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LA GÉOMÉTRIE ALGÉBRIQUE CLASSIQUE ET SES PROBLÈMES

par Lucien Godeaux

Ce que l'on appelle aujourd'hui la Géométrie algébrique classique est

celle qui fut l'objet des recherches des mathématiciens dans le dernier tiers

J du xixe siècle et les premières décades du xxe. Les fonctions algébriques
j que l'on y considère appartiennent au domaine des nombres complexes
jj et le problème qui se pose est de répartir les êtres algébriques (courbes,

surfaces, variétés) en classes, deux êtres appartenant à une même classe

| si l'on peut passer de l'un à l'autre par une transformation birationnelle
| (ne s'étendant pas, en tant que transformation birationnelle, aux espaces

ambiants). Deux méthodes s'y manifestèrent: l'une, d'aspect purement
géométrique, se rencontre chez Brill et Noether et surtout chez la brillante
Ecole italienne de C. Segre, G. Castelnuovo, F. Enriques, F. Severi et de

leurs élèves1. L'autre, analytique, que l'on peut faire remonter à Riemann,
fut surtout illustrée par les géomètres français: Emile Picard, G. Humbert,
P. Painlevé, etc. Il reste, dans cette Géométrie algébrique classique, bien
des problèmes à résoudre et le but de cette courte note est d'appeler l'attention

sur certains d'entre eux.

1. Les deux méthodes dont il vient d'être question ne sont pas restées

étrangères l'une à l'autre. Les géomètres italiens avaient été conduits à

partager les surfaces en deux catégories: sur les unes (surfaces régulières)
les courbes tracées sur la surface se distribuent en systèmes linéaires, tandis
que sur les autres (surfaces irrégulières), il existe des systèmes continus de

courbes non linéaires. Certains indices faisaient supposer que les surfaces

irrégulières sont celles pour lesquelles il existe des intégrales de différentielles
totales de première espèce, introduites par Picard et appelées intégrales de
Picard. La réponse est affirmative et ce fut l'œuvre de Castelnuovo,
Enriques, Severi. Le théorème fut d'ailleurs démontré plus tard par
H. Poincaré par des méthodes transcendantes.

1 Lors de la commémoration du centenaire de la naissance de Castelnuovo en 1965
à Rome, nous avons été prié d'indiquer la contribution du regretté savant à la Géométrie
algébrique. Voir notre note: La Géométrie algébrique italienne (Simposio internazionale
di Geometria algebricca, Rome, 1966).
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2. Le théorème dont il vient d'être question dit que sur une surface

irrégulière, une courbe algébrique C appartient en général à un système
continu de courbes {C} formé de ocq systèmes linéaires |C|, q étant le

nombre d'intégrales de Picard de première espèce linéairement indépendantes

appartenant à la surface.
Les courbes du système continu \C\ infiniment voisines d'une courbe C

découpent sur celle-ci une série linéaire complète. C'est là une propriété
fondamentale due à Enriques qui l'avait obtenue en ramenant la propriété
à celle d'un système continu de courbes planes ayant des points doubles
variables et touchant une courbe fixe en un certain nombre de points
variables (1904). Bien des années plus tard, on s'est aperçu que la démonstration

d'Enriques n'était valable que si le genre géométrique de la surface est

nul (pg 0). Cependant, la propriété est exacte car Poincaré n'en fait pas

usage dans sa démonstration. Un des problèmes de la Géométrie algébrique
est une démonstration purement géométrique du théorème d'Enriques.

3. Répartir les variétés algébriques en classes signifie qu'il faut trouver
des caractères de ces variétés invariants pour les transformations bira-
tionnelles et de plus, dans chaque classe, construire des modèles projectifs
des variétés de manière à prouver leur existence.

Clebsch a montré que les courbes rationnelles sont caractérisées par
leur genre p 0. Lorsque Castelnuovo a voulu caractériser les surfaces

rationnelles, il s'est heurté à une difficulté. On peut définir le genre p d'une
courbe algébrique supposée plane, d'ordre /? et n'ayant que des points
doubles (ce qui n'est pas une restriction) en calculant la dimension p — 1

du système des courbes adjointes d'ordre n — 3 passant par les points
doubles. Si l'on considère une surface F d'ordre n n'ayant qu'une courbe
double et des points triples à la fois pour la surface et pour la courbe (ce

