
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: QUELQUES PROBLÈMES DE GÉOMÉTRIE RIEMANNIENNE OU
DEUX VARIATIONS SUR LES ESPACES SYMÉTRIQUES
COMPACTS DE RANG UN

Autor: Berger, M.

DOI: https://doi.org/10.5169/seals-43854

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-43854
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


QUELQUES PROBLÈMES DE GÉOMÉTRIE RIEMANNIENNE
OU

DEUX VARIATIONS SUR

LES ESPACES SYMÉTRIQUES COMPACTS DE RANG UN

par M. Berger

Cet article reproduit, avec quelques développements, une conférence

donnée à la réunion du groupe des mathématiciens rhodaniens, le 27 avril

1969 à Lausanne. C'est plutôt un article d'exposition, il n'apporte pas de

résultats nouveaux. Après avoir défini ce qu'est une variété riemannienne

(n° 1), on en donne des exemples (n° 2); parmi ceux-ci les projectifs réels,

complexes, quaternioniens et le plan projectif des octaves de Cayley jouent
un rôle à part. Avec les sphères, ils forment exactement la classe des espaces

symétriques simplement connexes compacts de rang un. Ils servent de

modèles pour les problèmes soulevés dans les deux parties (volumes-

surfaces-longueurs, géodésiques) de l'article. On donne ensuite les définitions

de deux invariants riemanniens géométriques très simples: les volumes

(n° 3), les géodésiques (n° 8). La contemplation des projectifs donne alors

lieu à des résultats (voir (4.3) et (12.2)) mais surtout à des problèmes ouverts,
problèmes qui nous ont semblé intéressants.

1. Définition des variétés riemanniennes.

Rappelons quelques définitions. Une variété à n dimensions M est un
espace topologique séparé qui peut être recouvert par des ensembles ouverts

homéomorphes à des ouverts de R". Un homéomorphisme d'un ouvert U
de M sur un ouvert de R" est appelé une carte de domaine U\ il associe à

chaque point de U un système de n nombres réels, qu'on appelle des

coordonnées locales. Une structure C°° sur M consiste en la donnée d'une
classe privilégiée de cartes ou systèmes de coordonnées locales, dont les

domaines recouvrent toujours M, jouissant de la propriété suivante: si les

domaines U et U' de deux systèmes de cette classe empiètent, les
coordonnées d'un point de U n U' dans l'un des systèmes sont toujours des

fonctions C°° (c'est-à-dire indéfiniment differentiates de ses coordonnées
dans l'autre système. Une variété C00 (ou variété differentiate de classe

C00) est une variété munie d'une structure C00. Toutes les variétés consi-
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dérées ici seront C00 et les coordonnées locales utilisées seront toujours de

la classe privilégiée.
Si M et M' sont deux variétés, une application continue / de M dans

M' est dite C00, si les coordonnées locales dans M' de l'image f(m) d'un
point m de M sont des fonctions C00 des coordonnées locales de m dans M.
Si / est bijective et si son inverse /_1 est aussi Cœ, on dit que / est un
difféomorphisme.

Un vecteur tangent à M au point m est défini, relativement à un système
de coordonnées locales u1, ...,un dans un voisinage de m, par un système
de valeurs des différentielles duu dun. Relativement à un autre système
de coordonnées locales vl9..., vn dans un voisinage du même point m, le

même vecteur est défini par les valeurs correspondantes des différentielles

dvt, dvn, qui sont bien déterminées puisque les vt sont fonctions C00

des Uj. Le fait que dvt est linéaire en les duj entraîne que l'ensemble de tous
les vecteurs tangents à M en m est muni d'une structure d'espace vectoriel
et forme ainsi un espace vectoriel de dimension n; il est appelé /'espace

tangent à M en m et noté TmM.
L'ensemble TM — u TmM, réunion de tous les TmM, est canonique-

meM

ment muni d'une structure topologique et d'une structure C00, telles que,
si uu ...,un sont des coordonnées locales dans l'ouvert U de M,
TU u TmM est un ouvert de TM homéomorphe à U x R" et

meU

uu un, duu dun sont des coordonnées locales dans TU. La variété

TM, appelée /'espace tangent à M, est en plus munie d'une structure d'espace
fibré vectoriel, les fibres de TM étant les TmM.

A toute application Cœ de la variété M, de dimension n, dans une autre
variété M\ de dimension p, f : M -> M', est canoniquement associée une
application de TM dans TM', appelée l'application tangente à f et notée

T(f). Elle est définie de la manière suivante: si x est un vecteur tangent
à M en m, défini relativement à des coordonnées locales uu ...,un par un
système de valeurs de duu dun, son image T(/) (x) est le vecteur tangent
à M' en m' f(m) défini, relativement à des coordonnées locales vu vp
dans un voisinage de m', par les valeurs correspondantes de dvu dvp,

valeurs bien déterminées puisque les v{ sont fonctions C00 des Uj. Cette

application T (f) est C00, de plus, sa restriction à TmM, qu'on notera Tm (f),
est une application linéaire de TmM dans Tm M'.

Une forme différentielle quadratique sur M est représentée, dans le

domaine d'un système de coordonnées locales uu un, par une expression
telle que
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YgijdUiduj (gij=gjd
i,j

où les gij sont des fonctions de uu un. Si, pour tous les systèmes de

coordonnées locales, ces coefficients sont des fonctions C°°, on dit que

la forme est C°°. Une structure riemannienne (s.r.) sur M n'est pas autre

chose qu'une forme différentielle quadratique g sur M, définie positive, et

Cœ. La forme bilinéaire symétrique associée permet de définir le produit
scalaire de deux vecteurs x et y tangents au même point m de M et induit
une structure euclidienne dans TmM. On notera ce produit scalaire g (x, y)
et l'on écrira

1*1 (.g(x,x

Par variété riemannienne (v.r.) on entend un couple (M, g) formé d'une
variété M et d'une s.r. sur M. Une isométrie entre deux v.r. (.M, g), g')
est un difféomorphisme f : M M' tel que f* g' g (où (/* g') (x, y)
— S' (T (/) (xX T(f) (y))). On dira que (M, g), (Mr, gr) sont isométriques
s'il existe entre elles une isométrie.

