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SUR UNE GENERALISATION DU TRANSFERT
EN THEORIE DES GROUPES

par P. CARTIER (Strasbourg)

Dans cette note, nous indiquons une construction générale d’homo-
morphismes de groupes, dans le cas de deux groupes opérant sur un méme
ensemble fini. Nous montrons ensuite que cette construction redonne celle
du transfert dans un cas particulier, et nous indiquons diverses autres spe-
cialisations, liées a la signature d’une permutation, au symbole de Legendre-
Jacobi ou aux systémes de racines. Cette note a intérét a étre lue en méme
temps que deux autres notes [2] et [3] qui paraissent dans le méme volume.

1. On considére les données suivantes:

a) un ensemble fini X;
b) un groupe G opérant & gauche sur X;

c) un groupe commutatif A opérant a droite sur X.

Nous notons indistinctement e 1’élément neutre de G ou celui de 4. Dire
que G opeére a gauche sur X signifie qu’a tout élément g de G, et tout élé-
ment x de X, on a fait correspondre un élément gx de X et que 1’on a
g(g"x) =(gg') x et ex = x pour g, g’ dans G et x dans X. De maniére
analogue, on a défini xa pour x dans X et a dans 4 et ’on a les relations
(xa) a’ = x(aa’) et xe = x.

On fait les deux hypothéses suivantes:

(A) On a(gx)a = g (xa) pour g dans G, x dans X et a dans A.

(B) Pour tout x dans X et tout a # e dans A, on a xa # x.
La propriété (B) entraine la suivante, d’énoncé plus fort:
 (B') Si a et a sont deux éléments distincts de A, on a xa # xd'.
" Eneffet,onad’ "' a # e dot xa = (xa') (@' "' a) # xa’ d’aprés (B).

Comme il est usuel, on appelle orbite de A dans X toute partie de X
qui est I'ensemble des transformés x,a d’un élément fixe x, de X par tous
.. les éléments a de 4. Nous dirons simplement « orbite » pour « orbite de A
‘ dans X ». Il est bien connu que deux orbites distinctes sont disjointes, et
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que X est réunion des orbites. Nous appellerons section toute partie S
de X qui rencontre chaque orbite en un point et un seul.

2. Nous associons maintenant a deux sections S et S’ un élément
d (S, S’) de A qui mesure en quelque sorte leur « distance ». Il est com-
mode de numéroter les orbites sous la forme P, ..., P,,. Une section S est
alors de la forme {Sl, e sm} avec s;€ P; pour 1 =7 = m; représentons
de méme la section S’ sous la forme {sy, ..., s, } avec s; € P; pour
1 < i £ m. Comme s; et 5; appartiennent a la méme orbite, il existe un é1¢-
ment a; de 4 tel que s; = s,a; et cet élément est unique d’aprés (B). Nous
posons alors d (S, S’) = a, ... a,. Comme le groupe 4 est commutatif,
cette définition est indépendante de toute numérotation des orbites.

Voici le formulaire correspondant a cette notion:

(1) d(S,S) =e
(2) d(S’,S) =d(S,S)!
(3) d(S,S") = d(S,S)d(S",S").

Etablissons par exemple la formule (3). Nous représentons les sections S,
S’ et §” sous la forme

S ={581,s8m}s S ={s1se0sSm}s S" = {5 0sSm},

et nous choisissons des éléments a; et a; de A tels que s; = s;a; et
s; = s,a, pour i compris entre 1 et m. On a alors s, = s, (a;a;), d’ou

d(s,8) =ay...a,, d(S',S") =a,...a,, d(S,S") =(asa;)...(aa,,),
et la formule (3) résulte de la commutativité du groupe A.