qui n'est pas une restriction en vertu d'un théorème de Beppo Levi), le

calcul du nombre de dimensions du système des surfaces adjointes d'ordre
n — 4 passant par la courbe double peut donner un nombre pa — 1 inférieur
à la dimension effective pg - 1 (la différence q pg - pa, irrégularité de

la surface, est égale au nombre d'intégrales de Picard de première espèce,

linéairement indépendantes, d'après le théorème du n° 1). Castelnuovo

avait d'abord cru que les conditions de ratiormalité d'une surface étaient

la valeur zéro des genres arithmétique pa et géométrique pg de la surface,

mais il s'aperçut que ces conditions n'étaient pas suffisantes. Appelons \C\

un système linéaire de courbes tracées sur la surface F et \C'\ son système

adjoint, c'est-à-dire le système linéaire dont les courbes découpent sur
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toute courbe C la série canonique de cette courbe. Pour que la surface F
soit rationnelle, il faut encore que le système \C"\ adjoint au système \C'\

| ne contienne pas comme partie le système |C|. En d'autres termes, si l'on
m désigne par P2 — 1 la dimension du système \C" — Cj, c'est-à-dire si P2

est le bigenre de la surface F, la surface Fest rationnelle si l'on apfl P2 0,

f la condition pg 0 étant une conséquence de P2 0.

j Castelnuovo a construit une surface de genres pa Pg 0, ^ 2 et

I Enriques une surface de genres pa pg 0, P2 h Ceci posait une

question: existe-t-il d'autres surfaces de genres pa pg 0 dont le bigenre

f P2 est supérieur à zéro? La question, posée en 1894, est au fond restée sans

I: réponse jusqu'à ce jour, bien que des exemples particuliers aient été cons-

truits. Récemment, nous avons pu démontrer qu'une surface F de genres
%Pu ~Pg — 0 possédant un système bicanonique \C — C| irréductible de

|| genre supérieur à deux, est l'image d'une involution du second ordre.

privée de points unis, appartenant à une surface possédant une seule courbe

y canonique 2. Mais il reste à construire des surfaces de ce type. Et puis, il
r reste à construire des surfaces de genres pa ~pg — 0 dont les systèmes

pluricanoniques sont composés au moyen d'un faisceau de courbes ellipse*

ï- tiques, ce qui est le cas de la surface de Castelnuovo. M. Burniat a construit
t; de nombreuses surfaces de cette espèce. Enriques a établi que le plan double

I dont la courbe de diramation D est formée d'une courbe d'ordre n + 2

T possédant un point multiple O d'ordre n — 2, possédant en outre n — 2

I; tacnodes dont les tangentes tacnodales passant par C, jointe à ces n — 2

tangentes, a les genres pa^ pg 0, P2 - - /? — 3. De tel plans doubles

I existent pour les petites valeurs de 7?, mais il reste à trouver une limite
1 supérieure éventuelle de n.

|j 4. On sait qu'une courbe de genre p dépend de 3p — 3 modules (ou
I: de 2p — 1 modules si elle est hyperelliptique), deux courbes de même

p aenre et dont les modules sont égaux appartenant à la même classe. La
|: détermination du nombre des modules dont dépend une surface algébrique
|j a fait l'objet de peu de recherches. Enriques a considéré le cas général3.

Il

il définit un invariant 9 de la manière suivante: soient sur une surface
algébrique F un système linéaire \C\ de dimension supérieure à trois et

\C\ son adjoint. Dans un système triplement infini tiré de |C|, il existe un
certain nombre s de points qui sont doubles pour oo1 courbes de ce système.

2 Voir notre note Recherches sur les surfaces non rationnelles de genres géométrique
et arithmétique nuls (Journal des Sciences Mathématiques, 1965, pp. 25-41).

3 F. Enriques, Sui moduli delle superficie algebriche (Rendiconti délia Accademia dei
Uncei, 1° sem. 1908, pp. 690-694; Memorie scelte di Geometria, Volume II, pp. 307-312).
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La surabondance du système |3C + C'\ par rapport à un groupe de s points
relatifs à un quelconque des systèmes linéaires oo3 tirés de |C| a une valeur
constante .9 qui ne dépend que de la surface et non du choix du système
linéaire |C|. Cela étant, les surfaces de genre arithmétique pa, de genre
géométrique pg, de genre linéaire /?(1) et de caractère 9 dépendent de

10/Jfl — Pg — 2p(1) + 12 + 0

modules.

