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Posons alors b = p{l p{r, les nombres premiers pq, ..., p, étant distincts et

" les exposants f,, ..., f, strictement positifs. De (8) et (11), on déduit sans peine

—1 4] = ¢ <a) = < >9
e <p1) 28 b

c’est-a-dire le résultat de Schering.

DEUXIEME PARTIE

SYMBOLES GENERALISES

Il est assez tentant de renverser I’ordre des démonstrations précédentes et
de définir le symbole de Jacobi par le lemme de Gauss-Schering; les raisonne-

- ments de la premiére partie montrent comment établir la loi de réciprocité (V)

a partir de cette définition, et il ne serait pas difficile d’obtenir avec cette
définition les propriétés (I) a (IX) des symboles de Jacobi. Un tel exposé
serait assez artificiel, mais il se présente heureusement une possibilité bien

plus satisfaisante. Notons Z, le groupe additif des entiers modulo b et u,

automorphisme de Z, défini par la multiplication par a; par des raison-o
nements élémentaires exposes plus bas, on montre que le lemme de Gauss-

+ Schering équivaut au résultat suivant: (3) est la signature de la permutation u,
 de I’ensemble Jfini Z,. Ce théoréme a été prouvé par Zolotareft [6] en 1872
pour le cas ou b est premier, et généralis¢ immédiatement par Frobenius [2];
il suggere immédiatement la définition suivante des symboles ().

4. Etudes des symboles (¢).

Soit G un groupe commutatif fini, d’ordre impair 21z -+ 1, dont "opéra-
tion est notée additivement. Pour toute partie X de G, on note X ~ ["’ensemble
des €léments —x de G, pour x parcourant X. Pour tout automorphisme u
de G, on note () la signature de la permutation u de ’ensemble fini G. La
multiplicativité des signatures entraine immédiatement

(12) <?> B (Lé?) (72?)

pour deux automorphismes u et v de G.

L’application x |—» —Xx est un automorphisme de G que I’on notera

~ simplement — 1. Pour tout x € G, on a (2n--1).x = 0, et I'on ne peut donc
- avoir x = —x que lorsque x = 0. Il s’ensuit que — 1 a un cycle de longueur

W
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1 et n cycles de longueur 2, et par suite sa signature est (— 1)". Autrement dit,
on a la formule

(13) (;1) = (—1)dsi-n,

Nous passons maintenant a une généralisation du lemme de Gauss-
Schering. On appelle demi-systéme toute partie S de G* = G — {0} qui
rencontre chaque cycle de —1 dans G* en un point et un seul; il revient au
méme de dire que les ensembles S, S~ et {0} forment une partition de G.
Par exemple, si G cst le groupe additif des entiers modulo b (b est un entier
impair et positif), I'ensemble des classes modulo b des entiers compris
entre 1 et (b—1)/2 est un demi-systéme. Nous allons établir la formule

u — ( _ lu(S)NS ™ |
(14) <G>“( DL

ol u est un automorphisme de G et S un demi-systéme. La démonstration
est analogue a celle de Frobenius [2, page 630].

On a u (0) = 0, donc () est aussi la signature de la permutation u*
de G* induite par u. Posons S = {x, ..., x,} et énumérons les éléments
de G* sous la forme

xl,x2,..., xn_l,x —xn, —xn_l,..., _xz, —x1;

n>

st x et y sont deux éléments de G*, la relation x < y signifie que x précede
y dans la liste précédente. L’ordre choisi sur G* est donc tel que x < y
entraine —x > —y et que S se compose des x € G* tels que x < —x. On
appelle inversion de u* un couple (x, y) d’éléments de G* tel que x < y et
u(x) > u(y). On note I ’ensemble de ces inversions, de sorte qu’on a

u
(15) (G) = (="

d’aprés 'une des définitions usuelles de la signature. Par ailleurs, on a
u(—x) = —u(x), et les propriétés de la relation d’ordre sur G* montrent
que I’application (x, y) |-(—y, —x) est une permutation ¢ d’ordre 2 de I;
par conséquent, |I a méme parité que le nombre m des éléments de 1
invariants par o et I'on a donc (¢) = (—1)" d’aprés (15). Or m est le nombre
des couples (x, —x) avec x < —x et u(x) > —u(x), c’est-a-dire xe S et
u(x)e S™; on a donc n = |[u(S) N S~|, d’ou (14).
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Nous établissons maintenant la deuxiéme formule de multiplicativité. On
note G’ un sous-groupe de G et G” le groupe-quotient G/G'; on se donne
aussi un automorphisme u de G laissant stable G'. On note u’ I'auto-
morphisme de G’ induit par u et " 'automorphisme de G” déduit de u par
passage au quotient. Je dis que ’on a

1 u u'\ /u”

( ) G — G/ G" :

Notons n ’homomorphisme canonique de G sur G”, S” un demi-systéme
dans G’ et S” un demi-systéme dans G”;onpose T = n~ (§")etS = S v T.

