la borne est inférieure est prise

| sur l'ensemble des courbes d'extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] réfèrent au
li vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)

est canoniquement un espace métrique. En outre la topologie de variété de

I. M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
I; [1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C1 qui

localement réalisent cette distance et sont à vitesse constante i.e. c : I -» M
fj (/intervalle de R) est une géodésique si \c'\ est constante et si y t e / g t' >
fi > t, t' e I, tel que long (c|[t>n, g) d(c (t), c '))•

Pour (R", g0) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S c R3, ce sont les courbes dont l'accélération

y! est normale à S. 1

;.;j On ne peut guère travailler qu'avec des v.r. complètes, c'est-à-dire
complètes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;

7 [1], p. 235) que si (M, g) est complète:

' (8.2) ym,neMp[c, courbe d'extrémités 777,77, telle que long (c, g)
d (777,77) ;

(8.3) yxeTM il existe une géodésique unique c: R -> M telle que
I c' (0) x.

I Remarques :

i| (8.4): la courbe dont l'existence est affirmée en (8.2) est toujours une
: géodésique; une telle courbe n'est pas unique en général: voir (9.2) et

I prendre sur (S'\ g0) deux points 777, n antipodes. Par contre on démontre
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