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QUELQUES PROBLEMES DE GEOMETRIE RIEMANNIENNE
oU
DEUX VARIATIONS SUR
LES ESPACES SYMETRIQUES COMPACTS DE RANG UN

par M. BERGER

Cet article reproduit, avec quelques développements, une conférence
donnée 2 la réunion du groupe des mathématiciens rhodaniens, le 27 avril
1969 & Lausanne. C’est plutdt un article d’exposition, il n’apporte pas de
résultats nouveaux. Aprés avoir défini ce qu’est une variété riemannienne
(n° 1), on en donne des exemples (n® 2); parmi ceux-ci les projectifs réels,
complexes, quaternioniens et le plan projectif des octaves de Cayley jouent
un role & part. Avec les sphéres, ils forment exactement la classe des espaces
symétriques simplement connexes compacts de rang un. Ils servent de
modeéles pour les problémes soulevés dans les deux parties (volumes-
surfaces-longueurs, géodésiques) de l’article. On donne ensuite les défini-
tions de deux invariants riemanniens géométriques tres simples: les volumes
(n° 3), les géodésiques (n° 8). La contemplation des projectifs donne alors
lieu a des résultats (voir (4.3) et (12.2)) mais surtout a des problémes ouverts,
problémes qui nous ont semblé intéressants.

1. Définition des variétés riemanniennes.

Rappelons quelques définitions. Une variété a n dimensions M est un
espace topologique sépar¢ qui peut €tre recouvert par des ensembles ouverts
homéomorphes a des ouverts de R". Un homéomorphisme d’un ouvert U
de M sur un ouvert de R" est appelé une carte de domaine U; il associe a
chaque point de U un systéme de n nombres réels, qu'on appelle des
coordonnées locales. Une structure C* sur M consiste en la donnée d’une
classe privilégiée de cartes ou systemes de coordonnées locales, dont les
domaines recouvrent toujours M, jouissant de la propriété suivante: si les
domaines U et U’ de deux systémes de cette classe empiétent, les coor-
données d’un point de U n U’ dans I'un des systémes sont toujours des
| fonctions C® (c’est-a-dire indéfiniment différentiables de ses coordonnées
dans l'autre systéme. Une variété C* (ou variété différentiable de classe
| C~) est une variété munie d’une structure C®. Toutes les variétés consi-
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dérées ic1 seront C* et les coordonnées locales utilisées seront toujours de
la classe privilégiée.

Si M et M’ sont deux variétés, une application continue f de M dans
M’ est dite C*, si les coordonnées locales dans M’ de I'image f (m) d’un
point m de M sont des fonctions C* des coordonnées locales de m dans M.
Si f est bijective et si son inverse f ~! est aussi C*, on dit que f est un
difféomorphisme.

Un vecteur tangent a M au point m est défini, relativement a un systéme
de coordonnées locales uy, ..., u, dans un voisinage de m, par un systéme
de valeurs des différentielles duq, ..., du,. Relativement a un autre systéme
de coordonnées locales vy, ..., v, dans un voisinage du méme point m, le
méme vecteur est défini par les valeurs correspondantes des différentielles
dvy, ..., dv,, qui sont bien déterminées puisque les v; sont fonctions C*
des u;. Le fait que dv; est linéaire en les du; entraine que I’ensemble de tous

les vecteurs tangents & M en m est muni d’une structure d’espace vectoriel

et forme ainsi un espace vectoriel de dimension n; il est appelé ’espace
tangent a M en m et noté¢ T, M.

L’ensemble TM = v T,,M, réunion de tous les 7,,M, est canonique-
meM

ment muni d’une structure topologique et d’une structure C*, telles que,
si Uy,..,u, sont des coordonnées locales dans l'ouvert U de M,
TU = v T,M est un ouvert de 7M homéomorphe a U X R" et

meU

Uiy ouuy Uy, AUy, ..., du, sont des coordonnées locales dans TU. La variété
TM, appelée I’espace tangent a M, est en plus munie d’une structure d’espace
fibré vectoriel, les fibres de TM étant les 7, M.

A toute application C* de la variété M, de dimension n, dans une autre
variété M’, de dimension p, f: M — M’, est canoniquement associée une
application de TM dans TM’, appelée I'application tangente a f et notée
T (f). Elle est définie de la maniére suivante: si x est un vecteur tangent
a M en m, défini relativement a des coordonnées locales u4, ..., u, par un
systéme de valeurs de du;, ..., du,, son image 7 ( f) (x) est le vecteur tangent
a M’ en m’ = f(m) défini, relativement a des coordonnées locales v, ..., v
dans un voisinage de m’, par les valeurs correspondantes de dvy, ..., dv,,
valeurs bien déterminées puisque les v; sont fonctions C* des u;. Cette
application T (f) est C*, de plus, sarestriction a T,M, qu’on notera T,, (f),
est une application linéaire de T,M dans T, M’.

Une forme différentielle quadratique sur M est représentée, dans le
domaine d’un systéme de coordonnées locales u;, ..., u,, par une expression
telle que

p

o T N iy
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ou les g;; sont des fonctions de uy, ..., 4,. Si, pour tous les systemes de
coordonnées locales, ces coefficients sont des fonctions C*, on dit que
la forme est C®. Une structure riemannienne (s.r.) sur M n’est pas autre
chose qu’une forme différentielle quadratique g sur M, définie positive, et
C,. La forme bilinéaire symétrique associée permet de définir le produit
scalaire de deux vecteurs x et y tangents au méme point m de M et induit
une structure euclidienne dans T,,M. On notera ce produit scalaire g (x, y)
et I’on écrira

x| = (g (x, )"~

Par variété riemannienne (v.r.) on entend un couple (M, g) formé d’une

; variété M et d’une s.r. sur M. Une isométrie entre deux v.r. (M, g), (M’, g’)

est un difféfomorphisme f: M — M’ tel que f* g’ =g (ou (f* g') (x, y) =
=g (T(f) x), T(f) (). On dira que (M, g), (M', g’') sont isométriques
s’il existe entre elles une isométrie.

Pour le lecteur non spécialiste, nous avons donné, parfois simultané-

~ ment, trois références: [13], [12], [1]. La référence [13] est donnée parce

que son chapitre II fournit une initiation trés rapide ala géométrie rieman-
nienne; [12] est donnée car c’est un ouvrage de référence récent et trés

complet. Enfin [1] pourra étre agréable comme contenant la plus grande

partie des définitions, exemples et résultats de cet article, ceci en

- détail.
. 2. Exemples de variétés riemanniennes.