3. Jusqu’a présent, le groupe G n’a joué aucun role. En utilisant ’hypo-
thése (A), on voit que tout élément g de G transforme une orbite en une
orbite, donc une section en une section. Nous allons déduire de ce fait la
relation

(4) d(gS,gS’) = d(S,S').
Nous conservons les mémes notations'que plus haut, et nous posons
Q;, = gP;pour 1 £ i < m. 1l est clair que 'on peut énumérer les orbites
sous la forme @, ..., O,, et que 'on a

gS = {gSis s gSm} » gS" = {gS1s -GS}
de plus, gs; et gs; appartiennent a Q;, et de s; = sa;, on déduit

gs; = (gs;) a; daprés (A). On a donc d (g5, gS") = ay ...a, = d(S, ).
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Nous en arrivons au point essentiel, & savoir 'existence d’un homo-
morphisme ® de G dans A tel que I’on ait d (gS, S) = @ (g) pour tout g dans
G et toute section S. Considérons deux sections S et S’; on a

d(gS, S) = d(gS,¢S) d(gS", ) d (S, S)

d’aprés (3), ona d (g8, gS") = d (S, S") d’aprés (4) et d (S, S) = d (S, S) ™!
d’aprés (2). On a donc d(gS, S) = d(S, S) d(gS’, S") d(S, S)~*, et
comme le groupe A4 est commutatif, on en conclut d (g5, S) = d(gS’, S").
Notons @ (g) la valeur commune de d(gS, S) pour toutes les sections S.
Si g’ est un autre élémentde G,ona @ (g) = d(gS’, S') avec S" = ¢'S, d’ou

(5) P(9)P(g9) =d(gg'S,9'S)d(g'S,S) =d(gg’'S,S) = P(g99')
d’aprés (3). On a prouvé que @ est un homomorphisme de G dans A.

4. Montrons comment la définition usuelle du transfert s’obtient par
spécialisation de la construction précédente. On considére (*) un groupe
fini G et un sous-groupe H de G; on note H' le groupe dérivé de H, engendré
par les commutateurs aba”™ b~ ! de deux éléments a et b de H. On note A4
le groupe quotient H/H' et X ’ensemble G/H’ des classes de la forme gH’
avec g dans G. On fait opérer G a gauche sur X de la maniére usuelle. De
plus, pour 4 dans H, on a hH' = H'h; par suite, si x = gH' est un élément
de X, on a xh = ghH’ et le sous-ensemble x/i de G ne dépend que de la
classe a = hH’'. On définit donc une action a droite de 4 sur X en posant
xa = ghH' pour x == gH' et a = hH'. La vérification des hypothéses (A)
et (B) du n° 1 est immédiate.

Pour calculer @, on choisit un systéme de représentants gy, ..., g, de
G modulo H; on pose s, = g,H', ..., s, = g,H'. Alors § = {5, .., S }
est une section au sens des n° précédents. Soit g dans G; comme les élé-
ments ggy, ..., g8, forment un systéme de représentants de G modulo H,
il existe donc une permutation ¢ de { 1,2, ..., m} et des éléments A, ..., h
de H tels que I'on ait

m

(0) 99: = Goiyh; pour 1 =i<m.
Posons a; = h;H'; on a alors gs; = s,(; a;, d’ou

gS = {gsla "'agsm} = {Sa(l)ala "'>Sa(m) am}
= {8100—1(1), ceey Smao.—l(m)}.

1) On remarquera que I’on définit d’habitude le transfert dans le cas d’un groupe G
et d’un sous-groupe H d’indice fini de G, alors que notre construction ne semble s’appli-
quer qu’au cas ou G est fini. En fait, nous n’utilisons nulle part le fait que l’ensemble X
est fini, mais seulement le fait que 4 n’a qu’un nombre fini d’orbites dans X. La construc-
tion donnée dans ce numéro donne donc le transfert dans le cas le plus général.
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Par suite, @ (g) = a,-1(1) ... Qg—1(my = @y ... @, €St la classe de &y ... A,
modulo H'. On reconnait 1a la définition du transfert @ de G dans le groupe
A = H/H' (voir par exemple [4], chapitre 14.2).

5. Comme deuxiéme cas particulier, nous expliciterons celui ou le
groupe A a deux éléments que nous noterons e et ¢, e étant bien entendu
I’élément neutre. Nous allons prouver que @ (g) est égal a e ou t selon que
la permutation de X définie par g est paire ou impaire.

Soit g un élément de G. Selon la définition usuelle, un cycle de la permu-
tation de X définie par g est une partie de X qui se compose des transformés
g"x, d’un élément fixe x, de X par les puissances (positives ou négatives)
de g. 1l est bien connu que les cycles forment une partition de X. De plus,
la relation (g"x) t = g" (xt) montre que ¢ transforme un cycle en un cycle.
Comme on a t* = e, on peut donc énumérer les cycles sous la forme

q

Cis.r» Cp Dy, .y D, DY, ..., D,

ol chaque C; est invariant par ¢ et ol ¢ échange D; et D; pour | <j < g.