Pour le lecteur non spécialiste, nous avons donné, parfois simultanément,

trois références: [13], [12], [1]. La référence [13] est donnée parce
que son chapitre II fournit une initiation très rapide à la géométrie riemannienne;

[12] est donnée car c'est un ouvrage de référence récent et très

complet. Enfin [1] pourra être agréable comme contenant la plus grande
partie des définitions, exemples et résultats de cet article, ceci en
détail.

2. Exemples de variétés riemanniennes.

(2.1): /'espace euclidien (RM, g0).

Soit E un espace euclidien quelconque, dont (.|.) désigne le produit
scalaire; on en déduit sur E une s.r. canonique g0: en effet l'espace tangent
TeE à E en e s'identifie canoniquement par une application TekE lui-même.
On définira donc g0 par g0 (x, y) (tJx) | re(y)) pour tous x, y e
Pour R", muni de son produit scalaire canonique, on obtient donc ainsi
une v.r. (R", g0).

(2.2):

Soit / : M->N une application différentiable et h une s.r. sur N. Si

l'application tangente à /, T(f):TM -> TN est telle que, quel que soit
"b Tm (/) est injective, alors g f* hest une s.r. sur M. En effet/* est
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toujours symétrique bilinéaire et elle est définie positive : y x # 0 :

(/* h) (x, x) h (T(/) (x), T(/) (x)) > 0 puisque T(/) (x) A 0 car

T(/) injective. Deux cas particuliers de cette situation:

(2.3):

Soit (TV, h) une v.r. et M c TV une sous-variété de TV. Si i : M - TV est

l'injection canonique, /*A g est donc une s.r. sur M, qu'on notera
indifféremment (M, /z) ou (M, A|m). Exemples:

(2.3.1): soit Sn {xeR"+1 : |x| l} la sphère de dimension n; de (2.1) et

(2.3) on déduit une s.r. canonique g0 sur Sn: (Sn, ^0).

(2.3.2): le cas où S est une sous-variété de dimension deux de R3 (surface),

pour (R3,g0), conduit au premier exemple historique de v.r.; g0\s n'est

autre que la « première forme fondamentale » de S.

(2.4):

Soit M TV un revêtement, h une s.r. sur TV. On a donc sur M la s.r.

g p*h; on dit alors que (M, g) (TV, h) est un revêtement riemannien.

Du point de vue constructif, c'est plutôt la situation inverse que l'on
rencontre : soit (M, g) une v.r. et G un groupe d'isométries discret sans

point fixe de (M, g) et tel que l'application quotient M M/G TV soit

un revêtement. Alors il existe sur TV une s.r. unique h gjG telle que

(M, g) (TV, h) soit un revêtement riemannien. Exemples :

(2.4.1): G est le groupe à deux éléments d'isométries de (Sn, g0) formé par
l'identité et l'antipodie. La variété quotient n'est autre que Sn/G Pn(R),

l'espace projectif réel de dimension n; le revêtement est évidemment à deux

feuillets. D'où sur Pn(R) une s.r. canonique, c'est (P"(R)? g0) (appelé parfois

espace elliptique).

(2.4.2): G est un réseau de RM (sous-groupe discret de rang maximum,
donc isomorphe à Zn). La variété quotient Rn/G est le tore (S1)M de dimension

n. On obtient ainsi des v.r. (W/G, g0/G) appelées tores plats; ainsi

nommées parce qu'elles sont toujours localement isométriques à (R", g0).

Pour n 2, le tore plat (R2/G, g0/G) est dit équilatéral si G est déduit, par
une isométrie de R2, du réseau G0 engendré par les deux vecteurs (1,0)
et (h I):
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(2.5): submersions riemanniennes.

Soient M, Y deux variétés et M ^ Y une submersion, i.e. Y me M : T^G?)

est de rang égal à dim Y. On peut alors définir en m e M le sous-espace

tangent vertical Vm de Tm{M), à savoir le noyau Vm 0). Si de

plus g est une s.r. sur M, le sous-espace euclidien Tm{M) admet une
décomposition orthogonale Tm(M) Fm © Ym; le sous-espace Hm est dit horizontal

Noter que la restriction de Tm(p) à Hm est un isomorphisme d'espace
vectoriels Hm Tp(m)(N). Soient enfin (M, g), (Y, h) deux v.r. On dit que
(M, g) (Y, h) est une submersion riemannienne si p est une submersion
et si V m e M : Tm(p) : Hm -> Tp(m)(Y) est uneisométrie d'espaces euclidiens.
Les revêtements riemanniens (2.4) en sont un exemple. Plus généralement
on est sûr, étant donnés (M, g) et une submersion M N, de pouvoir
construire une s.r. h sur N telle que (M, g) (N, h) soit une submersion

riemannienne, lorsque N M/G où G est une groupe d'isométries de

(M, g) ; car alors en effet les applications tangentes aux opérations de G

sur une fibre p~1(n), n e N, permutant transitivement et isométriquement
les TmM, donc les Hm (mep~ 1(n)), on pourra définir hn par la condition
« V me p~ 1(n) : Tm(p) : Hm -> 7^ Y est une isométrie d'espaces euclidiens

». En voici deux cas particuliers, fondamentaux pour la suite:

(2.5.1): espace projectif complexe (P"(C), g0).

Soit C',+ 1
— {0} P\C) l'espace projectif complexe de dimension

(complexe) n, défini comme quotient de Cn+1 —{0} par la relation
d'équivalence « xRy » si g z g C : y zx. On munit C"+1 de sa structure hermi-
tienne canonique |z|2 |(z0, z„)|2 On obtient encore P"(Q
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en restreignant p à S2"4"1 {zeCn+1 : |z|2 l} : S2n+1 Pn(C) (c'est la
fibration de Hopf). En outre P\C) apparaît comme le quotient S2n+1/U
de S2n+1 par le groupe U — {z.idf -h1, z= 1 { des homothéties de rapport
de module égal à 1. Comme U (1) <= 0(2^+2), U consiste en isométries
de (S2n+1, g0) d'où: il existe sur Pn{C) une s.r. canonique g0, telle que
(S2n + 19 g0) (P"(C), go) soit une submersion riemannienne.