(2.1): lespace euclidien (R, g,).

Soit E un espace euclidien quelconque, dont (.I.) désigne le produit

~ scalaire; on en déduit sur E une s.t. canonique g,: en effet ’espace tangent

T,E a E en e s’identifie canoniquement par une application 7, & E lui-méme.
On définira donc g, par g, (x,y) = (1,(x) | 7(y)) pour tous x,ye T,E.

- Pour R", muni de son produit scalaire canonique, on obtient donc ainsi

une v.r. (R", g,).

(2.2):

Soit f: M — N une application différentiable et # une s.r. sur N. Si
Papplication tangente & f, T(f) : TM — TN est telle que, quel que soit
m, T, (f) est injective, alors g = f* h est une s.r. sur M. En effet f* h est
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toujours symétrique bilinéaire et elle est définie positive: v x # 0 : g (x, x) =

=(f*h) (x,x) =h(T(f)(x), T(f)(x)) >0 puisque T(f)(x)#0 car
T (f) injective. Deux cas particuliers de cette situation:

(2.3):

Soit (N, k) une v.r. e¢ M < N une sous-variété de N. Si i : M — N est
I'injection canonique, i*h = g est donc une s.r. sur M, qu’on notera
indifféremment (M, ) ou (M, hly,). Exemples:

(2.3.1): soit " = {xeR""!: |x|=1} la sphére de dimension »; de (2.1) et
(2.3) on déduit une s.r. canonique g, sur S": (S”, g,).

(2.3.2): le cas ou S est une sous-variété de dimension deux de R> (surface),
pour (R, g,), conduit au premier exemple historique de v.r.; gol g n’est
autre que la « premiére forme fondamentale » de S.

(2.4):

Soit M _’; N un revétement, 4 une s.r. sur N. On a donc sur M la s.r.
g = p*h; on dit alors que (M, g) i (N, h) est un revétement riemannien.
Du point de vue constructif, c’est plutdot la situation inverse que l'on
rencontre: soit (M, g) une v.r. et G un groupe d’isométries discret sans
point fixe de (M, g) et tel que ’application quotient M _P+ M|G = N soit
un revétement. Alors il existe sur N une s.r. unique 7 = g/G telle que
(M, g) _i (N, h) soit un revétement riemannien. Exemples:

(2.4.1): G est le groupe a deux éléments d’isométries de (S", g,) formé par
I'identité et I’antipodie. La variété quotient n’est autre que S"/G = P"(R),
I’espace projectif réel de dimension #; le revétement est évidemment a deux
feuillets. D’ou sur P*(R) une s.r. canonique, c’est (P"(R), g,) (appelé par-
fois espace elliptique).

(2.4.2): G est un réseau de R" (sous-groupe discret de rang maximum,
donc isomorphe & Z"). La variété quotient R"/G est le tore (S')" de dimen-
sion n. On obtient ainsi des v.r. (R"/G, g,/G) appelées tores plats; ainsi
nommées parce qu’elles sont toujours localement isométriques a (R”, g,).
Pour n = 2, le tore plat (R?*/G, g,/G) est dit équilatéral si G est déduit, par
une isométrie de R?, du réseau G, engendré par les deux vecteurs (1, 0)

et (3, 3):
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(2.5): submersions riemanniennes.

Soient M, N deux variétés et M i N une submersion,i.e. Vme M : T,(p)
est de rang égal a dim N. On peut alors définir en m € M le sous-espace
tangent vertical V,, de T, (M), & savoir le noyau V,, = T,(p)” '(0). Si de
plus g est une s.r. sur M, le sous-espace euclidien 7,,(M) admet une décom-
position orthogonale T, (M) = V,, @ H,,; le sous-espace H,, est dit horizon-
tal. Noter que la restriction de 7,(p) a H,, est un isomorphisme d’espace
vectoriels H,, = T,»(N). Soient enfin (M, g), (N, k) deux v.r. On dit que
(M, g) i (N, h) est une submersion riemannienne si p est une submersion
etsiVmeM : T,(p) : H,, = T, (N) est uneisométrie d’espaces euclidiens.
Les revétements riemanniens (2.4) en sont un exemple. Plus généralement
on est stir, étant donnés (M, g) et une submersion M i N, de pouvoir
construire une s.r. 4 sur N telle que (M, g) _i (N, h) soit une submersion
riemannienne, lorsque N = M/G ou G est une groupe d’isométries de
(M, g); car alors en effet les applications tangentes aux opérations de G
sur une fibre p~'(n), n € N, permutant transitivement et isométriquement
les T,,M, donc les H, (mep~'(n)), on pourra définir 4, par la condition
«Vmep~'(n):T,(p): H, > T,N est une isométrie d’espaces eucli-
diens ». En voici deux cas particuliers, fondamentaux pour la suite:

(2.5.1): espace projectif complexe (P"(C), g,).

Soit C""'—{0} i P"(C) Tespace projectif complexe de dimension
(complexe) n, défini comme quotient de C"*'—{0} par la relation d’équi-
valence « xRy » sig z€ C : y = zx. On munit C"*! de sa structure hermi-
tienne canonique |z|* = |(zo, ..., z,)|* = Z;z;Z;. On obtient encore P*(C)
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‘en restreignant p & S**! = {zeC"*! : |z]?=1} : §"*1 P P"(C) (Cest la
fibration de Hopf). En outre P"(C) apparait comme le quotient S*"*!/U
de S*"*! par le groupe U = {z.id" +*, z=1{ des homothéties de rapport
de module égal a 1. Comme U (1) = 0(2n+2), U consiste en isométries
de (S*"*1, g,) d’ou: il existe sur P"(C) une s.r. canonique g, telle que
($?"*1, g0) L, (P'(C), go) soit une submersion riemannienne.

(2.5.2): espace projectif quaternionien (P"(H), g,).

On procéde exactement de méme, en remplagant le corps C des
nombres complexes par le corps H des quaternions, U par Sp (1) =
= {z.id .y, |z|=1, zeH}, le groupe de Lie compact (homéomorphe 2

H

S?) des quaternions de module égal a 1. L’espace H"*! est muni de sa
structure hermitienne canonique X,;z;z;, On obtient sur P"(H) =

= S§*"*3/Sp (1) une s.r. canonique g, telle que (S*"*3, g,) * (P"(H), g,)
soit une submersion riemannienne.

