Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 16 (1970)
Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: QUELQUES PROBLEMES DE GEOMETRIE RIEMANNIENNE OU

DEUX VARIATIONS SUR LES ESPACES SYMETRIQUES
COMPACTS DE RANG UN

Autor: Berger, M.
Kapitel: 2. Exemples de variétés riemanniennes.
DOI: https://doi.org/10.5169/seals-43854

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43854
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

__ 75
Zgijduiduj (gij:gji)
i,J

ou les g;; sont des fonctions de uy, ..., 4,. Si, pour tous les systemes de
coordonnées locales, ces coefficients sont des fonctions C*, on dit que
la forme est C®. Une structure riemannienne (s.r.) sur M n’est pas autre
chose qu’une forme différentielle quadratique g sur M, définie positive, et
C,. La forme bilinéaire symétrique associée permet de définir le produit
scalaire de deux vecteurs x et y tangents au méme point m de M et induit
une structure euclidienne dans T,,M. On notera ce produit scalaire g (x, y)
et I’on écrira

x| = (g (x, )"~

Par variété riemannienne (v.r.) on entend un couple (M, g) formé d’une

; variété M et d’une s.r. sur M. Une isométrie entre deux v.r. (M, g), (M’, g’)

est un difféfomorphisme f: M — M’ tel que f* g’ =g (ou (f* g') (x, y) =
=g (T(f) x), T(f) (). On dira que (M, g), (M', g’') sont isométriques
s’il existe entre elles une isométrie.

Pour le lecteur non spécialiste, nous avons donné, parfois simultané-

~ ment, trois références: [13], [12], [1]. La référence [13] est donnée parce

que son chapitre II fournit une initiation trés rapide ala géométrie rieman-
nienne; [12] est donnée car c’est un ouvrage de référence récent et trés

complet. Enfin [1] pourra étre agréable comme contenant la plus grande

partie des définitions, exemples et résultats de cet article, ceci en

- détail.
. 2. Exemples de variétés riemanniennes.

(2.1): lespace euclidien (R, g,).

Soit E un espace euclidien quelconque, dont (.I.) désigne le produit

~ scalaire; on en déduit sur E une s.t. canonique g,: en effet ’espace tangent

T,E a E en e s’identifie canoniquement par une application 7, & E lui-méme.
On définira donc g, par g, (x,y) = (1,(x) | 7(y)) pour tous x,ye T,E.

- Pour R", muni de son produit scalaire canonique, on obtient donc ainsi

une v.r. (R", g,).

(2.2):

Soit f: M — N une application différentiable et # une s.r. sur N. Si
Papplication tangente & f, T(f) : TM — TN est telle que, quel que soit
m, T, (f) est injective, alors g = f* h est une s.r. sur M. En effet f* h est
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toujours symétrique bilinéaire et elle est définie positive: v x # 0 : g (x, x) =

=(f*h) (x,x) =h(T(f)(x), T(f)(x)) >0 puisque T(f)(x)#0 car
T (f) injective. Deux cas particuliers de cette situation:

(2.3):

Soit (N, k) une v.r. e¢ M < N une sous-variété de N. Si i : M — N est
I'injection canonique, i*h = g est donc une s.r. sur M, qu’on notera
indifféremment (M, ) ou (M, hly,). Exemples:

(2.3.1): soit " = {xeR""!: |x|=1} la sphére de dimension »; de (2.1) et
(2.3) on déduit une s.r. canonique g, sur S": (S”, g,).

(2.3.2): le cas ou S est une sous-variété de dimension deux de R> (surface),
pour (R, g,), conduit au premier exemple historique de v.r.; gol g n’est
autre que la « premiére forme fondamentale » de S.