(2.5.2): espace projectif quaternionien (P"(H), g0).

On procède exactement de même, en remplaçant le corps C des

nombres complexes par le corps H des quaternions, U par Sp (1)

{z .id n + l9 |z| l,zeH}, le groupe de Lie compact (homéomorphe à
H

S3) des quaternions de module égal à 1. L'espace H"+1 est muni de sa

structure hermitienne canonique £fzfzf. On obtient sur P"(H)
S4n+3/Sp (1) une s.r. canonique g0 telle que (S4n+ 3, g0) (^M(H), g0)

soit une submersion riemannienne.

(2.6): espaces homogènes.

Si l'on sait qu'il existe aussi un plan projectif des octaves de Cayley
P2(Ca) (mais pas de P"(Ca) pour les n ^ 3), on désirerait construire de

même une s.r. canonique sur ce P2(Ca). Cela est impossible car il n'existe

pas d'application convenable S23 -> P2(Ca); il faut employer un autre

procédé de construction, celui des espaces homogènes.

(2.6.1): soit G un groupe de Lie et H un sous-groupe compact de G. Alors
il existe sur M G/H des s.r. G-invariantes, c'est-à-dire telles que toutes
les opérations de G soient des isométries.

C'est une affaire sans malice; on veut définir gm9 me M. Soit
G G!H M et e p {H). On pense à définir gm à partir d'une ge fixe

sur TeM et des applications tangentes T (y) des actions y de G sur M,
qui devront être des isométries d'espaces euclidiens. Ce sera possible si

c'est cohérent, c'est-à-dire si y y e H : Te{y) est une isométrie de TeM.
C'est possible puisque H est compact: prendre g'e structure euclidienne

quelconque sur TeM et faire la moyenne ge9 pour la mesure de Haar de H,
des Cette moyenne .est bien Te (y)-invariante pour tout y e H; ensuite

on transporte ge en m quelconque de M par une Te (y) où y est tel que

y (ie) m.

(2.6.2): en outre, si H, par les Te agit irréductiblement sur TeM, alors

M possède, à un scalaire positifprès, une seule s.r. G-invariante.
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Ceci provient simplement de ce qu'un groupe linéaire irréductible ne

peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire l'une de ces formes par rapport à

l'autre.
Par exemple (2.6.2) nous tranquillise, lorsque nous pensions à écrire

les sphères, les projectifs comme espaces homogènes : Sn SO (n+l)/SO (ri),

P%C) - U(n+l)/U(n)x 17(1), P"(H) Sp(n+l)/Sp(n)x Sp(l). Comme les

groupes d'isotropie H agissent dans tous ces cas de façon irréductible, on
n'obtient pas, par cette méthode, d'autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (à un scalaire près).

(2.7): le plan projectif des octaves de Cayley (P2(Ca), g0).

L'espace P2(Ca), peut être défini comme l'espace homogène P4/Spin (9)

(voir [8]); Spin (9) agit de façon irréductible d'où, sur P2(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur n, voir (9.8)): (P2(Ca), g0).

Nous poserons, pour tout n :

(2.8): Pn0 S\ Pf - P\R), Pn2 - P"(C), PI P\H), P2 P2(Ca);

Ainsi que K R, C, H, Ca et i dimR K. Noter que dimRPl /. n. On
aura donc les submersions riemanniennes :

(2.9): (Sin+i~\g0) ^ (PI g0), i= 1,2,4.
On rappelle les difféomorphismes entre P\ et S1 (/= 1, 2, 4, 8). En fait on
a même des isométries entre

(2.10) : {P\,g0)et SJg0),i" 1, 2, 4, 8.

Enfin, en tant qu'espaces homogènes, les P" se caractérisent comme
étant exactement l'ensemble des espaces symétriques de rang égal à 1 :

[11], p. 354 et ii. Ces (P", g0) vont servir de modèles à une grande partie
de ce qui suit.

Volumes, Surfaces, Longueur
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (,M g) admet une mesure canonique, vg.

Heuristiquement, ceci vient de ce qu'un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour Rn), et comme (M, g) est
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partout infinitésimalement un espace euclidien, on a gagné. Plus précisément:

pour un espace vectoriel euclidien, on prend une orientation quelconque
et soit « la dimension de cet espace E\ il existe alors sur E une «-forme
alternée canonique, co; elle vaut œ (e1? en) — 1 sur toute base ortho-
normée directe {<?,} de E (ce qui a un sens parce que le déterminant d'une

rotation est égal à 1). On peut aussi trouver œ en remarquant que a E, d'une

part est euclidien, d'autre part est de dimension un, donc possède un vecteur

unique de norme un correspondant à l'orientation choisie pour E; c'est
co. Soit (M, g) une variété riemannienne, U un ouvert domaine d'une carte;
fixons une orientation sur U. D'après ce qui précède il existe sur U une
«-forme canonique (n=dim M) m i-> œm. Pour / : M -> R à support dans

U on pose J fvg J/co, au sens de l'intégrale sur une variété orientée d'une
M U

forme alternée de degré maximum. Il n'y a plus qu'à remarquer que la
valeur j /co ne change pas si l'on change l'orientation de U, puis que vg se

u
définit pour des fonctions à support compact quelconque à l'aide de partitions

de l'unité.
(3.2): soit (M, g) une v.r. compacte. Le volume de (M, g) est vol (M, g)

Jyg, Eest-à-dire la masse totale de (M, g) pour sa mesure canonique ;
M

si dim M — 1, on dit longueur et écrit long (M, g), si dim M 2, on dit
surface et écrit surf (M, g).

On peut calculer explicitement vol (Pf, g0) pour tous «, /: voir le tableau.
Pour Sn, c'est un vieux résultat. On passe de là à E", revêtu à deux feuillets

par Sn, en divisant par deux.