(2.6): espaces homogenes.

Si I'on sait qu’il existe aussi un plan projectif des octaves de Cayley
P?(Ca) (mais pas de P"(Ca) pour les n = 3), on désirerait construire de
méme une s.r. canonique sur ce P%(Ca). Cela est impossible car il n’existe
pas d’application convenable S*° — P?(Ca); il faut employer un autre
procédé de construction, celui des espaces homogénes.

(2.6.1): soit G un groupe de Lie et H un sous-groupe compact de G. Alors
il existe sur M = G/H des s.r. G-invariantes, c’est-d-dire telles que toutes
les opérations de G soient des isométries.

C’est une affaire sans malice; on veut définir g,, me M. Soit
G _’; G/H = M et e = p (H). On pense a définir g,, a partir d’'une g, fixe
sur T,M et des applications tangentes 7 (y) des actions y de G sur M,
qui devront €tre des isométries d’espaces euclidiens. Ce sera possible si
c’est cohérent, c’est-a-dire si v ye H : T, (y) est une isométrie de 7,M.
C’est possible puisque H est compact: prendre g, structure euclidienne
quelconque sur 7,M et faire la moyenne g,, pour la mesure de Haar de H,
des y*g.. Cette moyenne.est bien T, (y)-invariante pour tout y € H; ensuite
on transporte g, en m quelconque de M par une T, (y) ou y est tel que

Y (e) = m.

(2.6.2): en outre, si H, par les T, (.), agit irréductiblement sur T,M, alors
M posséde, a un scalaire positif prés, une seule s.xr. G-invariante.
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Ceci provient simplement de ce qu’un groupe linéaire irréductible ne
peut pas laisser invariantes deux formes quadratiques définies positives non
proportionnelles; pour le voir, réduire I'une de ces formes par rapport a

Iautre.

Par exemple (2.6.2) nous tranquillise, lorsque nous pensions a écrire
les spheéres, les projectifs comme espaces homogénes: S” = SO (n+1)/SO (n),
P(C) = Um+1)/Un)x UQ), P"H) = Sp(n+1)/Sp(n) x Sp(1). Comme les
groupes d’isotropie H agissent dans tous ces cas de fagon irréductible, on
n’obtient pas, par cette méthode, d’autres s.r. que celles de (2.3.1), (2.5.1),
2.5.2.) (a un scalaire pres).

(2.7): le plan projectif des octaves de Cayley (P*(Ca), g,).

L’espace P?*(Ca), peut étre défini comme I’espace homogéne F,/Spin (9)
(voir [8]); Spin (9) agit de fagon irréductible d’ou, sur P?*(Ca) une s.r.
canonique (on prendra celle normée en sorte que toutes les géodésiques
soient de longueur 7, voir (9.8)): (P*(Ca), g,).

Nous poserons, pour tout n:

(2.8): P, = S", P{ = P"(R), P; = P"(C), Pj = P"(H), P = P?*(Ca);

Ainsi que K= R, C,H, Ca et i = dimy K. Noter que dimgP{ = i.n. On
aura donc les submersions riemanniennes:

(2.9): (S™"7 1 g0) ) (P g0), i=1,24.
On rappelle les diffSomorphismes entre P; et S (i=1, 2, 4, 8). En fait on
a méme des isométries entre

(2‘10) (Pfa gO) et (Sia %gO)a [ = 17 29 4> 8

Enfin, en tant qu’espaces homogénes, les P! se caractérisent comme
¢tant exactement I’ensemble des espaces symétriques de rang égal & 1:
[11], p. 354 et ii. Ces (P}, go) vont servir de modéles 2 une grande partie
de ce qui suit.

VOLUMES, SURFACES, LONGUEUR
3. Définitions.

Le fait simple et fondamental est:

(3.1): une v.r. (M g) admet une mesure canonique, V.

Heuristiquement, ceci vient de ce qu’un espace euclidien admet une
mesure canonique (la mesure de Lebesgue pour R"), et comme (M, g) est
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partout infinitésimalement un espace euclidien, on a gagné. Plus précisément:
pour un espace vectoriel euclidien, on prend une orientation quelconque
et soit » la dimension de cet espace F; il existe alors sur E une n-forme
alternée canonique, w; elle vaut w (e, ..., ¢,) = 1 sur toute base ortho-
normée directe {e;} de E (ce qui a un sens parce que le déterminant d’une

rotation est égal a 1). On peut aussi trouver w en remarquant que AE, d’une
part est euclidien, d’autre part est de dimension un, donc posséde un vecteur
unique de norme un correspondant a I’orientation choisie pour E; c’est
. Soit (M, g) une variété riemannienne, U un ouvert domaine d’une carte;
fixons une orientation sur U. D’aprés ce qui précéde il existe sur U une
n-forme canonique (n=dim M) m \» w,,. Pour f: M — R a support dans

U on pose [ fv, = [ fo, ausens de lintégrale sur une variété orientée d’une
M U

forme alternée de degré maximum. Il n’y a plus qu’a remarquer que la
valeur | fw ne change pas si 'on change l’orientation de U, puis que v, se
U

définit pour des fonctions a support compact quelconque a I’aide de parti-

tions de I'unité.

(3.2): soit (M, g) une v.r. compacte. Le volume de (M, g) est vol (M, g) =

= [v,, C’est-d-dire la masse totale de (M, g) pour sa mesure canonique
M

si dim M = 1, on dit longueur et écrit long (M, g), si dim M = 2, on dit
surface et écrit surf (M, g).

On peut calculer explicitement vol (P}, g,) pour tous n, i: voir le tableau.
Pour S”, c’est un vieux résultat. On passe de 1a a Py, revétu a deux feuillets
par S”, en divisant par deux.

Par trivialisation locale et le théoréme de Fubini on voit que:

(3.3): soit (M, g) _1_; (N, h) une submersion riemannienne, qui est une
fibration et supposons M compacte. Alors

vol(M, g) = [ vol(p™'(n), g). v

ne N

Appliquons ceci a P; (resp. Pj), pour g, bien siir. Les fibres sont des
grands cercles (resp. des sous-sphéres de dimension trois) de S*"*' (resp.
S4n*3) fibres ayant toutes méme longueur (resp. volume) égale a 27 (resp.
égal 4 272, voir tableau). D’ou les valeurs de la premicre ligne du tableau.