Examinons le cas d’un cycle invariant C,. Notons z (i) le nombre d’¢lé-
ments de C; et choisissons un élément x; de C,. Alors C; se compose des
éléments distincts x;, gx;, £%x;, ..., 2"V 7 1x;; comme C,; est invariant par ¢
et qu'on a Xx;t # x;, il existe un entier m (i) compris entre 1 et n (i) — 1
tel que x;z = g™ Vx,. On a alors

x; = (xt)t = (Qm(i)xi)t = gm(“(xit) = gm(i)(gm(i)xi) = sz(i)xi ’

et par suite, 2m (i) est multiple de n(i); comme on a 0 < m (i) < n (i), la
seule possibilité est 2m (i) = n (i). Pour tout entier k& compris entre 0 et
m(i)— 1, ona

m(i)+kx «

i

(g“x)t = g“(xit) = g*(g""x) =g
on peut par suite partager C; en deux parties C© et C selon le schéma

C_:— = {xiag'xia gzxia "'9gm(i)—1xi}
C: = {xit>(gxi) tn(gzxi) ta --->(gm(i)_1xi)t} :

On a donc C; = CTtet
gC7 = {xit, gx;, 9°%ss s "7 1x )

Comme ¢ transforme D; en D} pour 1 < j =< g, les résultats précédents
montrent que S = CjuU..uC, UD;uU..U D, est une section, et que
gS ne différe de S que par le remplacement de Xy, ..., x, par xyf, ..., X1




_ 53

On a donc @ (g) = t. Par ailleurs, il est bien connu qu’une permutation
circulaire d’ordre # a la parité opposée a celle de n. Il en résulte que la permu-
tation de X définie par g a la méme parité que le nombre des cycles de lon-
gueur paire. Or Cy, ..., C, sont des cycles de longueur paire, et si 'un des
cycles D; est de longueur paire, il en est de méme de D; qui a méme lon-
gueur que D;. Par suite, la permutation de X définie par g a méme parité
que p. Comme on a @ (g) = ¢, on voit que @ (g) est bien égal a e ou a 7 selon
que la permutation de X définie par g est paire ou impaire.

6. Ce qui précéde donne la régle suivante pour calculer la signature
d’une permutation. Supposons que g et ¢ soient deux permutations d’un
ensemble fini X, que g et  commutent, que ¢ soit d’ordre deux et n’ait pas
de point fixe. Soient S une partie de X telle que {S, tS} soit une partition
de X et p le nombre d’éléments de S dont le transformé par g n’appartient
pas a S. Alors, la signature de g est égale a (—1)°*.

Comme exemple d’application de cette remarque, considérons un entier
positif impair b et un entier a étranger a b. On note Z un groupe cyclique
d’ordre b et g la permutation x > x“ de Z. Nous allons montrer que la
permutation g a une signature égale au symbole de Legendre-Jacobi (3); nous
renvoyons a une autre note [3] pour un examen plus approfondi de la ques-
£ tion. |

| Posons en effet b = 2b" + 1 et choisissons un générateur z de Z; alors
Z se compose des €léments

On a g (e) = e, donc g a méme signature que sa restriction g’ a ’ensemble X
des éléments de Z distincts de e. Nous notons ¢ la permutation x > x~ !
de X. Il est immédiat que # commute a g, est d’ordre deux et n’a pas de
& point fixe. Posons S = {z,2% .., 2" }. Avec les notations ci-dessus, p est
£ le nombre des entiers i compris entre 1 et b’ tels que ai soit congru modulo b
& 2 un entier compris entre — b’ et — 1, et la signature de g est égale & (—1)7.
¢ Or, on a (—1) = () d’aprés une généralisation connue d’un résultat
classique de Gauss, et ceci établit notre assertion.