Par trivialisation locale et le théorème de Fubini on voit que:

(3.3): soit (M, g) (N, h) une submersion riemannienne, qui est une

fibration et supposons M compacte. Alors

vol (M, g) } vol O " \n), g). vh.
neN

Appliquons ceci à PI (resp. P4), pour g0 bien sûr. Les fibres sont des

grands cercles (resp. des sous-sphères de dimension trois) de S2n+1 (resp.

S4n+3), fibres ayant toutes même longueur (resp. volume) égale à 2n (resp.

égal à 2712, voir tableau). D'où les valeurs de la première ligne du tableau.

Pour (P£,g0), il faut employer d'autres méthodes; on en trouvera une
dans [1], p. 209.

Si N a M est une sous-variété de (M, g), on posera (voir (2.3)):

(3.4) vol (A, g) vol (A, g\N).
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Soit c : [a, b] -> M une courbe d'une v.r. (M, g); même si c ([<a, b})

n'est pas une sous-variété de M on peut définir la longueur de c par:

b

(3.5) long [c, g) | \c' (t)\dt.
a

Exemple : soit (M, g) [N, h) une submersion riemannienne ; une courbe

c de M sera dite horizontale sic' (t) e Hc^ pour tout t. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long [p o c, h) ^ long (c, g); en outre long [p o c, h) long [c, g) si

et seulement si c est horizontale.

4. Le théorème de Pu.

Avec cette seule notion de volume se posent déjà des problèmes naturels,
loin d'être résolus en général. Commençons par un des rares cas où l'on
ait un résultat. Soit g une s.r. sur Pl le plan projectif réel. A [Pl g) on

peut attacher deux nombres réels, son volume vol [P2, g) et son carcan,

carc [Pl g), égal à la borne inférieure de la longueur des courbes fermées

de P\ non homotopes à zéro:

(4.1) carc (P{, g) inf cnon ~ 0 long (c, g)

où il s'agit de l'homotopie des courbes fermées (c'est-à-dire des lacets sans

point base). Il est naturel d'espérer que si carc [Pl g) ^ k, alors surf (Pjf, g)
est supérieur ou égal à un nombre ne dépendant que de k. Définissons le

quotient de [Pu g) comme le rapport homogène de degré zéro:

0 surf [Pi, g)
(4.2) quot [Pu g) 2 2.(carc [Pl g))2

La première chose à faire est de calculer quot [Pl g0). Le tableau donne
le numérateur; pour carc [Pl g0), on utilise le théorème (13.1) et (9.1)
(il est bien naturel que les plus petites courbes non homotopes à zéro de

[P2u g0) soient les droites projectives Donc quot [Pl g0) 2/n (voir
tableau). L'interrogation précédente est complètement résolue par le:
(4.3): théorème (Pu, [14]). Quel que soit la s.r. g sur Pj, on a quot (Pj, g) ^
^ quot (Pi, g0). En outre, si quot [?l g) quot (Pj, g0), alors (P?, g) et
(Pi, g0) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le
revêtement riemannien (voir (2.4)) [S2, ~g) de [Pl g). D'après le théorème
fondamental de la représentation conforme, appliqué à [S2, g), il existe

;à: L'Enseignement mathém,. t. XVI, fasc. 1.t 6
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un difféomorphisme / : S2 -> S2 tel que f * g a g0i où g0 est la s.r.

canonique de S2 et a une fonction sur S2. On peut modifier / de façon à

pouvoir passer au quotient et trouver un difféomorphisme / de P2 tel que

f* g — & - g0, a : P2 -» R. Les deux v.r. (P2, g) et (P2, a g0) sont
isométriques, donc ont même volumes et carcans. On est donc ramené en

fait à deux s.r. g0 et a g0 sur P2; maintenant SO (3) agit sur (P2, g0) par
isométries ; on fait la moyenne par cette action et pour la mesure de Haar
de £0 (3), de la fonction a1/2. Ceci donne une fonction â; la longueur
d'une courbe c pour ä. g0 est la moyenne de la longueur des courbes

y o c pour a g0, y parcourant SO (3) ; donc carc (P2, 5 g0) ^ carc (P 2, a g).

L'inégalité de Schwarz (pour l'intégrale sur SO (3)) dit que surf (P2, âg0) g
^ surf (P2, a g0). Donc quot (P2, ä g0) ^ quot (P2, a g0). Mais, en

fait, ä est une constante, puisque SO (3) agit transitivement surP2; donc
surf (P2, d.g0) à. surf (P2, g0) et carc (P2, ä.g0) (â)1/2. carc(P2, g0)-

D'où la première partie du théorème; la seconde se montre en suivant les

égalités à la trace dans les inégalités.

Remarques : (i): on peut considérer (4.3) comme une espèce d'inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de

la frontière étant remplacée ici par le carcan pour la variété sans bord P2 ;

(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P2.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P", g) exactement par la formule
(4.1) et remplacer (4.2) par

vol(PÏ,g)
(5.1) quot (P", g)

(carc {PI g)f
On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complètement ouvert; on ne sait pas si quot (P", g) ^ quot (P", g0)

pour toute g (pour les variations conformes a g0, c'est facile, démonstration

analogue à celle de (4.3): voir [14]). A fortiori on ne sait pas si l'égalité
est caractéristique de g0. En fait on ne sait même pas si la borne inférieure

inf g quot (P?, g), pour g parcourant toutes les s.r. sur P", est strictement

positive.
En fait on peut encore généraliser toutes ces questions aux P". Remarquons

pour ce faire que, dans P", dire qu'une courbe c n'est pas homotope
à zéro est équivalent à dire qu'elle est homotope à P\, la droite projective

pour l'inclusion héréditaire P\ a P". On a aussi des inclusions P\ a P"

pour tout i. Posons donc:
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vol
(5.2) carc (Pig)inf y„pp vol Y, g), quot (Pi g) —

La question qui se pose d'abord est le calcul des quot pour
/ 1, c'est fait. Pour i2,4, 8, voir le n° 6. Ensuite, introduisons les

assertions:

(5.3) « I (n;i)»:y g:quot(P",g)^ quot g0);

(5.4) « IC (n ;i) » : « I (n ;i) » et « quot (P-, g) quot (Pni9 g0) entraîne

(F", g) et (F", g0) sont isométriques »;

(5.5) « P (;n;i) »: 3 k > 0 telle que y g: quot (P", g) ^ k.