Pour (P2, g,), il faut employer d’autres méthodes; on en trouvera une
dans [1], p. 209.

Si N = M est une sous-variété de (M, g), on posera (voir (2.3)):

(3.4) vol (N, g) = vol (N, gly).

el
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Soit ¢ : [a, b] = M une courbe d’une v.r. (M, g); méme si ¢ ([a, b))
n’est pas une sous-variété de M on peut définir la longueur de ¢ par:

3.5 long(c,g) = [ |¢’ (®)|dt.

‘" Exemple : soit (M, g) (N, k) une submersion riemannienne; une courbe

¢ de M sera dite hor zzontale sic’ (t) € H ; pour tout 7. Des définitions (2.5)

et (3.5) on déduit:

(3.6): long(poc, h) < long(c, g); en outre long (p o ¢, h) = long (¢, ) s
- et seulement si ¢ est horizontale.

4. Le théoréme de Pu.

Avec cette seule notion de volume se posent déja des problémes naturels,

~ loin d’étre résolus en général. Commengons par un des rares cas ou l’on

ait un résultat. Soit g une s.r. sur P2, le plan projectif réel. A (P7, g) on

r 2
 peut attacher deux nombres réels, son volume vol (P, g) et son carcan,

carc (P, g), égal a4 la borne inférieure de la longueur des courbes fermées

de P; non homotopes a zéro:

(4.1) carc (P, g) = inf ,non ~ , long (¢, g)

~ou il s’agit de I’homotopie des courbes fermées (c’est-a-dire des lacets sans
- point base). Il est naturel d’espérer que si carc (P}, g) = k, alors surf (P3, g)

est supérieur ou égal a un nombre ne dépendant que de k. Définissons le

- quotient de (P%, g) comme le rapport homogéne de degré zéro:

- (42)  quot(Pi,g) =

surf (P3, 8)
(carc (P7, 2))*

La premiére chose 2 faire est de calculer quot (P73, g,). Le tableau donne

- le numérateur; pour carc (P37, g,), on utilise le théoréme (13.1) et (9.1)
- (i1 est bien naturel que les plus petites courbes non homotopes a zéro de

(P, g,) soient les droites projectives!). Donc quot (P2, g,) = 2/ (voir
tableau). L’interrogation précédente est complétement résolue par le:
(4.3): théoréme (Pu, [14]). Quel que soit las.r. g sur P71, on a quot (P2, g) =

- = quot (Pf, g0). En outre, si quot (Pi‘, g) = quot (P%, go0), alors (Pf, g) et
(P3, g,) sont isométriques.

Esquissons la démonstration (voir [14] ou [1], p. 309). On prend le

~revétement riemannien (voir (2.4)) (S?, g) de (P1, g). D’aprés le théoréme
fondamental de la représentation conforme, appliqué a (S?, g), il existe

HE
B,

L’Enseignement mathém,. t. XVI, fasc. 1. 6
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un difféomorphisme f: §? — S tel que £* g = « . g, Ol g, est la s.r.
‘canonique de S? et « une fonction sur S2. On peut modifier f de fagon a
pouvoir passer au quotient et trouver un difféomorphisme f de P; tel que
f¥*g=0a.g, a:P; > R. Les deux v.r. (P, g) et (P, a.g,) sont iso-
métriques, donc ont méme volumes et carcans. On est donc ramené en
fait & deux s.r. g, et a. g, sur P3; maintenant SO (3) agit sur (P}, g,) par
1sométries; on fait la moyenne par cette action et pour la mesure de Haar
de SO (3), de la fonction «!/?. Ceci donne une fonction &; la longueur
d’une courbe ¢ pour &.g, est la moyenne de la longueur des courbes
Y 0 cpour a . g,, y parcourant SO (3); donc carc (P, & .g,) = carc (P71, «. g).
L’inégalité de Schwarz (pour I'intégrale sur SO (3)) dit que surf (P7, dg,) <
< surf(Pi, a.g,). Donc quot(PZ &.g,) < quot(Pi, «.g,). Mais, en
fait, & est une constante, puisque SO (3) agit transitivement sur P;; donc
surf (P, & . g,) = & . surf (P2, g,) et carc (P, & . g,) = (%)'/?. carc(Pi, o).
D’ou la premiére partie du théoréme; la seconde se montre en suivant les
¢galités a la trace dans les inégalités.

Remarques : (1): on peut considérer (4.3) comme une espéce d’inégalité
isopérimétrique (isocarcanique!) entre surface et longueur, la longueur de
la frontiére étant remplacée ici par le carcan pour la variété sans bord P3;
(ii): (4.3) est une caractérisation plaisante de la s.r. canonique de P3.

5. Généralisations possibles.

Pour n quelconque, on peut définir carc (P71, g) exactement par la formule
(4.1) et remplacer (4.2) par

vol (P{, 2) .

(5.1 quot (P{,g) = o
(carc (Py, g))

On calcule encore avec (13.1): tableau. Par contre un analogue de (4.3)
est complétement ouvert; on ne sait pas si quot (P{, g) = quot (P1, g¢)
pour toute g (pour les variations conformes « . g,, c’est facile, démonstra-
tion analogue a celle de (4.3): voir [14]). A fortiori on ne sait pas si ’égalité
est caractéristique de g,. En fait on ne sait méme pas si la borne inférieure
inf , quot (P1, g), pour g parcourant toutes les s.r. sur Py, est strictement
positive.

En fait on peut encore généraliser toutes ces questions aux P;. Remar-
quons pour ce faire que, dans P7, dire qu'une courbe ¢ n’est pas homotope
A zéro est équivalent & dire qu’elle est homotope a P1, la droite projective
pour linclusion héréditaire P; = P}. On a aussi des inclusions P} < P'
pour tout i. Posons donc:
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vol (P}, 8)
(carc (P}, g))"
La question qui se pose d’abord est le calcul des quot (P3, go); pour

i = 1, c’est fait. Pour i = 2,4, 8, voir le n° 6. Ensuite, introduisons les
assertions:

(5.2) carc(P},g) = infy.pr vol(Y,g), quot(Pi,g) =

| (5.3)  «I(n;i)»: v g:quot (P}, g = quot (P} go);

(5.4) « IC (n;i)»: « I (n;i)» et «quot (P}, g) = quot (P}, go) entraine
(P, g) et (P, go) sont isométriques »;

| (5.5) «P(n;i)»: gk > 0 telle que vy g: quot (P}, g) = k.
Voir le tableau, page 85.

