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où les gij sont des fonctions de uu un. Si, pour tous les systèmes de

coordonnées locales, ces coefficients sont des fonctions C°°, on dit que

la forme est C°°. Une structure riemannienne (s.r.) sur M n'est pas autre

chose qu'une forme différentielle quadratique g sur M, définie positive, et

Cœ. La forme bilinéaire symétrique associée permet de définir le produit
scalaire de deux vecteurs x et y tangents au même point m de M et induit
une structure euclidienne dans TmM. On notera ce produit scalaire g (x, y)
et l'on écrira

1*1 (.g(x,x

Par variété riemannienne (v.r.) on entend un couple (M, g) formé d'une
variété M et d'une s.r. sur M. Une isométrie entre deux v.r. (.M, g), g')
est un difféomorphisme f : M M' tel que f* g' g (où (/* g') (x, y)
— S' (T (/) (xX T(f) (y))). On dira que (M, g), (Mr, gr) sont isométriques
s'il existe entre elles une isométrie.

Pour le lecteur non spécialiste, nous avons donné, parfois simultanément,

trois références: [13], [12], [1]. La référence [13] est donnée parce
que son chapitre II fournit une initiation très rapide à la géométrie riemannienne;

[12] est donnée car c'est un ouvrage de référence récent et très

complet. Enfin [1] pourra être agréable comme contenant la plus grande
partie des définitions, exemples et résultats de cet article, ceci en
détail.

2. Exemples de variétés riemanniennes.

(2.1): /'espace euclidien (RM, g0).

Soit E un espace euclidien quelconque, dont (.|.) désigne le produit
scalaire; on en déduit sur E une s.r. canonique g0: en effet l'espace tangent
TeE à E en e s'identifie canoniquement par une application TekE lui-même.
On définira donc g0 par g0 (x, y) (tJx) | re(y)) pour tous x, y e
Pour R", muni de son produit scalaire canonique, on obtient donc ainsi
une v.r. (R", g0).

(2.2):

Soit / : M->N une application différentiable et h une s.r. sur N. Si

l'application tangente à /, T(f):TM -> TN est telle que, quel que soit
"b Tm (/) est injective, alors g f* hest une s.r. sur M. En effet/* est
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toujours symétrique bilinéaire et elle est définie positive : y x # 0 :

(/* h) (x, x) h (T(/) (x), T(/) (x)) > 0 puisque T(/) (x) A 0 car

T(/) injective. Deux cas particuliers de cette situation:

(2.3):

Soit (TV, h) une v.r. et M c TV une sous-variété de TV. Si i : M - TV est

l'injection canonique, /*A g est donc une s.r. sur M, qu'on notera
indifféremment (M, /z) ou (M, A|m). Exemples:

(2.3.1): soit Sn {xeR"+1 : |x| l} la sphère de dimension n; de (2.1) et

(2.3) on déduit une s.r. canonique g0 sur Sn: (Sn, ^0).

(2.3.2): le cas où S est une sous-variété de dimension deux de R3 (surface),

pour (R3,g0), conduit au premier exemple historique de v.r.; g0\s n'est

autre que la « première forme fondamentale » de S.

(2.4):

Soit M TV un revêtement, h une s.r. sur TV. On a donc sur M la s.r.

g p*h; on dit alors que (M, g) (TV, h) est un revêtement riemannien.

Du point de vue constructif, c'est plutôt la situation inverse que l'on
rencontre : soit (M, g) une v.r. et G un groupe d'isométries discret sans

point fixe de (M, g) et tel que l'application quotient M M/G TV soit

un revêtement. Alors il existe sur TV une s.r. unique h gjG telle que

(M, g) (TV, h) soit un revêtement riemannien. Exemples :

(2.4.1): G est le groupe à deux éléments d'isométries de (Sn, g0) formé par
l'identité et l'antipodie. La variété quotient n'est autre que Sn/G Pn(R),

l'espace projectif réel de dimension n; le revêtement est évidemment à deux

feuillets. D'où sur Pn(R) une s.r. canonique, c'est (P"(R)? g0) (appelé parfois

espace elliptique).

(2.4.2): G est un réseau de RM (sous-groupe discret de rang maximum,
donc isomorphe à Zn). La variété quotient Rn/G est le tore (S1)M de dimension

n. On obtient ainsi des v.r. (W/G, g0/G) appelées tores plats; ainsi

nommées parce qu'elles sont toujours localement isométriques à (R", g0).

Pour n 2, le tore plat (R2/G, g0/G) est dit équilatéral si G est déduit, par
une isométrie de R2, du réseau G0 engendré par les deux vecteurs (1,0)
et (h I):
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(2.5): submersions riemanniennes.

Soient M, Y deux variétés et M ^ Y une submersion, i.e. Y me M : T^G?)

est de rang égal à dim Y. On peut alors définir en m e M le sous-espace

tangent vertical Vm de Tm{M), à savoir le noyau Vm 0). Si de

plus g est une s.r. sur M, le sous-espace euclidien Tm{M) admet une
décomposition orthogonale Tm(M) Fm © Ym; le sous-espace Hm est dit horizontal

Noter que la restriction de Tm(p) à Hm est un isomorphisme d'espace
vectoriels Hm Tp(m)(N). Soient enfin (M, g), (Y, h) deux v.r. On dit que
(M, g) (Y, h) est une submersion riemannienne si p est une submersion
et si V m e M : Tm(p) : Hm -> Tp(m)(Y) est uneisométrie d'espaces euclidiens.
Les revêtements riemanniens (2.4) en sont un exemple. Plus généralement
on est sûr, étant donnés (M, g) et une submersion M N, de pouvoir
construire une s.r. h sur N telle que (M, g) (N, h) soit une submersion

riemannienne, lorsque N M/G où G est une groupe d'isométries de

(M, g) ; car alors en effet les applications tangentes aux opérations de G

sur une fibre p~1(n), n e N, permutant transitivement et isométriquement
les TmM, donc les Hm (mep~ 1(n)), on pourra définir hn par la condition
« V me p~ 1(n) : Tm(p) : Hm -> 7^ Y est une isométrie d'espaces euclidiens

». En voici deux cas particuliers, fondamentaux pour la suite:

(2.5.1): espace projectif complexe (P"(C), g0).