Enriques a montré que pour une surface régulière (pa pg\ 9 est au
moins égal à pg. M. B. Segre a montré que si la surface est irrégulière,
on a 4

0^2 Pg ~ Pa—1-

Est-il possible comme dans le cas des courbes, d'exprimer 9 en fonction
des genres arithmétique, géométrique et linéaire de la surface?

Il semble que cette question des modules d'une surface algébrique devrait
être approfondie. Ce qui manque peut-être est la construction précise de la
variété de Riemann attachée à une surface algébrique, c'est-à-dire de la

variété réelle à quatre dimensions représentant les points réels et complexes
de la surface. On sait d'ailleurs que contrairement à ce qui se passe pour les

surfaces de Riemann, la variété de Riemann d'une surface n'est pas la plus
générale des variétés réelles à quatre dimensions.

5. Une équation algébrique f(x, y) 0 définit une fonction algébrique

y(x) et à un point de la droite y 0 correspondent un certain nombre n

de valeurs finies de y en général distinctes. Il y a un certain nombre de points
de la droite y 0, situés sur les tangentes à la courbe f 0 parallèles à

l'axe des y, auxquels correspondent n points dont deux coïncident. Ce sont
les points de diramation de la fonction y(x). D'après le théorème d'existence

de Riemann, on peut construire des fonctions algébriques y(x) ayant
2/7 + 2/7 — 2 points de diramation donnés, la courbe/ 0 étant de genre p.

Une équation algébrique f (x, y, z) 0 définit une fonction algébrique

z(x, y) et à un point du plan z 0 correspondent un certain nombre n

de valeurs finies de la fonction z. Si l'on reprend le raisonnement précédent,
la fonction z(x, y) possède dans le plan z 0 une courbe de diramation D
et le problème qui se pose est de déterminer la nature d'une courbe de

diramation pour que la fonction z(x, y) existe. L'ensemble de la fonction

z(x, y) et de la courbe de diramation s'appelle plan multiple d'ordre n.

4 B. Segre, Sui moduli delle superficie algebriche irregolari (Rendiconti délia Acca-
demia dei Lincei, 1° sem. 1934).
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Pour n 2 la courbe de diramation peut être quelconque et le problème

ne se pose pas. Mais pour n > 2, il n'en est plus de même et la courbe D

doit posséder un certain nombre de points doubles et de points de

rebroussement.

Lorsque l'on considère une droite du plan z — 0, il existe d'après le

théorème de Riemann une fonction algébrique z0 d'une variable qui a

comme points de diramation les points de rencontre de la droite avec la

courbe D. Lorsque la droite tourne autour d'un point O, ces fonctions
doivent se fondre dans la fonction z(x, y). On conçoit la difficulté du

problème, il exige pour être résolu l'étude des diverses substitutions des valeurs

de la fonction z0 aux points de diramation et leurs variations lorsque la

droite varie. Chisini a profondément étudié ce problème et a construit
des courbes de diramation très générales, mais la question mérite d'être

reprise 5. Ici aussi le connaissance de la variété réelle de Riemann serait

sans doute très utile.

6. En dehors des surfaces hyperelliptiques, on connaît peu d'exemples
de surfaces algébriques dont les coordonnées des points s'expriment par
des fonctions uniformes de deux paramètres. Il semble cependant que l'on
pourrait construire de tels exemples en utilisant les fonctions fuchsiennes.

Les premiers exemples de surfaces irrégulières non réglées ont été

construits par De Franchis, Maroni et Severi par la considération du
produit de deux courbes algébriques C1? C2 de genres pl9 p2. La surface F
ainsi obtenue, représentant les couples de points des courbes C1? C2 a les

genres

Pg=PlP2, Pa= PlPz~Ol+ Pl),/>(1)80»! - 1)0?2 - l)'+'l •

Poincaré ayant démontré que les coordonnées des points d'une courbe
algébrique s'expriment par des fonctions fuchsiennes d'un paramètre, les

coordonnées des points d'une surface Fpourront s'exprimer en fonction des

produits des fonctions fuchsiennes relatives aux courbes Cl9 C2. Cet exemple
de représentation des coordonnées des points d'une surface algébrique par
des fonctions uniformes de deux paramètres sera sans doute peu intéressant,
mais celui que l'on obtient en considérant la surface F qui représente les

couples de points non ordonnés d'une courbe algébrique C de genre p sera
peut-être plus digne d'intérêt. Cette surface F a les genres

: Pg- VlP(P~1), Pa VlPiP ~ 1) ~ PW (ß ~ 2)(4 - 5).

