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LA GEOMETRIE ALGEBRIQUE CLASSIQUE ET SES PROBLEMES

par Lucien GODEAUX

du x1xe siécle et les premiéres décades du xxe. Les fonctions algébriques
4"‘ que l'on y considére appartiennent au domaine des nombres complexes
b ct le probléme qui se pose est de répartir les étres algébriques (courbes,
¥ surfaces, variétés) en classes, deux étres appartenant 3 une méme classe
£ si Pon peut passer de I'un a l'autre par une transformation birationnelle
(ne s’étendant pas, en tant que transformation birationnelle, aux espaces
f ambiants). Deux méthodes s’y manifestérent: I'une, d’aspect purement
géométrique, se rencontre chez Brill et Noether et surtout chez la brillante
E Fcole italienne de C. Segre, G. Castelnuovo, F. Enriques, F. Severi et de
E lcurs éléves! . L’autre, analytique, que Ion peut faire remonter & Riemann,
& fut surtout illustrée par les géomeétres frangais: Emile Picard, G. Humbert,
E P. Painlevé, ete. 11 reste, dans cette Géométrie algébrique classique, bien
¥ des problémes & résoudre et le but de cette courte note est d’appeler I’atten-
tion sur certains d’entre eux.

' . Les deux méthodes dont il vient d’étre question ne sont pas restées
¢trangeres I'une a Pautre. Les géometres italiens avaient été conduits a
"i partager les surfaces en deux catégories: sur les unes (surfaces réguliéres)
les courbes tracées sur la surface se distribuent en systémes linéaires, tandis
que sur les autres (surfaces irréguliéres), il existe des systémes continus de
courbes non linéaires. Certains indices faisaient supposer que les surfaces
irréguliéres sont celles pour lesquelles il existe des intégrales de différentielles
r totales de premiére espéce, introduites par Picard et appelées intégrales de
Picard. La réponse est affirmative et ce fut I'ceuvre de Castelnuovo,
Enriques, Severi. Le théoréme fut d’ailleurs démontré plus tard par
H. Poincaré par des méthodes transcendantes.

! Lors de la commémoration du centenaire de la naissance de Castelnuovo en 1965
a Rome, nous avons été prié d’indiquer la contribution du regretté savant a la Géométrie
algébrique. Voir notre note: La Géométrie algébrique italienne (Simposio internazionale
di Geometria algebricca, Rome, 1966).



— 60 —

2. Le théoréme dont il vient d’étre question dit que sur une surface
irréguliére, une courbe algébrique C appartient en général a un systéme
continu de courbes {C} formé de =c? systémes linéaires \C,, g ¢étant le
nombre dintégrales de Picard de premiére espéce linéairement indépen-
dantes appartenant a la surface.

Les courbes du systeme continu |C| infiniment voisines d’une courbe C
découpent sur celle-ci une série linéaire compléte. C'est la une propriété
fondamentale due & Enriques qui I'avait obtenue en ramenant la propriété
a celle d'un systéme continu de courbes planes avant des points doubles
variables et touchant une courbe fixe en un certain nombre de points
variables (1904). Bien des années plus tard, on s’est aper¢u que la démonstra-
tion d'Enriques n'était valable que si le genre géométrique de la surface est
nul (p, = 0). Cependant, la propriété est exacte car Poincaré n'en fait pas
usage dans sa démonstration. Un des probléemes de la Géométrie algébrique
est une démonstration purement géometrique du théoreme d'Enriques.

3. Répartir les variétés algébriques en classes signifie qu’il faut trouver
des caracteéres de ces variétés invariants pour les transformations bira-
tionnelles et de plus, dans chaque classe, construire des modeles projectifs
des variétés de maniere a prouver leur existence.