Il est immédiat que S est un demi-systéme dans G et que les ensembles
u'(S)y S~ et u(T) n T~ forment une partition de u(S) n S~, d’ou

(17) w(SYn S| = [u'(S)Yn S| + u(T)n T—|.

Par ailleurs, I’ensemble u(T) » T~ est la réunion des classes modulo G’
appartenant a u"(S") N S”7; 'ordre d’une telle classe est égal a IG'[, et
comme |G’| divise le nombre impair |G|, il est impair. Ceci montre que
lu(T) n T~ | a méme parité que |u"(S”) n §"7|, et la formule (16) résulte
alors de (14) et (17).

Mentionnons un cas particulier important de (16); c’est celui ou le
groupe G est somme directe de deux sous-groupes G’ et G”, ol u’ est un
automorphisme de G’ et u” un automorphisme de G”, et ou u est I'auto-
morphisme de G qui induit ¥’ sur G’ et «” sur G”. La démonstration s’obtient
au moyen de I'isomorphisme bien connu du sous-groupe G” de G sur le
groupe-quotient G/G’ qui transforme u” en I"automorphisme déduit de u
par passage au quotient. On peut aussi déduire ce cas du résultat suivant:
soient X' et X" deux ensembles finis, s’ une permutation de X' et s” une

o permutation de X"; on pose X = X' X X" et I'on note s la permutation

(x, x") > (s'(x"),s"(x")) de X. Si ¢ (resp. &', &") est la signature de s
(resp. s', s"), on a ¢ = &'X"1 _¢"X'l_ La démonstration est facile et laissée
au lecteur.

¥/ 2. Restes quadratiques dans les corps finis.

Dans tout ce numéro, on note ¥ un corps fini, et q le nombre de ses éléments,

% quel’on suppose impair ; il revient au méme de supposer que la caractéristique
2t p de F est différente de 2. On a g = p’, ol fest le degré de F sur le sous-

corps F, formé des entiers modulo p. Si a est un élément non nul de F, la
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multiplication par a est un automorphisme du groupe additif F* de F,
dont la signature sera notée (3). la formule (12) du n° 4 entraine alors

ab a\ /b
(18) \) = pour a, b non nuls dans F.
F F)\F

/

Nous établissons maintenant la formule (°)

ab .
(19) ( F) — g7~V pour a non nul dans F.
La démonstration est une extension de celle que Gauss a utilisée pour
démontrer son lemme. On choisit un demi-systéme S dans F* ; tout élément
non nul de F s’écrit de manicre unique sous la forme ¢ x avec e € {1, —1}
et x € S. Il existe donc une permutation u de S et une application ¢ de S
dans {1, —1} telles que ax = ¢ (x) u (x) pour tout x € S; multipliant ces
égalités entre elles et tenant compte de la relation [ Ju (x) = [ ] x, on trouve

xeS xesS
aprés simplification a'S! = []e(x). Or, on a |S| = l4(g—1) et P'on a
xe S
e(x) = —1 st et seulement si axe S~ . La formule (14) achéve alors la

démonstration.

La signification des symboles (g) est la suivante: ce nombre est égal a 1
ou —1 selon que a est ou non un carré dans le corps F. Rappelons que le
groupe multiplicatif du corps F est cyclique d’ordre ¢—1; nous choisirons
un générateur z de ce groupe et poserons g—1 = 2n. Alors les éléments non
nuls de F peuvent s’énumérer comme suit

7=, ..., e

1 .3 2(n—1)+1
Z ,2%,...,2 ,

la premicre ligne contenant les carrés et la deuxieme les non-carrés. Comme

18) entraine (%) = 1 et (° 2"Jrl) = (), il nous suffira de prouver la relation
¥ F F

3= -1

A. Premiére démonstration (BEuler): on a z" # 1 et (2% = z?" =1
car z est d’ordre 2n; on a donc z" = —1,dou (f) = 220"V = 2" = —|
d’apres (19). A

B. Deuxiéeme démonstration (Zolotareff): la multiplication par z dans F
transforme O en lui-méme et permute circulairement les 2n éléments

3 Dans cette formule, on considére (Fa) comme un élément de F, en identifiant les
entiers 1 et —1 a leurs images naturelles dans le corps F.
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2%, z%, ..., z?"~ 1 donc c’est une permutation impaire, et () = —1 d’apres
la définition de (§) comme signature.