(2.4):

Soit M _’; N un revétement, 4 une s.r. sur N. On a donc sur M la s.r.
g = p*h; on dit alors que (M, g) i (N, h) est un revétement riemannien.
Du point de vue constructif, c’est plutdot la situation inverse que l'on
rencontre: soit (M, g) une v.r. et G un groupe d’isométries discret sans
point fixe de (M, g) et tel que ’application quotient M _P+ M|G = N soit
un revétement. Alors il existe sur N une s.r. unique 7 = g/G telle que
(M, g) _i (N, h) soit un revétement riemannien. Exemples:

(2.4.1): G est le groupe a deux éléments d’isométries de (S", g,) formé par
I'identité et I’antipodie. La variété quotient n’est autre que S"/G = P"(R),
I’espace projectif réel de dimension #; le revétement est évidemment a deux
feuillets. D’ou sur P*(R) une s.r. canonique, c’est (P"(R), g,) (appelé par-
fois espace elliptique).

(2.4.2): G est un réseau de R" (sous-groupe discret de rang maximum,
donc isomorphe & Z"). La variété quotient R"/G est le tore (S')" de dimen-
sion n. On obtient ainsi des v.r. (R"/G, g,/G) appelées tores plats; ainsi
nommées parce qu’elles sont toujours localement isométriques a (R”, g,).
Pour n = 2, le tore plat (R?*/G, g,/G) est dit équilatéral si G est déduit, par
une isométrie de R?, du réseau G, engendré par les deux vecteurs (1, 0)

et (3, 3):
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(2.5): submersions riemanniennes.

Soient M, N deux variétés et M i N une submersion,i.e. Vme M : T,(p)
est de rang égal a dim N. On peut alors définir en m € M le sous-espace
tangent vertical V,, de T, (M), & savoir le noyau V,, = T,(p)” '(0). Si de
plus g est une s.r. sur M, le sous-espace euclidien 7,,(M) admet une décom-
position orthogonale T, (M) = V,, @ H,,; le sous-espace H,, est dit horizon-
tal. Noter que la restriction de 7,(p) a H,, est un isomorphisme d’espace
vectoriels H,, = T,»(N). Soient enfin (M, g), (N, k) deux v.r. On dit que
(M, g) i (N, h) est une submersion riemannienne si p est une submersion
etsiVmeM : T,(p) : H,, = T, (N) est uneisométrie d’espaces euclidiens.
Les revétements riemanniens (2.4) en sont un exemple. Plus généralement
on est stir, étant donnés (M, g) et une submersion M i N, de pouvoir
construire une s.r. 4 sur N telle que (M, g) _i (N, h) soit une submersion
riemannienne, lorsque N = M/G ou G est une groupe d’isométries de
(M, g); car alors en effet les applications tangentes aux opérations de G
sur une fibre p~'(n), n € N, permutant transitivement et isométriquement
les T,,M, donc les H, (mep~'(n)), on pourra définir 4, par la condition
«Vmep~'(n):T,(p): H, > T,N est une isométrie d’espaces eucli-
diens ». En voici deux cas particuliers, fondamentaux pour la suite:

(2.5.1): espace projectif complexe (P"(C), g,).

Soit C""'—{0} i P"(C) Tespace projectif complexe de dimension
(complexe) n, défini comme quotient de C"*'—{0} par la relation d’équi-
valence « xRy » sig z€ C : y = zx. On munit C"*! de sa structure hermi-
tienne canonique |z|* = |(zo, ..., z,)|* = Z;z;Z;. On obtient encore P*(C)



78

‘en restreignant p & S**! = {zeC"*! : |z]?=1} : §"*1 P P"(C) (Cest la
fibration de Hopf). En outre P"(C) apparait comme le quotient S*"*!/U
de S*"*! par le groupe U = {z.id" +*, z=1{ des homothéties de rapport
de module égal a 1. Comme U (1) = 0(2n+2), U consiste en isométries
de (S*"*1, g,) d’ou: il existe sur P"(C) une s.r. canonique g, telle que
($?"*1, g0) L, (P'(C), go) soit une submersion riemannienne.

(2.5.2): espace projectif quaternionien (P"(H), g,).