Voir le tableau, page 85.

6. Le cas kâhlérien.

Soit (M, g) une variété hermitienne, c'est-à-dire que M possède

une structure analytique complexe, dont on notera J la multiplication
par (—1)1/2 sur le fibré réel TM, et que g commute avec J : y x, y :

g (.J (x), J (y)) g (x, y). On en déduit sur M une forme alternée de degré
deux co, par

(6.1) y x, y : œ (x, y)g(x,J (7)).

L'inégalité de Wirtinger ([7], p. 40) entraîne que si Y est une sous-

I

variété compacte de dimension deux de M, alors

(6.2) : vol Y, g) ^ J coY, Végalité ayant lieu si et seulement si Y est une

sous-variété analytique complexe.

Supposons de plus (M, g) kâhlérienne, c'est-à-dire dœ 0 (on appelle co

la forme de Kähler de (M, g)). Si Y et Z sont homotopes:

| (6.3) j co|F J" co|z
-7. Y z

& d'après la formule de Stokes.
H

| Maintenant, (F^ go) est kâhlérienne, pour la structure complexe
canonique du projectif complexe Pn2 P\C). D'après (6.2) et (6.3), quel que

I soit Y ~ P\ et parce que P\ c P2 est une sous-variété analytique complexe,

pon a pour la forme de Kähler co0 de (.P2, g0):

I vol (7, g0) ^ j co0|y Jp^o|p^ vol (P\, g0).
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Ce qui démontre (voir (2.10)) que carc (Pl, go) Puis fiuot 0°2> go)

Soit maintenant g une s.r. kâhlérienne sur telle que laforme de Kâhler
associée co vérifie co co0 + da, où da est la différentielle extérieure d'une
différentielle a de degré un. De telles s.r. existent: prendre une fonction

/ : M -> R et poser co co0 + (— î)1/23âf; définir g par (6.1) à partir
de co. Pour / assez petite, g est encore définie positive. Pour toute variété

î n

hermitienne on a vg ^ a co, où n est la dimension complexe. On aura
donc:

vol (PI g) i j> a co i J> a vol (PI g0)

d'après la formule de Stokes. Puis, pour Y ~ P\:

vol (7, g) ^ Jy&>|y jp^lp1 ~ Jp^ojp1 carc (^2? go)
2

1

2 J 2
1

2

donc carc (Pl, g) carc (P^, g0). D'où quot (P", g) quot (P^, go) Pour
toute g du type précédent; or en général (P£, g) et (P^, g0) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La même méthode reste valable pour calculer quot (P4, g0) (resp.

quot (Pg, g0)). On considère cette fois-ci la forme canonique alternée de

degré 4 (resp. 8) de P4 (resp. Pg); on aura carc (P4, g0) vol (P4, g0) n2/6,
d'où quot (P4, g0) (voir tableau). De même: carc (Pg, g0) vol (Pg, g0)

vol (S8, g0/4) 7i4/8 .7.5.3. (d'après (2.10)); d'où quot (Pg, g0)

(tableau). Par contre, on ne sait pas ce qu'il en est de « IC (n;4)» ou
« IC (2 ;8) ».

7. Théorèmes de Loewner, Blatter.

La formule (4.1) peut encore servir à définir le carcan carc (M, g) de

n'importe quelle variété riemannienne compacte, puis

vol (M, g)
(7.1) quot (M, g) - n dim M.

(carc (M, g)f

Pour le tore de dimension deux x le résultat suivant a

été obtenu avant celui de Pu :

(7.2): théorème (Loewner, [14]). Pour toute g: quot (S1 x S1, g) ^ ^1;

en outre quot (S1 x S1, g) — — si e

à un tore équilatéral (voir (2.4.2)).

en outre quot (S1 X S1, g) — — si et seulement si (S1 X S1, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu'il n'y a même

pas à prendre de revêtement. On aboutit à quot (S1 X S1, g) ^
quot (R2/G, go/G), quotient d'un tore plat associé au réseau G de R2. Il
reste ensuite le problème de géométrie élémentaire: étudier les quotients
des tores plats.

Soit Gq la surface compacte orientable à q trous (ou surface orientable
de genre q, toutes ces surfaces sont difféomorphes à Gq).

(7.3): théorème (Blatter, [3]). Pour tout q quelle que soit la s.r. sur Gq:

quot (Gq9 g) ^ (t2q)1Iq (où les tn sont ceux définis par (7.4)).
La démonstration diffère radicalement de celles de (4.2) et (7.2); elle

repose sur l'emploi des formes harmoniques; et l'on intègre sur leurs
courbes de niveau.

Pour q ^ 2, la situation diffère de celle de (7.2); les bq sont bien les

meilleures possibles: bq inf
Q s r sur Gq quot (Gq, g), mais cette borne

n'est jamais atteinte si q ^ 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) y g: quot ((S1)", g) ^ inf quot (R"/G, tn.

G réseau de R"
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques tn ne sont pas connus, sauf pour 2 ^ n g 8 (voir [5], p. 332).
On sait aussi que tn > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que tn tend vers zéro lorsque n tend vers l'infini:
[5], p. 247.