7. Voici un nouveau cas particulier de notre construction générale. On
note £ un ensemble fini a4 n €léments, X I'ensemble des couples (i, j) d’élé-
ments distincts de E, G le groupe des permutations de F et A4 le groupe
§ multiplicatif formé des entiers 1 et — 1. On fait opérer les groupes G et A
i sur X par les regles

§ ) g(i.0) = (9. g(), GH(=1) = ().
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La vérification des hypothéses (A) et (B) du n° 1 est immédiate, d’oll un
homomorphisme @ de G dans 4. Nous allons montrer que @ (g) n’est autre
que la signature de la permutation g; comme nous le montrons dans une autre
note [2], on peut partir de cette remarque pour donner un exposé nouveau
des propriétés des permutations.

Nous donnerons trois démonstrations de notre assertion.

a) 1l suffit évidemment de prouver que I'on a ®(g) = — 1 si g est
la transposition de deux éléments a et b de E. Nous choisirons une sec-
tion S qui contienne les couples (a, b), (a, i) et (b, i) avec i distinct de aet b;
il est immédiat qu’un tel choix est toujours possible et que (a, b) est le seul
¢lément de S que g transforme en un élément n’appartenant pas a S. On
a donc @ (g) = —

b) Sans restreindre la généralité, on peut supposer que E se compose
des entiers compris entre 1 et n. La permutation g étant quelconque, choi-
sissons pour section I’ensemble S des couples (7, /) avec i < j. On a alors
P(g) = (=1 ou p est le nombre des couples (i, j) avec i < j et
g (i) > g(j), autrement dit, le nombre d’inversions de g. On retrouve donc
une des définitions classiques de la signature.

c¢) Nous supposons encore que E se compose des entiers compris
entre 1 et n. La permutation g de E étant quelconque, nous définissons des

permutations ), g1, ..., & &1, ---» & de E X E par les formules suivantes:
(8) v (i,7) = (9@),9())
con g @Lg) si j=k
(z g(]) si i =k

Il est immédiat que g, et g, ont méme signature que g et que l'on a
Y = g1 ... 881 ... &,; Par suite, la signature de y est égale & 1. Par ailleurs,
y transforme en elle-méme la partie X de £ X E, ainst que son complémen-
taire Y; si py et y, désignent respectivement les permutations de X et Y
induites par 7y, la signature de y est le produit des signatures de yy et yy.
Comme la signature de y vaut 1, on voit donc que y, a méme signature que
vy; or, Y se compose des couples (i, i) avec i dans E, et l'on a
vy (i, 1) = (g (i), g (i), donc yy a méme signature que g. On en conclut que
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la signature de yy est égale a celle de g. Enfin, & (2) est la signature de yx
d’apres le n° 5.

8. Comme derniére spécialisation, nous considérons le cas d’un systéme
de racines réduit; nous renvoyons a la monographie de Bourbaki [1] pour
la définition précise des systémes de racines et pour une étude approfondie
de leurs propriétés. Il nous suffira ici de rappeler quelques points de la
théorie.

On suppose donné un espace vectoriel réel V' de dimension finie /,
muni d’une forme bilinéaire symétrique (x|y) telle que (x|x) > 0 pour
x # 0, en bref un espace euclidien. Pour tout vecteur a, la symétrie S, par
rapport a ’hyperplan orthogonal & a est donnée par

(x| a)
(a|a)
c’est une transformation linéaire de déterminant — 1 dans V. Un systéme

de racines réduit est une partie finie R de ¥ qui jouit en particulier des pro-
priétés suivantes:

(11) S(x) =x—2

a,

(R) Tout élément de R est non nul ; avec r, R contient — r, mais aucun
autre multiple de r.

(R") Pour tout r dans R, la symétrie S, laisse stable R.

(R") Il existe une base B = (ry, ..., 1)) de V formée d’éléments de R, telle
que tout élément de R soit combinaison linéaire a coefficients tous positifs ou
tous négatifs de rq, ..., r;.

1 Le groupe de transformations orthogonales de V' engendré par les symé-
| tries S, (pour r dans R) se note W et s’appelle le groupe de Weyl de R.
t On peut montrer qu’il est engendré par les symétries S, , ..., S,, et la pro-
priété (R") montre que R est stable par W; comme ’ensemble R est fini
| et contient une base de ¥, le groupe W est fini. De plus, la base B étant
E choisie comme dans (R”), on appelle racine positive tout élément de R qui
® cst combinaison linéaire a coefficients positifs de r,, ..., r, et ’on note R™
| 'ensemble des racines positives. De maniére analogue, on définit 'ensemble
R~ des racines négatives.

