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A NEW EXTENSION OF HOLDER’S INEQUALITY

by J. A. CARROLL, R. CorDNER and C. J. A. EVELYN

1. We prove
[Z(AB L)ab Z]I/ab ol < [ZAaa“]l/aaa . [ZBﬁbﬂll//)’bﬁ [ZL).Z)"]l/).l)' (1)
Where A4, B, ... L are sets of non-negative real numbers, all sets haviag the
same number of members and a, o b, B ... [, A are positive real numbers
with
1o+ 1/ + + + 1/2 = 1/k.
The inequality holds, writing p for (ab ... )

(@) When k =1 for all p

(b) When k < 1 if p = kLR
When k£ > 11f p < kYA

| There is equality if and only if

(a) every number in one of the sets 4, B, ... L or all but one is zero, and
in the latter case those which are positive have the same rank.
Or

(b) a* = b’ = ... = [* and the sets 4% B*, ... L* are proportional, and
k=1orifk #1, p=kV1P, '

A variant of the result (1) is given in paragraph 7.

2) A well known extension of Holder’s Inequality [1], [5] is, in our
notation [2]
Y[AB...L] < [ZA9'* . [ZBM)YF . [ZLMY* (2)

where Z1/a = 1, which is (1) for k == 1, p = 1.
Less commonly cited is a further extension by Jensen [3], [6] of 2 for
k<1, p=1.

A rather different type of extension has recently been given by Daykin
and Eliezer [7].




Our result extends Jensen’s by covering the cases kK = 1, all p and
determining the restrictions on p when k # 1.
4) To prove our result we first transform the inequality (1) by writing p
for (ab ... 1) to obtain
S[AB ... [] < [BA% ) = [spA et
which holds when
Zplaa® = 1 (3)

by Jensen’s Theorem [3] and Hoélder’s Inequality [1].
Now if

Xl = 1/k (4)
Zploa® = (plk) Zk/aa*
> (plk) . 1)(db" ... 1"
= plkp"
by Arithmetic Mean = Geometric Mean [4].
1.
kl/(l —k) > (6)

and when k > 1ifp < k00

Thus 1 holds when p/kp*

ARV

This is so when k < 1if p

The conditions for equality are readily seen.

5) If the conditions (6) are not met, the inequality (1) may still hold, as it
is possible for it to be true when Xp/xa” is not = 1, and there is no simple
test to cover this case: our conditions, when met, assure that Zp/aa® = 1.

6) Some special cases of interest are:

Ifp =1 1 holdsforany k < 1.
p < 1/e 1 holds if k > 1.

<
p > 1/e 1 holds if k < 1.
7. A variant of (1) is
(A B.... L)P — S(AB ... L)*}'/?

> [ﬂaa“ _ ZAaaa]l/aaa [gll)‘ ____ZL)JA]I/}_I}‘ (7)

To obtain this we consider
e Frsa Z(AB L)P _}_ (ﬂaa“ _ ZAaa“)p/aa“ ‘I‘ +
which by (1) is




é (ZAxa“ + %aaa . ZArxaa)p/aaa
which gives (7).

8. Analagous integral inequalities only exist [8] when X1/xa* = 1/p, and
then (1) reduces to one form of Holder’s Inequality for which the integral
analogue is well known.
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