6. Le cas kdhlérien.

Soit (M, g) une variété hermitienne, c’est-a-dire que M possede
une structure analytique complexe, dont on notera J la multiplication
par (—1)Y? sur le fibré réel TM, et que g commute avec J:y X,y :
g(J (%), J(») = g (x,»). On en déduit sur M une forme alternée de degré
B deux w, par

[ 61)  vxy:ioky) =gk J0)
L’inégalité de Wirtinger ([7], p. 40) entraine que si Y est une sous-
variété compacte de dimension deux de M, alors

(6.2): vol (Y, g) = [ wy, Iégalité ayant lieu si et seulement si Y est une
: Y
sous-variété analytique complexe.

&' (6.3) fwlY = jwlz
i Y z

TR

d’aprés la formule de Stokes.
.. Maintenant, (F5, go) est kihlérienne, pour la structure complexe cano-
w nique du projectif complexe P; = P"(C). D’aprés (6.2) et (6.3), quel que

™%

B
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Mre
e

i o 1 1 cr,r .
i soit ¥ ~ P, et parce que P, = P; est une sous-variété analytique complexe,

@% 1
%%on a pour la forme de Kihler w, de (P, g,):

o

bl B

vol (Y, go) = jwo|1’ == jP;wOlP; = vol (Péa go)-
Y




84

Ce qui démontre (voir (2.10)) que carc (P3, g,) = 7, puis quot (P}, g,) = '_f-'

Soit maintenant g une s.r. kihlérienne sur P; telle que laforme de Kahler
associée w vérifie v = w, + du, ol du est la différentielle extérieure d’une
différentielle « de degré un. De telles s.r. existent: prendre une fonction
f:M - R et poser @ = wy + (—1)"265f; définir g par (6.1) & partir

de w. Pour f assez petite, g est encore définie positive. Pour toute variété
n

.. 1 . . .
hermitienne on a v, = 3 Aw, ol n est la dimension complexe. On aura
donc:

vol (P}, 8) = 1 [ A @ = 1 [ A @0 = vol (P}, go)

d’aprés la formule de Stokes. Puis, pour ¥ ~ P;:

vol (Y, g) = jYCOIY = jP;wIP; = jP;wOIP; = carc (P3, go)

donc carc (P;, g) = carc (P3, g,). D’ou quot (P3, g) = quot (P3, g,) pour
toute g du type précédent; or en général (P3, g) et (P3, g,) ne seront pas
isométriques; ainsi « IC (n;2) » est fausse.

La méme méthode reste valable pour calculer quot (P}, g,) (resp.
quot (P3, go)). On considére cette fois-ci la forme canonique alternée de
degré 4 (resp. 8) de P} (resp. P3); on aura carc (P}, g,) = vol (P}, g,) = 12/6,
d’ou quot (P}, g,) (voir tableau). De méme: carc (P2, g,) = vol (Pg, g,) =
— vol (S8, go/4) = 7*/8.7.5.3. (daprés (2.10)); d’ou quot (P2, g,)
(tableau). Par contre, on ne sait pas ce qu’il en est de « IC (n;4) » ou
« IC (2;8) ».

7. Théorémes de Loewner, Blatter.

La formule (4.1) peut encore servir a définir le carcan carc (M, g) de
n’importe quelle variété riemannienne compacte, puis
vol (M, g)

(7.1) quot (M, g) = (carc (M. ) n = dim M.

Pour le tore de dimension deux S' = S!' x S!, le résultat suivant a
été obtenu avant celui de Pu:

(7.2): théoréeme (Loewner, [14]). Pour toute g: quot (S'xS', 2) = %3—1
en outre quot (S* xS*, g) = -“-/2—3—

a un tore équilatéral (voir (2.4.2)).

si et seulement si (S* X S, g) est isométrique
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La démonstration démarre comme celle de (4.2), sauf qu’il n’y a méme
pas & prendre de revétement. On aboutit a quot(S'xS!, g) =
quot (R?/G, g,/G), quotient d’un tore plat associé au réseau G de R2. 1l
reste ensuite le probléme de géométrie élémentaire: étudier les quotients
des tores plats.

Soit G, la surface compacte orientable a ¢ trous (ou surface orientable
de genre g, toutes ces surfaces sont difféomorphes a G ).

(7.3): théoréme (Blatter, [3]). Pour tout q quelle que soit la s.x. sur G,
quot (G,, g = (t,,)"/? (o les t, sont ceux définis par (7.4)).

La démonstration différe radicalement de celles de (4.2) et (7.2); elle
repose sur ’emploi des formes harmoniques; et 'on intégre sur leurs
courbes de niveau.

Pour g = 2, la situation différe de celle de (7.2); les b, sont bien les

meilleures possibles: b, = inf , ;, sur 4, quot (G, g), mais cette borne
n’est jamais atteinte si ¢ = 2 ([1], p. 309).

Une bonne généralisation naturelle est de se demander si

(7.4) v g:quot((S),g) = inf quot (R"/G, g0/G) = t,.
G réseau de R”
Non seulement cette question est ouverte, mais en outre les nombres

arithmétiques ¢, ne sont pas connus, sauf pour 2 < n < 8 (voir [5], p. 332).
On sait aussi que £, > 0 et est réalisée effectivement:
[5], corollary, p. 143. Enfin que ¢, tend vers zéro lorsque » tend vers 'infini:
[5], p. 247.

Enfin, on voit bien quel est le probléme type dont ceux qui précédent
ne sont que des cas particuliers; soit M une variété C* compacte et «, S, ...
différentes classes d’homologie, d’homotopie (libre) de M. Pour toute

telle classe on définit, pour toute s.r. g sur M:

(7'5) o (g) — Il'lf Yea VO] (Ya g)

ou la borne inférieure est prise sur toutes les sous-variétés Y de M qui
appartiennent a la classe o considérée. Remarquons en passant que 1’on
ne se préoccupe pas de la réalisation de « (g) par une sous-variété Y; mais
ce n’est pas par manque d’intérét! Le probléme général est: existe-t-il, sur
certaines variétés, des relations entre o (g), B (g), ..., indépendantes de la
s.r. g sur M? Le théoreme de Pu est relatif au cas ot « est la classe fonda-
mentale (de dimension deux) de P = M et f3 la classe des droites projectives;
ona a(g) = %(ﬁ (2))* pour toute g. Le théoréme de Loewner montre, en

TR
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tout cas, que si M, N sont deux variétés compactes, et si o (resp. ) est la
classe d’homotopie de M x N qui représente M (resp. N), alors on n’a pas
en général: vol (MX N, g) = a(g). B (g) pour toute g. Voir aussi [11'].

