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SUR UNE GÉNÉRALISATION DU TRANSFERT
EN THÉORIE DES GROUPES

par P. Cartier (Strasbourg)

Dans cette note, nous indiquons une construction générale d'homo-

morphismes de groupes, dans le cas de deux groupes opérant sur un même
: ensemble fini. Nous montrons ensuite que cette construction redonne celle

du transfert dans un cas particulier, et nous indiquons diverses autres

spécialisations, liées à la signature d'une permutation, au symbole de Legendre-
| Jacobi ou aux systèmes de racines. Cette note a intérêt à être lue en même
f temps que deux autres notes [2] et [3] qui paraissent dans le même volume.

1. On considère les données suivantes:

t a) un ensemble fini Z;
{

|i b) un groupe G opérant à gauche sur X;

j| c) un groupe commutatif A opérant à droite sur X.

|| Nous notons indistinctement e l'élément neutre de G ou celui de A. Dire
|l que G opère à gauche sur X signifie qu'à tout élément g de C, et tout élé-

J ment x de X, on a fait correspondre un élément gx de X et que l'on a
!> g (g' x) (gg') x et ex x pour g, gf dans G et x dans X. De manière
i analogue, on a défini xa pour x dans X et a dans A et l'on a les relations
y (xa) a' x (aa') et xe x.
C On fait les deux hypothèses suivantes:

y; (A) On a (gx) a g (xa) pour g dans G, x dans X et a dans A.
; (B) Pour tout x dans X et tout a ^ e dans A, on a xa ^ x.

La propriété (B) entraîne la suivante, d'énoncé plus fort:

(B') Si a et a sont deux éléments distincts de A, on a xa ^ xa!.

y; En effet, on a a'1 a ^ e, d'où xa (xa') (a'"1 a) # xa d'après (B).

C Comme il est usuel, on appelle orbite de A dans Z toute partie de Z
y qui est l'ensemble des transformés x0a d'un élément fixe x0 de Z par tous
K les éléments a de A. Nous dirons simplement « orbite » pour « orbite de A
S dans Z ». Il est bien connu que deux orbites distinctes sont disjointes, et

|| L'Enseignement mathém,. t. XVI, fasc. 1. 4
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que X est réunion des orbites. Nous appellerons section toute partie S
de X qui rencontre chaque orbite en un point et un seul.

2. Nous associons maintenant à deux sections S et S' un élément
d (S, S') de A qui mesure en quelque sorte leur « distance ». Il est
commode de numéroter les orbites sous la forme Pu Pm. Une section S est

alors de la forme {sq, sm} avec s^ePi pour 1 ^ i ^ m; représentons
de même la section S' sous la forme {s[, sm } avec s- e Pt pour
1 ^ i ^ m. Comme st et s\ appartiennent à la même orbite, il existe un
élément at de A tel que s- s^i et cet élément est unique d'après (B'). Nous

posons alors d(S,S') a1 am. Comme le groupe A est commutatif,
cette définition est indépendante de toute numérotation des orbites.

Voici le formulaire correspondant à cette notion:

(1) d(S, S) e

(2) d(S\S) d(S, S')"1

(3) d (S, S") d(S, S')d(S',S").
Etablissons par exemple la formule (3). Nous représentons les sections S,

S' et S" sous la forme

S { S 1 5
S m } 3

S { S 1 • • • 3 } 3
S { S l 3 • * 3 Sm } 3

et nous choisissons des éléments at et a] de A tels que s- stai et

s] s\ai pour i compris entre 1 et m. On a alors s- st (a fil), d'où

d(S,S) ci i om d (S S ci i om d(S, S {ci ±ci i)... (umum),

et la formule (3) résulte de la commutativité du groupe A.

3. Jusqu'à présent, le groupe G n'a joué aucun rôle. En utilisant l'hypothèse

(A), on voit que tout élément g de G transforme une orbite en une

orbite, donc une section en une section. Nous allons déduire de ce fait la

relation

(4) d(gS,gS') d(S,S').