5 O. Chisini, Memorie scelte (Bologna, Zanichelli, 1961).
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On peut aller plus loin et considérer le cas où la courbe C contient une
involution cyclique d'ordre premier n > 2, dont l'image C a le genre p'.
A cette involution correspond sur la surface F une involution cyclique
d'ordre n n'ayant qu'un nombre fini de points unis. Nous avons pu démontrer

que la surface F' qui représente cette involution a l'irrégularité p'. En
utilisant les résultats obtenus par Comessatti sur les liaisons existant entre
les fonctions fuchsiennes associées aux courbes C, C', on obtiendrait une
représentation des coordonnées des points de la surface F' par des fonctions
uniformes de deux paramètres sans doute très particulière mais qui pourrait
peut-être fournir quelques indications utiles 6.

7. La Géométrie sur un être algébrique développée dans les cas des

courbes et des surfaces a été étendue aux variétés à plusieurs dimensions

surtout par F. Severi. On doit à ce géomètre et à M. E. Marchionna de

profondes recherches sur les irrégularités des variétés algébriques à n

dimensions, c'est-à-dire sur les nombres des intégrales de première espèce

analogues aux intégrales de Picard attachées à une surface 7.

Un système de groupes de n points dans un espace projectif Sr à r
dimensions, dépendant de r paramètres, tel qu'un point de l'espace appartienne

généralement à un seul groupe, est appelé involution d'ordre n.

Liiroth a démontré qu'une involution d'ordre n appartenant à une
droite est rationnelle ou, ce qui revient au même, qu'une courbe dont les

coordonnées des points sont des fonctions rationnelles d'un paramètre est

rationnelle. Castelnuovo a démontré plus tard qu'une involution plane est

rationnelle, c'est-à-dire qu'une surface dont les coordonnées des points
sont des fonctions rationnelles de deux paramètres est rationnelle. La
démonstration de Lüroth est élémentaire, celle de Castelnuovo est loin de

l'être. On devrait donc s'attendre à ce que l'extension du théorème aux

espaces à plus de deux dimensions ne soit pas possible. Et de fait, Enriques
a réussi à construire dans un espace à trois dimensions, une involution qui
n'est pas rationnelle. La question est évidemment liée à la détermination
des variétés rationnelles à trois dimensions au moins.

8. En 1890, Noether s'est posé la question de savoir si la variété cubique
de l'espace à quatre dimensions est rationnelle. Il est seulement parvenu à

montrer qu'elle représente une involution du second ordre appartenant à

un espace à trois dimensions. Cela a été fait ensuite de plusieurs manières.

6 Comessatti, Le involuzioni sulle curve algebriche ed il teorema di diramcizione per le

funzioni fuchsiane (Memorie délia Accademia dei Lincei, 1929, 56 p.).
7 Severi, Geometria dei sistemi algebrici..., Volume III.
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Pour démontrer par l'absurde que la variété cubique de l'espace à quatre
dimensions n'est pas rationnelle. Enriques proposait la méthode suivante:

la variété cubique de l'espace Y4 possédant un point double est rationnelle,

elle est représentée sur un espace ^ à trois dimensions par le système des

surfaces cubiques passant par une courbe C d'ordre six et de genre quatre.
Si la surface cubique générale est rationnelle, elle est représentable sur

l'espace S3 par un système de surfaces d'ordre n > 3 et lorsque la variété

cubique générale varie par continuité et tend vers une variété possédant

un point double, ce système doit se réduire au système de surfaces cubiques

augmenté d'une surface d'ordre n — 3. La somme de cette surface et d'une

surface cubique doit être une surface de genre zéro, ce qui semble impossible.

Comme Enriques le dit explicitement, ce raisonnement devrait être

rendu rigoureux.
Fano a abordé la question d'une manière différente. Il a étudié

systématiquement les variétés Y à trois dimensions d'ordre 2/7 — 2 situées dans

un espace Sp+1 à p + 1 dimensions, dont les sections par des espaces à

p — 1 dimensions sont des courbes de genre p. La variété cubique de S4

est birationnellement équivalente aux variétés Y que l'on obtient pour p 8

et p 13. Dans le premier cas, la variété Y est la section hyperplane de la
variété de Grassmann qui représente les droites d'un espace S5 dans un
espace S9 à neuf dimensions. Fano a réussi à démontrer que pour
p — 3, 4, 5, 6, 8 les variétés V ne contiennent que des surfaces intersections
complètes d'hypersurfaces de l'espace ambiant. Elles ne sont pas rationnelles.