On procéde exactement de méme, en remplagant le corps C des
nombres complexes par le corps H des quaternions, U par Sp (1) =
= {z.id .y, |z|=1, zeH}, le groupe de Lie compact (homéomorphe 2

H

S?) des quaternions de module égal a 1. L’espace H"*! est muni de sa
structure hermitienne canonique X,;z;z;, On obtient sur P"(H) =

= S§*"*3/Sp (1) une s.r. canonique g, telle que (S*"*3, g,) * (P"(H), g,)
soit une submersion riemannienne.

(2.6): espaces homogenes.

Si I'on sait qu’il existe aussi un plan projectif des octaves de Cayley
P?(Ca) (mais pas de P"(Ca) pour les n = 3), on désirerait construire de
méme une s.r. canonique sur ce P%(Ca). Cela est impossible car il n’existe
pas d’application convenable S*° — P?(Ca); il faut employer un autre
procédé de construction, celui des espaces homogénes.

(2.6.1): soit G un groupe de Lie et H un sous-groupe compact de G. Alors
il existe sur M = G/H des s.r. G-invariantes, c’est-d-dire telles que toutes
les opérations de G soient des isométries.

C’est une affaire sans malice; on veut définir g,, me M. Soit
G _’; G/H = M et e = p (H). On pense a définir g,, a partir d’'une g, fixe
sur T,M et des applications tangentes 7 (y) des actions y de G sur M,
qui devront €tre des isométries d’espaces euclidiens. Ce sera possible si
c’est cohérent, c’est-a-dire si v ye H : T, (y) est une isométrie de 7,M.
C’est possible puisque H est compact: prendre g, structure euclidienne
quelconque sur 7,M et faire la moyenne g,, pour la mesure de Haar de H,
des y*g.. Cette moyenne.est bien T, (y)-invariante pour tout y € H; ensuite
on transporte g, en m quelconque de M par une T, (y) ou y est tel que

Y (e) = m.

(2.6.2): en outre, si H, par les T, (.), agit irréductiblement sur T,M, alors
M posséde, a un scalaire positif prés, une seule s.xr. G-invariante.
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Ceci provient simplement de ce qu’un groupe linéaire irréductible ne
peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire I'une de ces formes par rapport a

Iautre.

Par exemple (2.6.2) nous tranquillise, lorsque nous pensions a écrire
les spheéres, les projectifs comme espaces homogénes: S” = SO (n+1)/SO (n),
P(C) = Um+1)/Un)x UQ), P"H) = Sp(n+1)/Sp(n) x Sp(1). Comme les
groupes d’isotropie H agissent dans tous ces cas de fagon irréductible, on
n’obtient pas, par cette méthode, d’autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (a un scalaire pres).

(2.7): le plan projectif des octaves de Cayley (P*(Ca), g,).

L’espace P?*(Ca), peut étre défini comme I’espace homogéne F,/Spin (9)
(voir [8]); Spin (9) agit de fagon irréductible d’ou, sur P?*(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur 7, voir (9.8)): (P*(Ca), g,).

Nous poserons, pour tout n:

(2.8): P, = S", P{ = P"(R), P; = P"(C), Pj = P"(H), P = P?*(Ca);

Ainsi que K= R, C,H, Ca et i = dimy K. Noter que dimgP{ = i.n. On
aura donc les submersions riemanniennes:

(2.9): (S™"7 1 g0) ) (P g0), i=1,24.
On rappelle les diffSomorphismes entre P; et S (i=1, 2, 4, 8). En fait on
a méme des isométries entre

(2‘10) (Pfa gO) et (Sia %gO)a [ = 17 29 4> 8

Enfin, en tant qu’espaces homogénes, les P! se caractérisent comme
¢tant exactement I’ensemble des espaces symétriques de rang égal & 1:
[11], p. 354 et ii. Ces (P}, go) vont servir de modéles 2 une grande partie
de ce qui suit.

VOLUMES, SURFACES, LONGUEUR
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (M g) admet une mesure canonique, V.

Heuristiquement, ceci vient de ce qu’un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour R"), et comme (M, g) est
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