Nous conservons les mêmes notations que plus haut, et nous posons
Qt gPt pour 1 :g t S m. Il est clair que l'on peut énumérer les orbites

sous la forme Qu Qm el que l'on a

qS — {_ 9 s i,. • •, g sm}, g S {gsi,...,gsmj,
de plus, gst et gs appartiennent à Qh et de sf stah on déduit
gs'i (gst) at d'après (A). On a donc d (gS, gS') al am d (S, Sf).
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Nous en arrivons au point essentiel, à savoir Yexistence d'un homo-

morphisme <P de G dans A tel que l'on ait d (,gS, S) $ (g) pour tout g dans

G et toute section S. Considérons deux sections S et S'; on a

d (gS, S) d GgS, gS*) d CgS', S') d (S\ S)

d'après (3), on a d (gS, gSf) d (S, S') d'après (4) et d (S\ S) — d (S, S') 1

d'après (2). On a donc d(gS, S) 5") d(gS\ S') J(G, S')-1, et

comme le groupe v4 est commutatif, on en conclut J (gG, S) d (g*S", S').
Notons $ (g) la valeur commune de d(gS, S) pour toutes les sections S.

Si g' est un autre élément de G, on a $ (g) — d (gS', S') avec S' ^ g'S, d'où

(5) $(g)<P(g') d(gg'S,g'S)d(g'S, S) d(gg'S,S) - $(gg')

d'après (3). On a prouvé que $ est un homomorphisme de G dans A.

4. Montrons comment la définition usuelle du transfert s'obtient par
spécialisation de la construction précédente. On considère (1) un groupe
fini G et un sous-groupe H de G; on note H' le groupe dérivé de H, engendré

par les commutateurs aba~lb~x de deux éléments a et b de H. On note A
le groupe quotient H/H' et X l'ensemble G!H' des classes de la forme gH'
avec g dans G. On fait opérer G à gauche sur X de la manière usuelle. De
plus, pour h dans H, on a hH' H'h ; par suite, si x gH' est un élément
de X, on a xh ghH' et le sous-ensemble xh de G ne dépend que de la
classe a hH'. On définit donc une action à droite de A sur X en posant
xa ghH' pour x gH' et a &= hH'. La vérification des hypothèses (A)
et (B) du n° 1 est immédiate.

Pour calculer <P, on choisit un système de représentants gl5 ...,gm de
G modulo H; on pose st gtH',sm Alors S { sm}
est une section au sens des nos précédents. Soit g dans G; comme les
éléments ggl9 ggm forment un système de représentants de G modulo H,
il existe donc une permutation a de { 1, 2, m } et des éléments hu*„9hm
de H tels que l'on ait

(6) ggt ga(i) ht pour 1 ^ ^ m

Posons at ~ hfl' ; on a alors gst sa(i) ah d'où

OS — { 9si » •«»? 9Sm } — { So(l) - •> sa(m) am}

b On remarquera que l'on définit d'habitude le transfert dans le cas d'un groupe G
et d'un sous-groupe H d'indice fini de G, alors que notre construction ne semble s'appliquer

qu'au cas où G est fini. En fait, nous n'utilisons nulle part le fait que l'ensemble X
est fini, mais seulement le fait que A n'a qu'un nombre fini d'orbites dans X. La construction

donnée dans ce numéro donne donc le transfert dans le cas le plus général.
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Par suite,^ 0 (g) aa-i(l)... aa-i{m) — a1 am est la classe de hl hm

modulo H'. On reconnaît là la définition du transfert 0 de G dans le groupe
A H/H' (voir par exemple [4], chapitre 14.2).

5. Comme deuxième cas particulier, nous expliciterons celui où le

groupe A a deux éléments que nous noterons e et t, e étant bien entendu
l'élément neutre. Nous allons prouver que 0 (g) est égal à e ou t selon que
la permutation de X définie par g est paire ou impaire.

