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A NEW EXTENSION OF HOLDER'S INEQUALITY

by J. A. Carroll, R. Cordner and C. J. A. Evelyn

1. We prove

[I(AB L)ab ••• l]1/ab "•1 ^ [ZA*]1'* [ZBßbß]1/ßbß ••• [ZLU*]1/U* (1)

Where A, R, L are sets of non-negative real numbers, all sets having the

same number of members and a, a b, ß /, 1 are positive real numbers

with

1/a + 1//? H—I—h 1/2 ~ 1 //v.

The inequality holds, writing p for (ab /)

(a) When k 1 for all p

(b) When/t < 1 if p ^
When k > 1 if p ^ /c1/(1_/c)

There is equality if and only if
(a) every number in one of the sets A, B, L or all but one is zero, and

in the latter case those which are positive have the same rank.
Or

(b) a* bß lx and the sets Aa, Bß, Lx are proportional, and
k 1 or, if k ± hp ^ kll{1~k).

A variant of the result (1) is given in paragraph 7.

2) A well known extension of Holder's Inequality [1], [5] is, in our
notation [2]

Z[AB L] ^ [Z24a]1/a. [ZBß]1/ß [ZLX]1/X (2)

where Zl/oc 1, which is (1) for k 1, p 1.

Less commonly cited is a further extension by Jensen [3], [6] of 2 for
k < 1, p 1.

A rather different type of extension has recently been given by Daykin
and Eliezer [7].
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Our result extends Jensen's by covering the cases k 1, all p and

determining the restrictions on p when k # 1.

4) To prove our result we first transform the inequality (1) by writing p
for {ab 1) to obtain

I[AB ...L] < [ZAa*YJ.cu,a

which holds when

Ip/aaa ^ 1 (3)

by Jensen's Theorem [3] and Holder's Inequality [1].

Now if
II/a I Ik (4)

Ip/aaa (pjk) Ik/acf

> (p/k) 1 !(akbk

by Arithmetic Mean ^ Geometric Mean [4].

Thus 1 holds when pjkpk > 1.

This is so when k < 1 ifp ^ k1/(1~k) (6)

and when k > 1 if p ^ k1/(1~k)

h

The conditions for equality are readily seen.

5) If the conditions (6) are not met, the inequality (1) may still hold, as it
is possible for it to be true when Ip/aäx is not ^ 1, and there is no simple
test to cover this case: our conditions, when met, assure that Ip/aaa ^ 1.

6) Some special cases of interest are :

If p 1 1 holds for any k rg 1.

p < \/e 1 holds if k > 1.

p > l/e 1 holds if k < 1.

7. A variant of (1) is

£)p - I{AB L)pYIp

> [s4M" - ZA*"*]1""'''...[£CxlX (7)

To obtain this we consider

ni i />c I(AB L)p + {si* - lA*)*1* + +
which by (1) is
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^ (IAxa<x + séaa* - ZAyiaaa...

which gives (7).

8. Analagous integral inequalities only exist [8] when Iljcccf \/p, and

then (1) reduces to one form of Holder's Inequality for which the integral
analogue is well known.
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