Enfin, on voit bien quel est le problème type dont ceux qui précèdent
ne sont que des cas particuliers; soit M une variété C00 compacte et a, ß,...
différentes classes d'homologie, d'homotopie (libre) de M. Pour toute
telle classe on définit, pour toute s.r. g sur M:

(7.5) a (g) inf Ye0L vol F, g)

où la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent à la classe a considérée. Remarquons en passant que l'on
ne se préoccupe pas de la réalisation de a (g) par une sous-variété Y ; mais

ce n'est pas par manque d'intérêt! Le problème général est: existe-t-il, sur
certaines variétés, des relations entre oc (g), ß (g), indépendantes delà
s.r. g sur Ml Le théorème de Pu est relatif au cas où a est la classe

fondamentale (de dimension deux) de P\ M et ß la classe des droites projectives;
on a a (g) ^ | (ß (g))2 pour toute g. Le théorème de Loewner montre, en



tout cas, que si M, N sont deux variétés compactes, et si a (resp. ß) est la

classe d'homotopie de M X N qui représente M (resp. A), alors on n'a pas

en général: vol(MxA, g) ^ a (g). ß (g) pour toute g. Voir aussi [11 '].

Géodésiques.

8. Définition.

Après les volumes, les invariants riemanniens qui se présentent naturellement

sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points

m, ne M:

j (8.1) d Çm, n) inf c long (c, g)

I (où la longueur est celle définie en (3.5) et la borne est inférieure est prise

| sur l'ensemble des courbes d'extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] réfèrent au
li vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)

est canoniquement un espace métrique. En outre la topologie de variété de

I. M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
I; [1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C1 qui

localement réalisent cette distance et sont à vitesse constante i.e. c : I -» M
fj (/intervalle de R) est une géodésique si \c'\ est constante et si y t e / g t' >
fi > t, t' e I, tel que long (c|[t>n, g) d(c (t), c '))•

Pour (R", g0) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S c R3, ce sont les courbes dont l'accélération

y! est normale à S. 1

;.;j On ne peut guère travailler qu'avec des v.r. complètes, c'est-à-dire
complètes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;

7 [1], p. 235) que si (M, g) est complète:

' (8.2) ym,neMp[c, courbe d'extrémités 777,77, telle que long (c, g)
d (777,77) ;

(8.3) yxeTM il existe une géodésique unique c: R -> M telle que
I c' (0) x.

I Remarques :

i| (8.4): la courbe dont l'existence est affirmée en (8.2) est toujours une
: géodésique; une telle courbe n'est pas unique en général: voir (9.2) et

I prendre sur (S'\ g0) deux points 777, n antipodes. Par contre on démontre
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([13], p. 59; [12], p. 165; [1], p. 224) que si m, n sont assez voisins, cette

plus courte géodésique (i.e. de longeur d (m, n)) est unique.

(8.5): les géodésiques sont invariantes par isométries: si/ : (M, g) (N, h)
est une isométrie et c une géodésique de (N, h)9 alorsfoc est une géodésique
de (M, g).

9. Exemples de géodésiques.

(9.1): les géodésiques de (Sn,g0) sont les grands cercles (parcourus
uniformément.

En effet, soit c une géodésique de (Sn, g0) et m, n deux points de c

assez voisins pour vérifier (8.4). Soit P le sous-espace vectoriel de dimensions
deux de Rn+1 déterminé par m et n, C le grand cercle P n Sn et s la symétrie
euclidienne par rapport à P et restreinte à Sn. Les seuls points fixes de s

sont les points de C. Comme s est une isométrie de (Sn, g0) elle transforme
la restriction c de c de m à n en une géodésique soc (d'après (8.5)); d'après
(8.4), on a donc s o c c, donc c c C. En particulier:

(9.2): les géodésiques de (Sn,g0) sont toutes des courbes simples (sans

point double), périodiques et de longueur 2n.

On va voir en fait que les géodésiques des (P", g0) ont les mêmes

propriétés.

(9.3): géodésiques des submersions riemanniennes.

Soit {M, g) (N, h) une submersion riemannienne (voir (2,5)); alors:

(9.4): si c est une géodésique de (M, g) telle que c' (0) e PTc(0), alors c est

horizontale (voir (3.6));

(9.5): si c est une telle géodésique horizontale de {M, g), alors poc est

une géodésique de (N, h).

(Pratiquement on obtient donc toutes les géodésiques de (N, h) par
projection des géodésiques horizontales de (M, g)).

Ces deux affirmations se démontrent ensemble. Soit c une géodésique
de (N, h) et m, n deux points de c assez voisins pour vérifier (8.4). Soit c

un relèvement horizontal db c et m, n les relèvements de m, n. Soit d la plus
courte géodésique demàiï (voir (8.4)); alors (d'après (3.6)):

long {p o d) rg long (d) ^ long (c w long (c) d (m, n).

Comme p o d est d'extrémités m, n c'est donc (d'après (8.4)) que l'on doit
avoir l'égalité partout d'où (d'après (3.6)) nos assertions.
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(9.6): géodésiques des P] (i= 1, 2, 4).

Considérant les submersions riemanniennes (2.9), on voit que (9,5)

montre que les géodésiques des (P", g0) sont les projections des géodésiques

horizontales (pour la submersion considérée) de Sm+l~1. Il suffit donc

de savoir comment se projettent les grands cercles horizontaux de

Sin+i-i sur pn 0n voit d'abord que les grands cercles de s*1'1 revêtent

tous deux fois les géodésiques de (P", g0), parce que p {-m) p {m) pour
tout m e Sin + i~x. Donc:

(9.7): les géodésiques des (P", g0) sont toutes des courbes simples,
périodiques et de longueur n.

Pour se faire une idée de la géométrie des P" (i=0, 1,2,4), il faut

encore savoir comment se rencontrent deux géodésiques c, d issues d'un

m c (0) d (0). Pour (Sn, g0), elles se rencontrent exactement à la

distance n en l'antipode de m, puis de nouveau en m au temps 2n (et c'est

tout!). On en déduit que pour (PJ, g0), revêtu deux fois par (Sn,g0)9 les

géodésiques issues d'un m e P" ne se rencontrent pas ailleurs qu'en m (ce

sont les droites projectives passant par m). Le milieu (situé à une distance

~ de m) de ces géodésiques de P" passant par m décrit l'hyperplan projectif
dual de m, dans la dualité associée à la structure euclidienne de Kn+1.