Soit g un élément de G. Selon la définition usuelle, un cycle de la permutation

de X définie par g est une partie de X qui se compose des transformés

g"x0 d'un élément fixe x0 de X par les puissances (positives ou négatives)
de g. Il est bien connu que les cycles forment une partition de X. De plus,
la relation (gnx) t gn (.xt) montre que t transforme un cycle en un cycle.
Comme on a t2 e, on peut donc énumérer les cycles sous la forme

Ci? Cp,D1, Dq, Dj, • • •, Dq

où chaque Ct est invariant par t et où t échange Dj et D) pour 1 ÛJÛq.
Examinons le cas d'un cycle invariant Q. Notons n (i) le nombre

d'éléments de Ct et choisissons un élément xt de Ct. Alors Ct se compose des

éléments distincts xh gxb g2xh gn(l)~ 1xi; comme C^ est invariant par t
et qu'on a xp ^ xh il existe un entier m (/) compris entre 1 et n (/) — 1

tel que xp ^ gw(0X;. On a alors

x, - (xp)t (gm{i)xpt gmm(xp) g^fig^ g2mii\,

et par suite, 2m(i) est multiple de n(i)\ comme on a 0 < m (i) < n(i), la
seule possibilité est 2m (i) n (/). Pour tout entier k compris entre 0 et

m (i) — 1, on a

(gkxdt 9k (xp) gk(gmii)Xi) gm(i)+kxi ;

on peut par suite partager Ct en deux parties C | et Cj selon le schéma

C| {xhgxhg2xh }

C7 {xpfigxi)tfig2xi)t, (^m(0_1xi) t}
On a donc C 7 C11 et

gC\ {xp,gxhg2xi,„t,gm(i)-1xi}

Comme t transforme Dj en Dj pour 1 ^ ^ q, les résultats précédents

montrent que S C\ u u Cp u D± u u Dq est une section, et que

gS ne diffère de S que par le remplacement de xl5 xp par xxt, xpt.
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On a donc <P (g) tp. Par ailleurs, il est bien connu qu'une permutation
circulaire d'ordre n a la parité opposée à celle de n. Il en résulte que la permutation

de X définie par g a la même parité que le nombre des cycles de

longueur paire. Or Cu Cp sont des cycles de longueur paire, et si l'un des

cycles Dj est de longueur paire, il en est de même de Dj qui a même

longueur que Dj. Par suite, la permutation de X définie par g a même parité

que p. Comme on a 0 (g) tp, on voit que <P (g-) est bien égal à e ou à t selon

que la permutation de X définie par g est paire ou impaire.

6. Ce qui précède donne la règle suivante pour calculer la signature
d'une permutation. Supposons que g et t soient deux permutations d'un
ensemble fini X, que g et t commutent, que t soit d'ordre deux et n'ait pas
de point fixe. Soient S une partie de X telle que { V, tS} soit une partition
de X et p le nombre d'éléments de S dont le transformé par g n'appartient
pas à S. Alors, la signature de g est égale à (— \)p.

Comme exemple d'application de cette remarque, considérons un entier

positif impair b et un entier a étranger à h. On note Z un groupe cyclique
d'ordre b et g la permutation x f-> x° de Z. Nous allons montrer que la

permutation g a une signature égale au symbole de Legendre-Jacobi (£); nous

renvoyons à une autre note [3] pour un examen plus approfondi de la question.

Posons en effet b 2b' + 1 et choisissons un générateur z de Z; alors
Z se compose des éléments

e\ z, z2, zb'\ z"1, z-2, z~b'

On a g (e) e, donc g a même signature que sa restriction g' à l'ensemble X
des éléments de Z distincts de e. Nous notons t la permutation x |-> x_1
de X. Il est immédiat que t commute à g, est d'ordre deux et n'a pas de

point fixe. Posons S {z, z2, zb }. Avec les notations ci-dessus, p est
le nombre des entiers i compris entre 1 et b' tels que ai soit congru modulo b

à un entier compris entre — b' et — 1, et la signature de g est égale à (— 1)C

Or, on a (—l)p (ab) d'après une généralisation connue d'un résultat
classique de Gauss, et ceci établit notre assertion.