GEODESIQUES.
8. Définition.

Aprés les volumes, les invariants riemanniens qui se présentent naturelle-
ment sont les géodésiques. Sur la v.r. (M, g) posons, pour deux points
mneM:

(8.1) d (m, n) = inf _long (¢, g)
(ou la longueur est celle définie en (3.5) et la borne est inférieure est prise
sur ’ensemble des courbes d’extrémités m, n).

On montre ([13], p. 62; [12], p. 166 toutes les références [12] référent au
vol. I de cet ouvrage, [1], p. 225) que d est une distance sur M; ainsi (M, g)
est canoniquement un espace métrique. En outre la topologie de variété de
M coincide avec la topologie de cette métrique ([13], p. 62; [12], p. 166;
[1], p. 226). Les géodésiques de (M, g) sont les courbes de classe C! qui
localement réalisent cette distance et sont a vitesse constante i.e. ¢ : [ — M
(I intervalle de R) est une géodésique si |c’| est constante et siy re [q ¢ >
> 1, ' €1, tel que long (c| . &) = d(c(2), c ().

Pour (R g,) les géodésiques sont les droites (parcourues uniformé-
ment); pour une surface S = R, ce sont les courbes dont I’accélération
est normale a S. o

On ne peut guere travailler qu’avec des v.r. complétes, c’est-a-dire
complétes pour la distance (8.1). On démontre ([13], p. 62; [12], p. 172;
[1], p. 235) que si (M, g) est compléte:

(8.2) ym,ne Mqgec, courbe d’extrémités m, n, telle que long (c, g) =

d (m, n);

(8.3) v xeTM il existe une géodésique unique c: R — M telle que
¢’ (0) = x.

Remarques :

(8.4): la courbe dont ’existence est affirmée en (8.2) est toujours une
géodésique; une telle courbe n’est pas unique en général: voir (9.2) et
prendre sur (S", go) deux points m, n antipodes. Par contre on démontre
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([13], p.-59; [12], p. 165; [1], p. 224) que si m, n sont assez voisins, cette
plus courte géodésique (i.e. de longeur d (m, n)) est uniqgue.

(8.5): les géodésiques sont invariantes par isométries: si f : (M, g) — (N, h)
est une isométrie et ¢ une géodésique de (N, 1), alors f o ¢ est une géodésique
de (M, g).

9. Exemples de géodésiques.

(9.1): les géodeésiques de (S", g,) sont les grands cercles (parcourus uni-
formément.

En effet, soit ¢ une géodésique de (S", g,) et m, n deux points de ¢
assez voisins pour vérifier (8.4). Soit P le sous-espace vectoriel de dimensions
deux de R** ! déterminé par m et n, C le grand cercle P n S" et s la symétrie
euclidienne par rapport a P et restreinte a S”. Les seuls points fixes de s
sont les points de C. Comme s est une isométrie de (S”, g,) elle transforme
la restriction ¢ de ¢ de m a n en une géodésique s o ¢ (d’aprés (8.5)); d’aprés
(8.4), on a donc so ¢ = ¢, donc ¢ = C. En particulier:

(9.2): les géodésiques de (S", go) sont toutes des courbes simples (sans
point double), périodiques et de longueur 27.

On va voir en fait que les géodésiques des (P}, g,) ont les mémes
propriétés.

(9.3): géodésiques des submersions riemanniennes.

Soit (M, g) *, (N, h) une submersion riemannienne (voir (2,5)); alors:

(9.4): si c est une géodésique de (M, g) telle que ¢’ (0) € H ), alors ¢ est
horizontale (voir (3.6));

(9.5): si ¢ est une telle géodésique horizontale de (M, g), alors poc est
une géodésique de (N, h).

(Pratiquement on obtient donc toutes les géodésiques de (N, i) par
projection des géodésiques horizontales de (M, g)).

Ces deux affirmations se démontrent ensemble. Soit ¢ une géodésique
de (N, h) et m, n deux points de ¢ assez voisins pour vérifier (8.4). Soit ¢
un relévement horizontal d& ¢ et m, 7 les relévements de m, n. Soit d la plus
courte géodésique de m a #i (voir (8.4)); alors (d’aprés (3.6)):

long(pod) < long(d) < long(c) = long(¢) = d(m, n).
Comme p o d est d’extrémités m, n c’est donc (d’apres (8.4)) que 'on doit
avoir I’égalité partout d’ou (d’aprés (3.6)) nos assertions.




__ 89 —

(9.6): géodésiques des P’ (i=1, 2, 4).

Considérant les submersions riemanniennes (2.9), on voit que (9,5)
montre que les géodésiques des (P, g,) sont les projections des géodésiques
horizontales (pour la submersion considérée) de S” '~ ' Il suffit donc
de savoir comment se projettent les grands cercles horizontaux de
Sin+i=1 gur P On voit d’abord que les grands cercles de S™*'7! revétent
tous deux fois les géodésiques de (P}, g,), parce que p (—m) = p (m) pour
tout me S™**~1, Donc:

(9.7): les géodésiques des (P, g,) sont toutes des courbes simples, pério-
diques et de longueur .

Pour se faire une idée de la géométrie des P" (i=0, 1, 2, 4), il faut
encore savoir comment se rencontrent deux géodésiques ¢, d issues d’un
m = ¢ (0) = d (0). Pour (8", g,), elles se rencontrent exactement a la
distance 7 en I’antipode de m, puis de nouveau en m au temps 2n (et c’est
tout!). On en déduit que pour (P, g,), revétu deux fois par (8", go), les
géodésiques issues d’un m € P] ne se rencontrent pas ailleurs qu’en m (ce
sont les droites projectives passant par m). Le milieu (situé a une distance
;' de m) de ces géodésiques de Py passant par m décrit I’hyperplan projectif
dual de m, dans la dualité associée a la structure euclidienne de K"**.