Clebsch a montré que les courbes rationnelles sont caractérisées par
leur genre p = 0. Lorsque Castelnuovo a voulu caractériser les surfaces
rationnelles. 1l s'est heurté a une difficulté. On peut définir le genre p d'une
courbe algébrique supposée plane. d'ordre n et n'ayant que des points
doubles (ce qui n’est pas une restriction) en calculant la dimension p — 1
du systeme des courbes adjointes d'ordre n — 3 passant par les points
doubles. Si I'on considére une surface F d'ordre » n'ayant qu'une courbe
double et des points triples a la fois pour la surface et pour la courbe (ce
qui n'est pas une restriction en vertu d'un théoréme de Beppo Levi), le
calcul du nombre de dimensions du systeme des surfaces adjointes d ordre
n — 4 passant par la courbe double peut donner un nombre p, — I inférieur
a la dimension effective p, — 1 (la différence ¢ = p, — p,, irrégularité de
la surface, est égale au nombre d'intégrales de Picard de premiere espece,
linéairement indépendantes, d'aprés le théoreme du n°® 1). Castelnuovo
avait d’abord cru que les conditions de rationnalité d'une surface étaient
la valeur zéro des genres arithmétique p, et géométrique p, de la surface,
mais il s’apercut que ces conditions n’étaient pas suffisantes. Appelons |C|
un svstéme linéaire de courbes tracées sur la surface F et |C| son systeme
adjoint, c'est-a-dire le svstéme linéaire dont les courbes découpent sur
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toute courbe C la série canonique de cette courbe. Pour que la surface F
soit rationnelle, il faut encore que le systéme |C”| adjoint au systeme )C ’l
ne contienne pas comme partie le systéme ‘C\. En d’autres termes, st 'on
désigne par P, — 1 la dimension du systeme |C” — (|, c’est-a-dire si P,
< est le bigenre de la surface F, la surface Fest rationnelle si Pona p, = P, = 0,

g la condition p, = 0 étant une conséquence de P, = 0.

3 Castelnuovo a construit une surface de genres p, = p, = 0, P, = 2 et
% Enriques une surface de genres p, = p, =0, P, = 1. Ceci posait une
E; question: existe-t-il d’autres surfaces de genres p, = p, = 0 dont le bigenre
© P, est supérieur a zéro? La question, posée en 1894, est au fond restée sans

réponse jusqu’a ce jour, bien que des exemples particuliers aient €t€ cons-
¢ truits. Récemment, nous avons pu démontrer qu'une surface F de genres
p. = p, = 0 possédant un systéme bicanonique |C" — C| irréductible de
i genre supérieur a deux, est I'image d’une involution du second ordre.
- privée de points unis, appartenant a une surface possédant une seule courbe
© canonique 2. Mais il reste a construire des surfaces de ce type. Et puis, il
- reste & construire des surfaces de genres p, = p, = 0 dont les systemes
pluricanoniques sont composés au moyen d’un faisceau de courbes ellip-
- liques, ce qui est le cas de la surface de Castelnuovo. M. Burniat a construit
~de nombreuses surfaces de cette espéce. Enriques a établi que le plan double
dont la courbe de diramation D est formée d’une courbe d’ordre 1 + 2
" possédant un point multiple O d’ordre n — 2, possédant en outre n — 2
* lacnodes dont les tangentes tacnodales passant par O, jointe a ces 1 — 2
¢ iangentes, a les genres p, = p, =0, P, = n — 3. De tel plans doubles
~existent pour les petites valeurs de 7, mais il reste a trouver une limite
£ supcrieure éventuelle de n. -

4. On sait qu'une courbe de genre p dépend de 3p — 3 modules (ou
le 2p — 1 modules si elle est hyperelliptique), deux courbes de méme
venre et dont les modules sont €gaux appartenant a la méme classe. La
¢termination du nombre des modules dont dépend une surface algébrique
¥ 1 fait 'objet de peu de recherches. Enriques a considéré le cas général 3.
fl définit un invariant 0 de la maniére suivante: soient sur une surface
algébrique F un systéme linéaire |C| de dimension supérieure a trois et
iC’] son adjoint. Dans un systéme triplement infini tiré de ]C , 11 existe un
E certain nombre s de points qui sont doubles pour oo ' courbes de ce systéme.

—

> Voir notre note Recherches sur les surfaces non rationnelles de genres géométrique
1 arithmétique nuls (Journal des Sciences Mathématiques, 1965, pp. 25-41).
. * F. ENRIQUES, Sui moduli delle superficie algebriche (Rendiconti della Accademia dei
R -incei, 1° sem. 1908, pp. 690-694; Memorie scelte di Geometria, Volume II, pp. 307-312).
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La surabondance du systéme |3C + C’l par rapport a un groupe de s points
relatifs & un quelconque des systémes linéaires oo tirés de ICI a une valeur
constante 0 qui ne dépend que de la surface et non du choix du systéme
linéaire |C] Cela étant, les surfaces de genre arithmétique p,, de genre
géométrique p,, de genre linéaire p'!) et de caractére 6 dépendent de

10p, — p, — 2p'"P + 12+ 0
modules.

Enriques a montré que pour une surface réguliére (p, = p,), 0 est au
moins égal a p,. M. B. Segre a montré que si la surface est irréguliére,
on a?