7. Voici un nouveau cas particulier de notre construction générale. On
note E un ensemble fini à n éléments, X l'ensemble des couples (/,/)
d'éléments distincts de E, G le groupe des permutations de E et A le groupe
multiplicatif formé des entiers 1 et - 1. On fait opérer les groupes G et A
sur X par les règles

O) 9 0, j)g(0,g (j))— 1) 0.
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La vérification des hypothèses (A) et (B) du n° 1 est immédiate, d'où un
homomorphisme <P de G dans A. Nous allons montrer que 0 (g) n'est autre

que la signature de la permutation g ; comme nous le montrons dans une autre
note [2], on peut partir de cette remarque pour donner un exposé nouveau
des propriétés des permutations.

Nous donnerons trois démonstrations de notre assertion.

a) Il suffit évidemment de prouver que l'on a 0 (g) — 1 si g est

la transposition de deux éléments a et He E. Nous choisirons une
section S qui contienne les couples (a, b), (a, i) et (b, i) avec i distinct de a et b\
il est immédiat qu'un tel choix est toujours possible et que (<a, b) est le seul

élément de S que g transforme en un élément n'appartenant pas à S. On

a donc 0 (g) ma — 1.

b) Sans restreindre la généralité, on peut supposer que E se compose
des entiers compris entre 1 et n. La permutation g étant quelconque,
choisissons pour section l'ensemble S des couples (/, j) avec i < j. On a alors

d>(g) (— l)p où p est le nombre des couples (/, j) avec i < j et

g (i) > g (j), autrement dit, le nombre d'inversions de g. On retrouve donc

une des définitions classiques de la signature.

c) Nous supposons encore que E se compose des entiers compris
entre 1 et n. La permutation g de E étant quelconque, nous définissons des

permutations y, g'u g'n, gu g"n de E X E par les formules suivantes:

Il est immédiat que g'k et gk ont même signature que g et que l'on a

y gl — g'ngi ••• g'nl Par suite, la signature de y est égale à 1. Par ailleurs,

y transforme en elle-même* la partie X de E x E, ainsi que son complémentaire

Y; si yx et yY désignent respectivement les permutations de X et Y
induites par y, la signature de y est le produit des signatures de yx et yY.

Comme la signature de y vaut 1, on voit donc que yx a même signature que

yY; or, F se compose des couples (/, i) avec i dans E, et l'on a

y y (i, i) (g (z), g (z)), donc yY a même signature que g. On en conclut que

(8) }'(/../) {9(0.9(/))

(9)
si j k
si j ^ h

(10)
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la signature de yx est égale à celle de g. Enfin, $ (g) est la signature de yx

d'après le n° 5.

8. Comme dernière spécialisation, nous considérons le cas d'un système

de racines réduit; nous renvoyons à la monographie de Bourbaki [1] pour
la définition précise des systèmes de racines et pour une étude approfondie

de leurs propriétés. Il nous suffira ici de rappeler quelques points de la

théorie.
On suppose donné un espace vectoriel réel F de dimension finie /,

muni d'une forme bilinéaire symétrique (x\y) telle que (x|x) > 0 pour

x ^ 0, en bref un espace euclidien. Pour tout vecteur a, la symétrie Sa par

rapport à l'hyperplan orthogonal à a est donnée par

(x a)

(ia | a)

c'est une transformation linéaire de déterminant — 1 dans F. Un système

de racines réduit est une partie finie R de F qui jouit en particulier des

propriétés suivantes:

R) Tout élément de R est non nul ; avec r, R contient — r, mais aucun

autre multiple de r.

(R') Pour tout r dans R, la symétrie Sr laisse stable R.

{R") Il existe une base B — (rl9 rt) de Vformée d'éléments de R, telle

que tout élément de R soit combinaison linéaire à coefficients tous positifs ou

tous négatifs de ru rt.

Le groupe de transformations orthogonales de V engendré par les symétries

Sr (pour r dans R) se note W et s'appelle le groupe de Weyl de R.

On peut montrer qu'il est engendré par les symétries Sn, Sn et la
propriété (R') montre que R est stable par W\ comme l'ensemble R est fini
et contient une base de F, le groupe W est fini. De plus, la base B étant
choisie comme dans (R"), on appelle racine positive tout élément de R qui
est combinaison linéaire à coefficients positifs de rl5 rt et l'on note R+
l'ensemble des racines positives. De manière analogue, on définit l'ensemble
R~ des racines négatives.