Pour les P} (i=2, 4), on note d’abord que T,, P} est un K-espace vectoriel.
La relation d’équivalence sur K" ' —{0}, qui donne naissance a P} montre
que ([1], p. 130) ¢ et d ne se rencontrent pas ailleurs qu’en m si
d' (0) ¢ K. c'(0). Si par contre d’ (0) e K. ¢’ (0), alors ¢ et d se rencontrent
en plus seulement en leur point a distance g de m. En outre, lorsque d’ (0)

parcourt K . ¢’ (0), les géodésiques correspondantes forment une sphére de
dimension 7 de P}, sphére qui n’est autre qu’une droite projective. Et lorsque
ces différentes i-sphéres-droites projectives passant par m remplissent P,
les antipodes de m sur ces spheres décrivent I’hyperplan projectif dual de
m (pour la structure hermitienne de K"*1'), hyperplan qui est une sous-
variété de dimension réelle i (n—1) de P}. On notera aussi que ces droites
projectives (resp. hyperplans projectifs) sont isométriques (comme sous-
variété de (P71, go)) aux (S%, 1g,) (resp. (P~ 1, g,)) (ce sont méme des sous-
variétés totalement géodésiques).

(9.8): le cas de (Pg, g,).

Pour étudier les géodésiques de (Pg, g,), il faut (voir (2.7)) utiliser la
technique des espaces symétriques; on trouvera dans [11], p. 356 et surtout




— 90 —

dans [4], p. 466, le fait que le comportement des géodésiques de (Pg, g,) est
exactement le méme que celui décrit précédemment pour les géodésiques
des (P}, go) (i=1, 2, 4), en prenant K = Ca et i = 8.

10. Géodésiques périodiques.

(10.1): définition: une géodésique c : [a, b] > (M, g) est dite périodique
(ou fermée ) si c est non constante et si ¢’ (a) = ¢’ (b). Elle est dite en outre
simple si cl[a,b[ est injective.

Le mot périodique est justifié parce que (8.3) montre que ¢ se prolonge
en une géodésique ¢ :R —» M telle que €|y, = c et c(t+b—a) = c(t)
pour tout ¢. La figure 1 ne représente pas une géodésique périodique (mais
seulement un lacet géodésique), la figure 2 représente une géodésique

périodique non simple, la figure 3 représente une géodésique périodique
simple:

C,(O.’:CI(G’)

c'(a)
c(8)
Fig. 1 Fig. 2

(o '(a) = C'(G')

Fig. 3

Pour une v.r. (M, g) on introduit les trois assertions:

(10.2): « GPS(m)»:V xe T, M, x # 0, la géodésique c telle que ¢’ (0) = x
est périodique, simple et de longueur =;
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(10.3): « GPS»: A me M tel que « GPS (m) »;

(10.4): « TGPS»: Vme M on a « GPS (m) ».

Exemple: les (S, 1g,) et les (P}, go) (i=1, 2, 4, 8) vérifient « TGPS ».

Ce qui précéde conduit naturellement & deux types de problémes:
(i): dans quelle mesure « GPS» ou «TGPS» caractérisent-elles les
(P", g,)? (ii): existence d’une ou plusieurs géodésiques périodiques, voire
une infinité, sur une Vv.r.

11. Variétés telles que « GPS ».

On peut seulement espérer au plus que « GPS » caractérisent les variétes
différentiables P’. En effet, soit m le pdle nord de S” et G son groupe d’iso-
tropie, c’est-a-dire G = {s€ SO (n+1): s (m) = m} (G est canoniquement
isomorphe 4 S0 (n)). Alors, pour n’importe quelle s.r. sur S” qui est invariante
par G (i.e. toutes les actions de G sont des isométries), on a « GPS (m) »
(laissé au lecteur en exercice: les géodésiques issues de m sont les méridiens).
Et, bien siir, de telles s.r. n’ont aucune raison d’étre isométriques a g,.

Actuellement, d’une part on ne connait pas d’autres variétés que les
P a posséder une s.r. telle que « GPS ». D’autre part, on a le résultat
suivant, dans lequel H* (.; Z) représente I’anneau de cohomologie enticre:
(11.1): théoréme (Bott: [2], Samelson: [15]): soit (M, g) telle que « GPS ».
Alors An et Hi tels que H* (M; Z) soit isomorphe en tant qu’anneau a
H* (P}; Z).

Il faut remarquer qu’il existe ([6]) des variétés M, non homéomorphes
a P;, mais cependant telles que H* (M; Z) et H* (P ; Z) soient isomorphes
en tant qu'anneaux. C’est pourquoi il faudrait décider si, oui ou non, il
existe sur une de ces M, une s.r. telle que « GPS ».

La démonstration compléte de (11.1) est colossale. Le point de départ
est la théorie de Morse usuelle. La condition « GPS » assure ceci: il existe
une filtration convenable de Q - (M), I’espace des lacets a point base de M,
par des sous-espaces (2; (M), filtration telle que les nombres de Betti
relatifs b, (@2 1 {(M), Q,(M)) soient tous nuls sauf un précis, qui est en
plus égal & un. La suite spectrale de cette filtration permet alors de déter-
miner exactement H* (Q + (M); Z) (a I’aide d’un seul entier encore inconnu
i). De H* (Q - (M); Z) on passe, par la suite spectrale de la fibration de
Serre, & H* (M;Z), dont on montre que c’est un anneau de polyndmes
tronquée, le générateur est de degré i. Un résultat trés profond de topologie
algébrique assure que ceci ne peut se produire que pour i + 0, 1,2, 4 et n
quelconque ou si i =8 pour n = 1,2 (ot dim M = ni). C.Q.F.D.
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12. Variétés telles que « TGPS ».

Un exémple surprenant est la surface de Zoll:

(12.1): théoréme (Zoll, [16]): sur S* il existe des s.r. g telles que « TGPS »
et que (S?, g) ne soit pas isométrique a (S2, g,).

Ainsi « TGPS » n’est pas caractéristique des (P}, g,) en toute généralité.
D’ailleurs (communication de A. Weinstein) on peut construire des s.r.
analogues sur les S" v n = 2. Cependant « TGPS » caractérise (P31, g,):

(12.2): théoréme (Green, [9]): si (P, g,) est telle que « TGPS », alors
(P%, g) est isométrique a (P, g,).