Comme exemple de systéme de racines, donnons celui des systémes de
§ type (4,_ ) (pour n=2), qui est lié au groupe des permutations. On consi-
dére d’abord un espace euclidien £ de dimension n et une base ortho-
normale (ey, ..., ¢,) de E; on note V' le sous-espace de E formé des vecteurs
t8y + ...+ te, avec t; + ..+ 1, =0. Si 'on pose
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e; = ¢ — (g;+...4¢,)/npour1 < i < n, 'espace V' de dimension n — 1 est
engendré parey, ...,e, etl’ona e; 4 ... + ¢, = 0. On note RI’ensemble des
vecteurs de la forme e; — e; pour i, j distincts compris entre 1 et n. On peut
identifier W au groupe des permutations des entiers compris entre 1 et 7, la
permutation w correspondant a la transformation linéaire de V induite par la
permutatione; |- &,,; des vecteurs de base de E. La symétrie S, _ e correspond
a la transposition de i et j. Sil'onpose / =n — 1 et r; = e; — €;44 pour
1 £i <1, la propriété (R") est satisfaite; les racines positives (resp. négati
ves) sont les vecteurs e; — e; avec i < j (resp. i>)).

Revenons au cas général et notons 4 le groupe des homothéties de
rapport 1 ou —1 dans V; d’aprés (R), le groupe A opére sans point fixe
sur R et il est clair que les actions de W et A sur R commutent. Conformé-
ment & notre construction générale, on définit donc un homomorphisme @
de W dans A. On peut décrire @ de trois manicres distinctes:

a) @ (w) est la signature de la permutation de R induite par w ;

b) on a ® (w) = (= 1DV o N(w) est le nombre des racines positives r
telles que w (r) soit négative ;

c) @ (w) est le déterminant de la transformation linéaire w de V.

De ces trois descriptions, la premic¢re ne semble pas avoir €té remarquée
jusqu’ici. Le lecteur est invité a spécialiser la situation au cas des systémes
de type (4,- 1)

L’assertion a) résulte immédiatement du n° 5, et b) résulte de ce que R*
est une section pour l’action du groupe A. Pour prouver c¢), il suffit de
montrer que 'on a ®(S,,) = — 1 pour 1 < i < [, puisque le groupe W
est engendré par S,, ..., S,. Or, st r = mr; -+ ... -+ myr; est une racine
positive, S,. r est de la forme r — a. r; et ne peut €tre négative que si 'on
am;=..=m_; = My, = .. =m = 0, c’est-a-dire st r est multiple
de r;; d’aprés (R), ceci ne peut se produire que si » = r;. Autrement dit,
r; est la seule racine positive que S,, transforme en une racine négative, et
'on a N(S,,) = 1; d’aprés b), on a donc & (S,,) = — 1.

9. Le lecteur qui désire, un peu d’exercice pourra résoudre lui-méme, ou
faire résoudre par ses étudiants, le probléme suivant:

a) Soient X un ensemble fini, et g, ¢ deux permutations de X. On sup-
pose que g et ¢ sont d’ordre deux, que ¢ est sans point fixe, et que g et ¢
commutent. Montrer que les schémas suivants représentent toutes les situa-
tions ¢lémentaires
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t

grl Qg (__g__) O(——'—)O
0¢—>0 0¢——0 sl e
t t UL

et en déduire que la signature de g est égale a (—1)"? ol n est le nombre des
x e X tels que gx = ix.

b) Soit E un espace euclidien de dimension finie. Tout hyperplan H
de E définit une symétrie orthogonale s et deux demi-espaces (ouverts)
qui sont dits opposés. Montrer que les deux demi-espaces limités par H
sont les seuls demi-espaces que sy transforme en leur opposé.

c) On note W un groupe fini de transformations orthogonales dans E,
engendré par des symétries par rapport a des hyperplans. On note ¢
I’ensemble des hyperplans H tels que sy appartienne a W et R I'ensemble
des demi-espaces limités par un hyperplan appartenant a JC. Soit w dans
W; montrer que le déterminant de la transformation linéaire w dans E est
égal & la signature de la permutation de R induite par w (on se rameénera
. au cas w=sy; on définira la permutation ¢ de R qui associe & tout demi-

- espace le demi-espace opposé, et I’on appliquera les résultats de a) et b)).
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