0=2p, —p,— 1.

Est-il possible comme dans le cas des courbes, d’exprimer 6 en fonction
des genres arithmétique, géométrique et linéaire de la surface?

Il semble que cette question des modules d’une surface algébrique devrait
étre approfondie. Ce qui manque peut-€tre est la construction précise de la
variété de Riemann attachée a une surface algébrique, c’est-a-dire de la
variété réelle a quatre dimensions représentant les points réels et complexes
de la surface. On sait d’ailleurs que contrairement a ce qui se passe pour les
surfaces de Riemann, la variété de Riemann d’une surface n’est pas la plus
générale des variétés réelles a quatre dimensions.

5. Une équation algébrique f(x, y) = 0 définit une fonction algébrique
¥(x) et a un point de la droite y = 0 correspondent un certain nombre 7
de valeurs finies de y en général distinctes. Il y a un certain nombre de points
de la droite y = 0, situés sur les tangentes a la courbe /= 0 paralléles a
I’axe des y, auxquels correspondent » points dont deux coincident. Ce sont
les points de diramation de la fonction y(x). D’apres le théoréme d’existence
de Riemann, on peut construire des fonctions algébriques y(x) ayant
2n 4 2p — 2 points de diramation donnés, la courbe f == 0 étant de genre p.

Une équation algébrique f(x, y, z) = 0 définit une fonction algébrique
z(x, y) et & un point du plan z = 0 correspondent un certain nombre n
de valeurs finies de la fonction z. Si 'on reprend le raisonnement précédent,
la fonction z(x, y) posséde dans le plan z = 0 une courbe de diramation D
et le probléme qui se pose est de déterminer la nature d’une courbe de
diramation pour que la fonction z(x, y) existe. L’ensemble de la fonction
z(x, y) et de la courbe de diramation s’appelle plan multiple d’ordre .

4 B. SEGRE, Sui moduli delle superficie algebriche irregolari (Rendiconti della Acca-
demia dei Lincei, 1° sem. 1934).
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Pour 7z = 2 la courbe de diramation peut étre quelconque et le probleme
ne se pose pas. Mais pour n > 2, il n’en est plus de méme et la courbe D
doit posséder un certain nombre de points doubles et de points de
rebroussement.

Lorsque 1’on considére une droite du plan z = 0, il existe d’apres le
théoréme de Riemann une fonction algébrique z, d’une variable qui a
comme points de diramation les points de rencontre de la droite avec la
courbe D. Lorsque la droite tourne autour d’un point O, ces fonctions
doivent se fondre dans la fonction z(x, y). On congoit la difficulté du pro-
bléme, il exige pour étre résolu I’étude des diverses substitutions des valeurs
de la fonction z, aux points de diramation et leurs variations lorsque la
droite varie. Chisini a profondément étudié ce probléme et a construit
§ des courbes de diramation trés générales, mais la question mérite d’étre
® reprise ®. Ici aussi le connaissance de la variété réelle de Riemann serait
| sans doute trés utile.

: 6. En dehors des surfaces hyperelliptiques, on connait peu d’exemples
© de surfaces algébriques dont les coordonnées des points s’expriment par
des fonctions uniformes de deux parameétres. Il semble cependant que I’on
pourrait construire de tels exemples en utilisant les fonctions fuchsiennes.
: Les premiers exemples de surfaces irrégulieres non réglées ont été
"‘ construits par De Franchis, Maroni et Severi par la considération du
¢ produit de deux courbes algébriques C,, C, de genres p,, p,. La surface F
ainsi obtenue, représentant les couples de points des courbes C;, C, a les
| genres

Pg = P1P2s DPa = P1P2 — (py + P2)s P(l) = 8(py — D(p, — 1)“’"‘1‘

.. Poincaré ayant démontré que les coordonnées des points d’une courbe
algébrique s’expriment par des fonctions fuchsiennes d’un paramétre, les
coordonnées des points d’une surface F pourront s’exprimer en fonction des
- produits des fonctions fuchsiennes relatives aux courbes C, C,. Cet exemple
de représentation des coordonnées des points d’une surface algébrique par
' des fonctions uniformes de deux parametres sera sans doute peu intéressant,
- mais celui que I'on obtient en considérant la surface F qui représente les
- couples de points non ordonnés d’une courbe algébrique C de genre p sera
| ‘;peut—étre plus digne d’intérét. Cette surface F a les genres

pe="Yap(p = 1), p,=Yiplp—1) —p, pP=(p— 24 — 5.