Pour les P" (z=2, 4), on note d'abord que TmP}\ est un Pf-espace vectoriel.
La relation d'équivalence sur Kn+1 — {0}, qui donne naissance à P" montre

que ([1], p. 130) c et d ne se rencontrent pas ailleurs qu'en m si

d' (0) $K. c' (0). Si par contre d' (0) eK. c' (0), alors c et d se rencontrent
en plus seulement en leur point à distance | de m. En outre, lorsque d' (0)

parcourt K. c' (0), les géodésiques correspondantes forment une sphère de

dimension i de P", sphère qui n'est autre qu'une droite projective. Et lorsque
ces différentes z-sphères-droites projectives passant par m remplissent P",
les antipodes de m sur ces sphères décrivent l'hyperplan projectif dual de

m (pour la structure hermitienne de /PI+1), hyperplan qui est une sous-
variété de dimension réelle i {n-1) de P". On notera aussi que ces droites
projectives (resp. hyperplans projectifs) sont isométriques (comme sous-
variété de (P", g0)) aux (S\ \g0) (resp. (P'-~ \ g0)) (ce sont même des sous-
variétés totalement géodésiques).

(9.8): le cas de (Pg, g0).

Pour étudier les géodésiques de (Pg, g0), il faut (voir (2.7)) utiliser la
technique des espaces symétriques; on trouvera dans [11], p. 356 et surtout
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dans [4], p. 466, le fait que le comportement des géodésiques de (P\, g0) est

exactement le même que celui décrit précédemment pour les géodésiques
des (F", g0) (i= 1, 2, 4), en prenant K Ca et / 8.

10. Géodésiques périodiques.

(10.1) : définition : une géodésique c : [a, b] -> (M, g) est dite périodique
(ou ferméeJ si c est non constante et si c' (a) c' (b). Elle est dite en outre

simple si est injective.
Le mot périodique est justifié parce que (8.3) montre que c se prolonge

en une géodésique c : R -> M telle que c= c et c(t+b — a) c (t)
pour tout t. La figure 1 ne représente pas une géodésique périodique (mais
seulement un lacet géodésique), la figure 2 représente une géodésique

périodique non simple, la figure 3 représente une géodésique périodique
simple :

c

Fig. 1 Fig. 2

c'facW

Fig. 3

Pour une v.r. (M, g) on introduit les trois assertions:

(10.2): « GPS (m) »: Y x e TmM, x ^ 0, la géodésique c telle que c' (0) x
est périodique, simple et de longueur n ;
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I (10.3): << GPS »: 3 m e M tel que << GPS (m) >>;

(10.4) : « TOPS » : V m e M on a « GPS {m) ».

Exemple : les (S", %g0) et les (P", g0) (/= 1, 2, 4, 8) vérifient « TGPS ».

Ce qui précède conduit naturellement à deux types de problèmes:

(i) : dans quelle mesure « GPS » ou « TGPS » caractérisent-elles les

(P'h £o)? (ii): existence d'une ou plusieurs géodésiques périodiques, voire

une infinité, sur une v.r.

11. Variétés telles que « GPS ».

On peut seulement espérer au plus que « GPS » caractérisent les variétés

differentiates P". En effet, soit m le pôle nord de Sn et G son groupe d'iso-

tropie, c'est-à-dire G {s e SO (w+1): s (m) m} (G est canoniquement

isomorphe à SO («)). Alors, pour n'importe quelle s.r. sur Sn qui est invariante

par G (i.e. toutes les actions de G sont des isométries), on a « GPS (m) »

(laissé au lecteur en exercice: les géodésiques issues de m sont les méridiens).
Et, bien sûr, de telles s.r. n'ont aucune raison d'être isométriques à g0.

Actuellement, d'une part on ne connait pas d'autres variétés que les

P] à posséder une s.r. telle que « GPS ». D'autre part, on a le résultat

suivant, dans lequel H* ; Z) représente l'anneau de cohomologie entière :

(11.1): théorème (Bott: [2], Samelson: [15]): soit (M, g) telle que « GPS ».

Alors 3 n et 3 i tels que H* (M ; Z) soit isomorphe en tant qu'anneau à

H*(P";Z).
Il faut remarquer qu'il existe ([6]) des variétés M, non homéomorphes

à Pl, mais cependant telles que H* (M; Z) et H* (Pl; Z) soient isomorphes
en tant qu'anneaux. C'est pourquoi il faudrait décider si, oui ou non, il
existe sur une de ces M, une s.r. telle que « GPS ».

La démonstration complète de (11.1) est colossale. Le point de départ
est la théorie de Morse usuelle. La condition « GPS» assure ceci: il existe

une filtration convenable de Q • (M), l'espace des lacets à point base de M,
par des sous-espaces Qk (M), filtration telle que les nombres de Betti
relatifs bk{Q{l + 1{M\Qjl{M)) soient tous nuls sauf un précis, qui est en
plus égal à un. La suite spectrale de cette filtration permet alors de déterminer

exactement ZT* (Ü • (M); Z) (à l'aide d'un seul entier encore inconnu
i). De H* (Q • (M); Z) on passe, par la suite spectrale de la fibration de

Serre, à H* (M; Z), dont on montre que c'est un anneau de polynômes
tronquée, le générateur est de degré i. Un résultat très profond de topologie
algébrique assure que ceci ne peut se produire que pour i + 0, 1, 2, 4 et n

quelconque ou si i 8 pour n 1,2 (où dim M ni). C.Q.F.D.
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12. Variétés telles que « TGPS ».

Un exemple surprenant est la surface de Zoll :

(12.1): théorème (Zoll, [16]): sur S2 il existe des s.r. g telles que « TGPS »

et que (S2, g) ne soit pas isométrique à (S2, g0).
Ainsi « TGPS » n'est pas caractéristique des (P", g0) en toute généralité.