Comme exemple de système de racines, donnons celui des systèmes de

type (An_ ±) (pour n ^ 2), qui est lié au groupe des permutations. On considère

d'abord un espace euclidien E de dimension n et une base
orthonormale (e1?..., e„) de E\ on note V le sous-espace de E formé des vecteurs
tiB1 + + tnEn avec t1 + + tn 0. Si l'on pose
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et Si — (el-fen)/n pour 1 ^ ^ n, l'espace V de dimension n — 1 est

engendré par e1, en et l'on a ex + en ~ 0. On note R l'ensemble des

vecteurs de la forme et — ej pour i,j distincts compris entre 1 et n. On peut
identifier W au groupe des permutations des entiers compris entre 1 et n, la

permutation w correspondant à la transformation linéaire de V induite par la

permutation st sw(i) des vecteurs de base de E. La symétrie Se. _ ^.correspond
à la transposition de i et j. Si l'on pose J n — 1 et rt et ei + 1 pour
1 S i S h la propriété (R") est satisfaite; les racines positives (resp. négati
ves) sont les vecteurs ex — c7- avec i < j (resp. />/).

Revenons au cas général et notons A le groupe des homothéties de

rapport 1 ou — 1 dans V; d'après (R), le groupe A opère sans point fixe

sur R et il est clair que les actions de W et A sur R commutent. Conformément

à notre construction générale, on définit donc un homomorphisme 0
de W dans A. On peut décrire 0 de trois manières distinctes:

a) 0 (w) est la signature de la permutation de R induite par w ;

b) on a 0 (w) — l)iY(vv) où N {w) est le nombre des racines positives r
telles que w (r) soit négative ;

c) 0 (w) est le déterminant de la transformation linéaire w de V.

De ces trois descriptions, la première ne semble pas avoir été remarquée

jusqu'ici. Le lecteur est invité à spécialiser la situation au cas des systèmes
de type

L'assertion a) résulte immédiatement du n° 5, et b) résulte de ce que R+

est une section pour l'action du groupe A. Pour prouver c), il suffit de

montrer que l'on a 0 (Sr.) — 1 pour 1 ^ ^ /, puisque le groupe W
est engendré par Srp Sn. Or, si r m1r1 -f + mxrx est une racine

positive, Sr. r est de la forme r — a rt et ne peut être négative que si l'on
a m1 wii-i mi+ i .rr mt 0, c'est-à-dire si r est multiple
de rp, d'après (R), ceci ne peut se produire que si r rt. Autrement dit,

r{ est la seule racine positive que Sr. transforme en une racine négative, et

l'on a N (Sr.) 1 ; d'après b), on a donc 0 (Sr.) — 1.

9. Le lecteur qui désire^un peu d'exercice pourra résoudre lui-même, ou
faire résoudre par ses étudiants, le problème suivant:

a) Soient X un ensemble fini, et g, t deux permutations de X. On

suppose que g et t sont d'ordre deux, que t est sans point fixe, et que g et t

commutent. Montrer que les schémas suivants représentent toutes les situations

élémentaires



et en déduire que la signature de g est égale à — l)n/2 où n est le nombre des

xe X tels que gx tx.

b) Soit E un espace euclidien de dimension finie. Tout hyperplan H
de E définit une symétrie orthogonale sH et deux demi-espaces (ouverts)
qui sont dits opposés. Montrer que les deux demi-espaces limités par H
sont les seuls demi-espaces que sH transforme en leur opposé.

c) On note W un groupe fini de transformations orthogonales dans £,
engendré par des symétries par rapport à des hyperplans. On note
l'ensemble des hyperplans H tels que sH appartienne à W et R l'ensemble
des demi-espaces limités par un hyperplan appartenant à clC, Soit w dans

W; montrer que le déterminant de la transformation linéaire w dans E est

égal à la signature de la permutation de R induite par w (on se ramènera
au cas w=sH ; on définira la permutation t de R qui associe à tout demi-

espace le demi-espace opposé, et l'on appliquera les résultats de a) et b)).
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