De plus, pour p 5, 6, 8 les variétés appartiennent à des classes

différentes. L'involution construite par Enriques dans un espace à trois
dimensions a pour image la variété intersection d'une hyperquadrique et
d'une hypersurfa.ce cubique de l'espace à cinq dimensions, c'est-à-dire une
variété V pour p 4.

Fano a de plus démontré que pour p > 10, sauf pour p 13, la variété
V est rationnelle. La variété V n'existe d'ailleurs que pour p ^ 37.

Il est bien évident que toute variété rationnelle à trois dimensions a son
genre géométrique et tous ses plurigenres égaux à zéro. Nous avons pu
construire une variété à trois dimensions dont le genre géométrique, le

bigenre, le trigenre, le tétragenre sont nuls, mais dont le pentagenre est
: égal à l'unité. Il en résulte que l'égalité à zéro du pentagenre est une condition
: nécessaire pour qu'une variété à trois dimensions soit rationnelle.

9. Comme nous l'avons écrit plus haut, il importe que dans chaque
j

classe de variétés algébriques, on construise un modèle projectif des variétés.
| L'Enseignement mathém,. t. XVI, fasc. 1. 5
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Dans le cas des courbes, une classe de courbes de genre n a comme modèle

projectif une courbe d'ordre 2% — 2 située dans un espace à n — 1 dimensions,

sauf si la courbe est hyperelliptique. Dans ce cas, on peut prendre
comme modèle projectif une courbe plane d'ordre n possédant un point
multiple d'ordre n — 2.

Lorsqu'il s'agit de surfaces, Enriques a suggéré de prendre comme
modèle projectif d'une classe de surfaces dont le genre géométrique est

pg ^ 3, une surface dont les sections hyperplanes sont les courbes
canoniques 8.

Peu d'exemples sont connus et l'on ne voit pas, sauf dans un cas, une
méthode générale permettant de déterminer ces modèles projectifs.

Si l'on part d'une des variétés à trois dimensions considérées par Fano,
d'ordre 2p — 2 dans un espace sP+1 dont les sections par des espaces à

p — 1 dimensions sont de genre p et par conséquent dont les sections

hyperplanes sont des surfaces dont les courbes canoniques et pluricanoniques
sont d'ordre zéro, la surface découpée sur cette variété par une hyper-
quadrique a pour système canonique le système de ses sections hyperplanes.
La surface a les genres

Pa P9— P + 2,

Dans un espace à quatre dimensions, l'intersection d'une hypersurface
du quatrième ordre et d'une hyperquadrique est une surface dont le système

canonique coïncide avec le système des sections hyperplanes 9.

10. On sait que si l'on considère sur une courbe algébrique C des séries

linéaires [(j^, \G2\, • |Gn| de groupes de points, la série complète

\G\ \Gt + G2 + + Gn |

contient en général des séries partielles ne contenant aucun groupe formé
de groupes des séries données. Castelnuovo appelle somme minimum une
série comprise dans |G| telle que toute série partielle contenue dans cette

série comprennent des groupes formés de groupes des séries données10.

La considération de ces séries a conduit notamment Castelnuovo à

déterminer le genre maximum d'une courbe d'ordre donné située dans un espace

8 F. Enriques, Salle classificazione delle superficie algebriche e particolarmente sulle
superficie di genere linéaire pi1) - 1 (Rendiconti della Accademia dei Lincei, 1° sem. 1914,

pp. 206-214, 291-297).
9 Au sujet de la classification des surfaces algébriques, on peut consulter P. Burniat,

Sur les surfaces de genre P12 > 0 (Annali di Matematica, 1966, t. LXXI, pp. 1-24).
10 G. Castelnuovo, Sui multipli di una serie linéaire di gruppi dipunti appartenente ad

une curva algebrica (Rendiconti del Circolo Matematico di Palermo, 1893, pp. 89-110);
Memorie scelte, Bologna, Zanichelli, 1937, pp. 95-113).
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à r dimensions. Dans ses Memorie scelte, Castelnuovo appelle l'attention
sur le problème analogue relatif aux systèmes linéaires de courbes tracées

sur une surface algébrique. Nous ne croyons pas que cet appel ait été

entendu.
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