5 O. CuisINI, Memorie scelte (Bologna, Zanichelli, 1961).
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On peut aller plus loin et considérer le cas ou la courbe C contient une
involution cyclique d’ordre premier n > 2, dont I’image C’ a le genre p'.
A cette involution correspond sur la surface F une involution cycligue
d’ordre n n’ayant qu’un nombre fini de points unis. Nous avons pu démon-
trer que la surface F’ qui représente cette involution a irrégularité p’. En
utilisant les résultats obtenus par Comessatti sur les liaisons existant entre
les fonctions fuchsiennes associées aux courbes C, C’, on obtiendrait une
représentation des coordonnées des points de la surface F’ par des fonctions
uniformes de deux parameétres sans doute trés particuliére mais qui pourrait
peut-€tre fournir quelques indications utiles ©.

7. La Géométrie sur un étre algébrique développée dans les cas des
courbes et des surfaces a été étendue aux variétés a plusieurs dimensions
surtout par F. Severi. On doit & ce géométre et & M. E. Marchionna de
profondes recherches sur les irrégularités des variétés algébriques a n
dimensions, c’est-a-dire sur les nombres des intégrales de premicre espece
analogues aux intégrales de Picard attachées a une surface .

Un systéme de groupes de n points dans un espace projectif S, a r
dimensions, dépendant de r paramétres, tel qu’un point de ’espace appar-
tienne généralement a un seul groupe, est appelé¢ involution d’ordre 7.

Liroth a démontré qu’une involution d’ordre n appartenant & une
droite est rationnelle ou, ce qui revient au méme, qu'une courbe dont les
coordonnées des points sont des fonctions rationnelles d’un paramétre est
rationnelle. Castelnuovo a démontré plus tard qu’une involution plane est
rationnelle, c’est-a-dire qu’une surface dont les coordonnées des points
sont des fonctions rationnelles de deux paramétres est rationnelle. La
démonstration de Liiroth est élémentaire, celle de Castelnuovo est loin de
I’étre. On devrait donc s’attendre a ce que I’extension du théoréme aux
espaces a plus de deux dimensions ne soit pas possible. Et de fait, Enriques
a réussi a construire dans un espace a trois dimensions, une involution qui
n’est pas rationnelle. La question est évidemment liée a la détermination
des variétés rationnelles 2 trois dimensions au moins.

8. En 1890, Noether s’est posé la question de savoir si la variété cubique
de Pespace a quatre dimensions est rationnelle. Il est seulement parvenu a
montrer qu’elle représenie une involution du second ordre appartenant a
un espace a trois dimensions. Cela a été fait ensuite de plusieurs maniéres.

6 COMESSATTI, Le involuzioni sulle curve algebriche ed il teorema di diramazione per le
Junzioni fuchsiane (Memorie della Accademia dei Lincei, 1929, 56 p.).
7 SEVERI, Geometria dei sistemi algebrici..., Volume III.

IR
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Pour démontrer par ’absurde que la variété cubique de I’espace a quatre
dimensions n’est pas rationnelle. Enriques proposait la méthode suivante:
la variété cubique de I’espace S, possédant un point double est rationnelle,
elle est représentée sur un espace S a trois dimensions par le systéme des
surfaces cubiques passant par une courbe C d’ordre six et de genre quatre.
Si la surface cubique générale est rationnelle, elle est représentable sur
I’espace S5 par un systéme de surfaces d’ordre n > 3 et lorsque la varicte
cubique générale varie par continuité et tend vers une variété possédant
un point double, ce systéme doit se réduire au systéme de surfaces cubiques
augmenté d’une surface d’ordre n — 3. La somme de cette surface et d’une
surface cubique doit étre une surface de genre zéro, ce qui semble impos-
sible. Comme Enriques le dit explicitement, ce raisonnement devrait étre
rendu rigoureux.

Fano a abordé la question d’une maniére différente. Il a étudié systé-
matiquement les variétés V a trois dimensions d’ordre 2p — 2 situées dans
un espace S,,; a p + 1 dimensions, dont les sections par des espaces a
p — 1 dimensions sont des courbes de genre p. La variété cubique de S,
est birationnellement équivalente aux variétés V que I’on obtient pour p = 8
et p = 13. Dans le premier cas, la variété V est la section hyperplane de la
variété de Grassmann qui représente les droites d’un espace S5 dans un
espace S, a neuf dimensions. Fano a réussi a démontrer que pour
p==13,4,5,6, 8 les variétés V' ne contiennent que des surfaces intersections
complétes d’hypersurfaces de I’espace ambiant. Elles ne sont pas ration-
nelles. De plus, pour p = 5, 6, 8 les variétés appartiennent a des classes
différentes. L’involution construite par Enriques dans un espace a trois
i dimensions a pour image la variété intersection d’une hyperquadriciue et
. d’une hypersurface cubique de I’espace & cinq dimensions, ¢’est-a-dire une
variété V pour p = 4.