Toutes les généralisations possibles de (12.2), pour différents n et i,
sont des problémes entiérement ouverts. La démonstration de (12.2) est
absolument particuliére & la dimension deux; elle utilise, pour vol (P%, g),
deux inégalités en sens contraire; la premicre est basée sur la formule de
Gauss-Bonnet en dimension deux et une inégalité dont [’extension en
dimension plus grande ne correspond plus a la formule de Gauss-Bonnet.
La deuxiéme inégalité utilise une formule de géométrie intégrale de Santalo
dont I’extension en dimension plus grande ne fonctionne que si le projectif
(P71, g) (pour lequel on voudrait démontrer une généralisation du théoréme
(12.2)) possédait une hypersurface homotope a4 P;~ ! et totalement géo-
désique, ce qui n’est pas le cas en général.

13. Existence d’une géodésique périodique.

Une variété compléte, non compacte, méme non simplement connexe,
n’admet pas nécessairement de géodésique périodique (g.p.); exemple la
surface de révolution ci-apres:

|

P A

P
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Un théoréme folklorique est le:

(13.1): soit (M, g) compacte. Alors, quelle que soit la classe d’homotopie
libre o (voir (7.4)) de M, o # 0, il existe une g.p. C € o. Ln particulier si
M est non simplement connexe compacte, elle admet toujours une g.p.

§
4y
Pe
it

o0

La démonstration est simple; on montre que la borne inférieure
o (g) = inf ., long (c, g) est réalisée, parce que M est compacte; et une
courbe réalisant cette borne inférieure est nécessairement une g.p.

Par contre, si M, toujours compacte, est simplement connexe, la question
de I’existence d’au moins une g.p. est beaucoup plus difficile. Poincaré fut
le premier & démontrer une telle existence en 1905, pour (S?, g) avec g
analytique (Birkhoff étendit ce résultat a S”, g toujours analytique, en
1927). Mais il fallut attendre jusqu’en 1952 pour le:

(13.2): théoreme (Fet-Lyusternik): toute v.r. compacte admet une g.p.

La démonstration est un usage typique de la théorie de Morse. Cette
démonstration consiste & mettre en forme 1'idée suivante, que nous pré-
sentons sur S2. Soit Q (S?) = C°(S'; $%) I'espace des courbes fermées
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(lacets sans point base) de S?. Dans Q (S?) on considére le chemin ®, dont
'origine est la courbe constante pole nord et I’extrémité la courbe constante
pole sud, constitué par les paralléles de S2. Sur Q (S?) on a la fonction
longueur; si w ne contient aucune géodésique, on peut le déformer conti-
nliment en des chemins o/, de méme extrémités, déformation dans laquelle
chaque courbe diminue strictement en longueur. Continuant ainsi, ou on
a trouvé une g.p., ou on a déformé w en un chemin dont toutes les courbes
sont constantes (de longueur nulle). Or cette derni¢re possibilité est exclue
parceque w est précisément un générateur de 7,(S*) # 0. C’est donc que
notre chemin w reste « accroché » et le point d’accrochage est précisément

une g.p.

n(sY
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14. Existence de plusieurs géodésiques périodiques.

De nombreux auteurs (Lusternik, Schnirelmann, Morse, Fet, Alber,
Klingenberg) ont obtenu des résultats partiels d’existence, sur une Vv.r.
compacte donnée, de plusieurs (2, 3,...) g.p. géométriquement distinctes
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(des g.p. ¢y, ..., ¢, sont dites géométriquement distinctes si les sous-ensembles
i ci(R), ..., c(R) de M sont distincts). Nous ne donnons pas le détail de
1 leurs résultats; en effet il est actuellement raisonnable de conjecturer que
© toute v.r. compacte admet une infinité de g.p. géométriquement distinctes.
D’abord, bien sfir, on ne connait pas de v.r. compacte, de dimension
=2, dont on ait pu montrer qu’elle n’a qu'un nombre fini de g.p. géo-
~ métriquement distinctes. Ensuite d’une part on dispose maintenant du:
- (14.1): théoréme (Gromoll-Meyer, [10]): soit {b(Q(M))} la suite des
- nombres de Betti de I'espace Q (M) = C° (S1; M). Soit M une variété
 compacte simplement connexe telle que la suite {b,(Q(M))} n’est pas bornée
(i.e. yaeNgk tel que b, (QM)) > a. Alors, quelle que soit la s.r. sur
M, la v.r. (M, g) admet une infinité de g.p. géométriquement distinctes.

(Noter que les nombres de Betti b, (2(M)) pour une variété M compacte
~simplement connexe sont tous finis.)

D’autre part, bien que I’on ne sache pas exactement quelles sont les

variétés compactes M pour lesquelles la suite {6,(2(M))} n’est pas bornée,
on a ceci: (1) plusieurs classes assez larges de M compactes ayant une telle
suite non bornée; (ii) les seules variétés simplement connexes connues pour
~lesquelles cette suite est bornée sont les P}. Or les P} ont, a vrai dire pour
leur s.r. canonique g,, une bonne infinité de g.p. géométriquement distinctes!
-~ Remarquer que 'on ne sait pas’, méme pour des s.r. g voisines de g,, si
(P%, g) admet une infinité de g.p. géométriquement distinctes.
Quant a la démonstration de (14.1), elle est fine et technique. En voici
- un schéma heuristique, seulement dans le cas «non dégénéré » (le cas
- dégénéré est cependant essentiel et complique grandement la démonstration).
- Il faut connaitre la théorie de Morse pour les sous-variétés critiques non-
dégénérées et pour les variétés de dimension infinie. On procéde par
~ 'absurde: s’il n’y a qu’un nombre fini de g.p. géométriquement distinctes,
- Cest qu’il existe k géodésiques périodiques simples ¢y, ..., cg, telles que toute
- g.p. soit un recouvrement fini de I'une d’entre elles. A chaque g.p. on
" associe un index k; les inégalités de Morse disent que le nombre de g.p.
d’index €gal a k est supérieur ou égal a b, (Q(M)). Etudiant les index k (1)
- d’une g.p. recouvrant m fois une g.p. donnée, on trouve que k (m) croit,
~ ¢n gros, comme une progression arithmétique. Ceci montre donc que les
b (Q(M)) sont bornés. C.Q.F.D.
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