Soit C',+ 1
— {0} P\C) l'espace projectif complexe de dimension

(complexe) n, défini comme quotient de Cn+1 —{0} par la relation
d'équivalence « xRy » si g z g C : y zx. On munit C"+1 de sa structure hermi-
tienne canonique |z|2 |(z0, z„)|2 On obtient encore P"(Q
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en restreignant p à S2"4"1 {zeCn+1 : |z|2 l} : S2n+1 Pn(C) (c'est la
fibration de Hopf). En outre P\C) apparaît comme le quotient S2n+1/U
de S2n+1 par le groupe U — {z.idf -h1, z= 1 { des homothéties de rapport
de module égal à 1. Comme U (1) <= 0(2^+2), U consiste en isométries
de (S2n+1, g0) d'où: il existe sur Pn{C) une s.r. canonique g0, telle que
(S2n + 19 g0) (P"(C), go) soit une submersion riemannienne.

(2.5.2): espace projectif quaternionien (P"(H), g0).

On procède exactement de même, en remplaçant le corps C des

nombres complexes par le corps H des quaternions, U par Sp (1)

{z .id n + l9 |z| l,zeH}, le groupe de Lie compact (homéomorphe à
H

S3) des quaternions de module égal à 1. L'espace H"+1 est muni de sa

structure hermitienne canonique £fzfzf. On obtient sur P"(H)
S4n+3/Sp (1) une s.r. canonique g0 telle que (S4n+ 3, g0) (^M(H), g0)

soit une submersion riemannienne.

(2.6): espaces homogènes.

Si l'on sait qu'il existe aussi un plan projectif des octaves de Cayley
P2(Ca) (mais pas de P"(Ca) pour les n ^ 3), on désirerait construire de

même une s.r. canonique sur ce P2(Ca). Cela est impossible car il n'existe

pas d'application convenable S23 -> P2(Ca); il faut employer un autre

procédé de construction, celui des espaces homogènes.

(2.6.1): soit G un groupe de Lie et H un sous-groupe compact de G. Alors
il existe sur M G/H des s.r. G-invariantes, c'est-à-dire telles que toutes
les opérations de G soient des isométries.

C'est une affaire sans malice; on veut définir gm9 me M. Soit
G G!H M et e p {H). On pense à définir gm à partir d'une ge fixe

sur TeM et des applications tangentes T (y) des actions y de G sur M,
qui devront être des isométries d'espaces euclidiens. Ce sera possible si

c'est cohérent, c'est-à-dire si y y e H : Te{y) est une isométrie de TeM.
C'est possible puisque H est compact: prendre g'e structure euclidienne

quelconque sur TeM et faire la moyenne ge9 pour la mesure de Haar de H,
des Cette moyenne .est bien Te (y)-invariante pour tout y e H; ensuite

on transporte ge en m quelconque de M par une Te (y) où y est tel que

y (ie) m.

(2.6.2): en outre, si H, par les Te agit irréductiblement sur TeM, alors

M possède, à un scalaire positifprès, une seule s.r. G-invariante.
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Ceci provient simplement de ce qu'un groupe linéaire irréductible ne

peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire l'une de ces formes par rapport à

l'autre.
Par exemple (2.6.2) nous tranquillise, lorsque nous pensions à écrire

les sphères, les projectifs comme espaces homogènes : Sn SO (n+l)/SO (ri),

P%C) - U(n+l)/U(n)x 17(1), P"(H) Sp(n+l)/Sp(n)x Sp(l). Comme les

groupes d'isotropie H agissent dans tous ces cas de façon irréductible, on
n'obtient pas, par cette méthode, d'autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (à un scalaire près).

(2.7): le plan projectif des octaves de Cayley (P2(Ca), g0).

L'espace P2(Ca), peut être défini comme l'espace homogène P4/Spin (9)

(voir [8]); Spin (9) agit de façon irréductible d'où, sur P2(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur n, voir (9.8)): (P2(Ca), g0).

Nous poserons, pour tout n :

(2.8): Pn0 S\ Pf - P\R), Pn2 - P"(C), PI P\H), P2 P2(Ca);

Ainsi que K R, C, H, Ca et i dimR K. Noter que dimRPl /. n. On
aura donc les submersions riemanniennes :

(2.9): (Sin+i~\g0) ^ (PI g0), i= 1,2,4.
On rappelle les difféomorphismes entre P\ et S1 (/= 1, 2, 4, 8). En fait on
a même des isométries entre

(2.10) : {P\,g0)et SJg0),i" 1, 2, 4, 8.

Enfin, en tant qu'espaces homogènes, les P" se caractérisent comme
étant exactement l'ensemble des espaces symétriques de rang égal à 1 :

[11], p. 354 et ii. Ces (P", g0) vont servir de modèles à une grande partie
de ce qui suit.

Volumes, Surfaces, Longueur
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (,M g) admet une mesure canonique, vg.

Heuristiquement, ceci vient de ce qu'un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour Rn), et comme (M, g) est
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