D'ailleurs (communication de A. Weinstein) on peut construire des s.r.

analogues sur les Sny n ^ 2. Cependant « TGPS » caractérise (P2, g0):

(12.2): théorème (Green, [9]): si (P2, g0) est telle que «TGPS», alors
(P2, g) est isométrique à (P,2 go)-

Toutes les généralisations possibles de (12.2), pour différents n et i,

sont des problèmes entièrement ouverts. La démonstration de (12.2) est

absolument particulière à la dimension deux; elle utilise, pour vol (P2, g),
deux inégalités en sens contraire; la première est basée sur la formule de

Gauss-Bonnet en dimension deux et une inégalité dont l'extension en

dimension plus grande ne correspond plus à la formule de Gauss-Bonnet.

La deuxième inégalité utilise une formule de géométrie intégrale de Santalo

dont l'extension en dimension plus grande ne fonctionne que si le projectif
(P", g) (pour lequel on voudrait démontrer une généralisation du théorème

(12.2)) possédait une hypersurface homotope à P"-1 et totalement géo-

désique, ce qui n'est pas le cas en général.

13. Existence d'une géodésique périodique.

Une variété complète, non compacte, même non simplement connexe,
n'admet pas nécessairement de géodésique périodique (g.p.); exemple la

surface de révolution ci-après :

\
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Un théorème folklorique est le:

(13.1): soit (M, g) compacte. Alors, quelle que soit la classe d'homotopie

libre a (voir (7.4)) de M, a 0, il existe une g.p. c e a. En particulier si

| M est non simplement connexe compacte, elle admet toujours une g.p.

La démonstration est simple; on montre que la borne inférieure

a (g) inf cea long (c, g) est réalisée, parce que M est compacte ; et une
courbe réalisant cette borne inférieure est nécessairement une g.p.

Par contre, si Af, toujours compacte, est simplement connexe, la question
de l'existence d'au moins une g.p. est beaucoup plus difficile. Poincaré fut
le premier à démontrer une telle existence en 1905, pour (S2, g) avec g
analytique (Birkhoff étendit ce résultat à S11, g toujours analytique, en

1927). Mais il fallut attendre jusqu'en 1952 pour le:

(13.2): théorème (Fet-Lyusternik) : toute v.r. compacte admet une g.p.

La démonstration est un usage typique de la théorie de Morse. Cette
démonstration consiste à mettre en forme l'idée suivante, que nous
présentons sur S2. Soit Q (S2) C° (S1 ; S2) l'espace des courbes fermées
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(lacets sans point base) de S2. Dans Q (S2) on considère le chemin œ, dont
l'origine est la courbe constante pôle nord et l'extrémité la courbe constante

pôle sud, constitué par les parallèles de S2. Sur Q (S2) on a la fonction
longueur; si œ ne contient aucune géodésique, on peut le déformer
continûment en des chemins cof, de même extrémités, déformation dans laquelle
chaque courbe diminue strictement en longueur. Continuant ainsi, ou on
a trouvé une g.p., ou on a déformé œ en un chemin dont toutes les courbes

sont constantes (de longueur nulle). Or cette dernière possibilité est exclue

parceque œ est précisément un générateur de 7t2(*S2) # 0. C'est donc que
notre chemin co reste « accroché » et le point d'accrochage est précisément
une g.p.

14. Existence de plusieurs géodésiques périodiques.

De nombreux auteurs (Lusternik, Schnirelmann, Morse, Fet, Alber,
Klingenberg) ont obtenu des résultats partiels d'existence, sur une v.r.

compacte donnée, de plusieurs (2, 3, g.p. géométriquement distinctes
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(des g.p. cu ck sont dites géométriquement distinctes si les sous-ensembles

c1(R),..., ck{R) de M sont distincts). Nous ne donnons pas le détail de

leurs résultats; en effet il est actuellement raisonnable de conjecturer que

toute v.r. compacte admet une infinité de g.p. géométriquement distinctes.

D'abord, bien sûr, on ne connaît pas de v.r. compacte, de dimension

^ 2, dont on ait pu montrer qu'elle n'a qu'un nombre fini de g.p.
géométriquement distinctes. Ensuite d'une part on dispose maintenant du:

(14.1): théorème (Gromoll-Meyer, [10]): soit {bfc(£2(M))} la suite des

nombres de Betti de /'espace Q (M) C° (S1 ; M). Soit M une variété

compacte simplement connexe telle que la suite (bfc(ß(M))} n'est pas bornée

(i.e. y a e N g k tel que bk (ß(M)) > a. Alors, quelle que soit la s.r. sur

M, la v.r. (M, g) admet une infinité de g.p. géométriquement distinctes.

(Noter que les nombres de Betti bh {Q(M)) pour une variété M compacte
simplement connexe sont tous finis.)

D'autre part, bien que l'on ne sache pas exactement quelles sont les

variétés compactes M pour lesquelles la suite {bk(Q{M))} n'est pas bornée,
on a ceci : (i) plusieurs classes assez larges de M compactes ayant une telle
suite non bornée; (ii) les seules variétés simplement connexes connues pour
lesquelles cette suite est bornée sont les P". Or les P" ont, à vrai dire pour
leur s.r. canonique g0, une bonne infinité de g.p. géométriquement distinctes!
Remarquer que l'on ne sait pas, même pour des s.r. g voisines de g0, si

(P", g) admet une infinité de g.p. géométriquement distinctes.

Quant à la démonstration de (14.1), elle est fine et technique. En voici
un schéma heuristique, seulement dans le cas « non dégénéré » (le cas

dégénéré est cependant essentiel et complique grandement la démonstration).
Il faut connaître la théorie de Morse pour les sous-variétés critiques non-
dégénérées et pour les variétés de dimension infinie. On procède par
l'absurde: s'il n'y a qu'un nombre fini de g.p. géométriquement distinctes,
c'est qu'il existe k géodésiques périodiques simples cu es, telles que toute
g.p. soit un recouvrement fini de l'une d'entre elles. A chaque g.p. on
associe un index k; les inégalités de Morse disent que le nombre de g.p.
d'index égal à k est supérieur ou égal à bk (ß(M)). Etudiant les index k (m)
d'une g.p. recouvrant m fois une g.p. donnée, on trouve que k (m) croît,
en gros, comme une progression arithmétique. Ceci montre donc que les
bk sont bornés. C.Q.F.D.
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