Fano a de plus démontré que pour p > 10, sauf pour p = 13, la variété
V est rationnelle. La variété V' n’existe d’ailleurs que pour p < 37,

Il est bien évident que toute variété rationnelle a trois dimensions a son
genre géométrique et tous ses plurigenres égaux a zéro. Nous avons pu
construire une variété a trois dimensions dont le genre géométrique, le
bigenre, le trigenre, le tétragenre sont nuls, mais dont le pentagenre est
€gal & l'unité. Il en résulte que I’égalité a zéro du pentagenre est une condition
nécessaire pour qu’une variété a trois dimensions soit rationnelle.
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9. Comme nous I’avons écrit plus haut, il importe que dans chaque
A classe de variétés algébriques, on construise un modeéle projectif des variétés.

E L’Enseignement mathém,. t. XVI, fasc. 1. 5
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Dans le cas des courbes, une classe de courbes de genre 7 a comme modéle
projectif une courbe d’ordre 27 — 2 située dans un espace & 7 — 1 dimen-
sions, sauf si la courbe est hyperelliptique. Dans ce cas, on peut prendre
comme modéle projectif une courbe plane d’ordre n possédant un point
multiple d’ordre n — 2.

Lorsqu’il s’agit de surfaces, Enriques a suggéré de prendre comme
modele projectif d’une classe de surfaces dont le genre géométrique est
Py 2 3, une surface dont les sections hyperplanes sont les courbes cano-
niques 8.

Peu d’exemples sont connus et ’on ne voit pas, sauf dans un cas, une
méthode générale permettant de déterminer ces modéles projectifs.

Si ’on part d’une des variétés a trois dimensions considérées par Fano,
d’ordre 2p — 2 dans un espace S,,, dont les sections par des espaces a
p — 1 dimensions sont de genre p et par conséquent dont les sections
hyperplanes sont des surfaces dont les courbes canoniques et pluricanoniques
sont d’ordre zéro, la surface découpée sur cette variété par une hyper-
quadrique a pour systéme canonique le systéme de ses sections hyperplanes.
La surface a les genres

pa:pg:p+29 p(l):4p—3'

Dans un espace a quatre dimensions, I'intersection d’une hypersurface
du quatriéme ordre et d’une hyperquadrique est une surface dont le systéme
canonique coincide avec le systeme des sections hyperplanes °.

10. On sait que si ’'on considére sur une courbe algébrique C des séries
linéaires |G,|, |G,|, ..., |G,| de groupes de points, la série compléte

G} = |Gy + G, + ... + G|

contient en général des séries partielles ne contenant aucun groupe formé
de groupes des séries données. Castelnuovo appelle somme minimum une
série comprise dans |G| telle que toute série partielle contenue dans cette
série comprennent des groupes formés de groupes des séries donnéesi®.
La considération de ces séries a conduit notamment Castelnuovo a déter-
miner le genre maximum d’une courbe d’ordre donné située dans un espace

8 F. ENRIQUES, Sulle classificazione delle superficie algebriche e particolarmente sulle
superficie di genere lineaire p(*) = I (Rendiconti della Accademia dei Lincei, 1° sem. 1914,
pp. 206-214, 291-297).

9 Au sujet de la classification des surfaces algébriques, on peut consulter P. BURNIAT,
Sur les surfaces de genre P, > 0 (Annali di Matematica, 1966, t. LXXI, pp. 1-24).

10 G. CASTELNUOVO, Sui multipli di una serie lineaire di gruppi di punti appartenente ad
une curva algebrica (Rendiconti del Circolo Matematico di Palermo, 1893, pp. 89-110);
Memorie scelte, Bologna, Zanichelli, 1937, pp. 95-113).
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a r dimensions. Dans ses Memorie scelte, Castelnuovo appelle I'attention
sur le probléme analogue relatif aux systémes linéaires de courbes tracées
sur une surface algébrique. Nous ne croyons pas que cet appel ait €té
entendu.
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