Nous considérons maintenant un espace vectoriel ¥ de dimension finie d
sur le corps F et un automorphisme u de V; on note det u le déterminant
de u. J’affirme que 'on a

uwy) det u
(20) (V) \F

On ne restreint pas la généralité en supposant qu'on a ¥ = F%. D’aprés
un résultat classique et facile (*), le groupe des automorphismes de V' est
engendré par les éléments de la forme suivante

Dal, cs ad (xla -'-sxd) = ((lel, . nEy adxd)
Si (X5 eees Xg) = (Xq, vns Xym 15 Xig 15 Xp5 Xyt 25 o005 Xg)
T (Xg, s Xg) = (Xg5 ooy Xim 15 X F X5 15 Xy 15 Xig 25 o005 Xg),

ou ay, ..., a, sont des éléments non nuls de F et / un entier compris entre
1 et d—1. Or, les deux membres de la formule (20) dépendent multiplicative-
ment de u d’apres les relations (12) et (18); il suffit donc d’examiner les cas
ou u est de I'une des formes D, S;etT,

seeesAd?

a) Le cas de D, ... posons Gy = ..= G, =F" et notons u,
lautomorphisme de G; défini par la multiplication par a;; on a donc

V: Gl X ..o X Gd et u (Xl, cees xd) — (ul(xl), veey ud(xd))

pour x; € Gy, ..., x;€ G, De la formule (16), on déduit par récurrence
sur d la formule (y) = (g) ... (¢9); or ona (1) = (§) par définition, et le
déterminant deu est a, ... a4, d’ou (20).

b) Le cas de S;: dans ce cas, u échange les coordonnées d’indice i et
[ + 1; c’est une permutation d’ordre 2, qui posséde g*~' points fixes, et
a donc la méme parité que 15(¢°—¢*" ") = 1h(g—1)7*"t. Comme ¢ est
impair, on a donc (y) = (—1)*“~ 1 = (1), et le déterminant de u est égal
a —1; on a prouvé (20).

* Ce résultat équivaut a4 un lemme classique sur les matrices inversibles: une telle
matrice peut €tre ramenée a la forme diagonale au moyen d’un nombre fini d’applications
des transformations du type suivant:

a) permuter deux colonnes;
b) ajouter a une colonne un multiple d’une autre.
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¢) Le cas de T;: on a alors u” = 1, d’ou (y)” = (%) = 1; comme p est
impair, on a donc () = 1. Par ailleurs, le déterminant de u est 1, d’ou (20).
Ceci achéve la démonstration de (20).

Remarque : on conserve les notations F et V' précédentes, et I’on note
V* I’ensemble des éléments non nuls de V. Notons aussi F* le groupe
multiplicatif des éléments non nuls de F. Le groupe F* agit sans point fixe
sur V* par multiplication, et son action commute a celle du groupe GL(V')
des automorphismes de I'espace F-vectoriel V.

Dans une Note antérieure (Sur une généralisation du transfert en théorie
des groupes, ce méme journal, pp. 49-57), nous avons €tudié la situation
générale suivante: X est un ensemble fini, G et A sont deux groupes agissant
sur X; on suppose que A est commutatif et agit sans point fixe sur X, et
que les actions de G' et 4 commutent. On a défini un homomorphisme @,
de G dans A par la construction suivante: on choisit un ensemble S < X
tel que tout élément de X s’écrive de maniére unique sous la forme a. s
avec a€e A et s€.S; pour tout g € G, 1l existe une permutation o de S et
une application « de .S dans A telles que g (s) = a (s) . a(s) pour touts € S;
on a alors @,(g) = [] «(s), ce produit ne dépendant pas du choix de S.

se S
Si A" est un sous-groupe de A, on peut définir de maniere analogue un

homomorphisme &, de G dans A’, et I'on vérifie facilement que 1’on a
(%) @4 (g9) = D4 (&) pour tout geG.

Lorsque 'on a X = V* G =GL(V)et A =F* on a Pp(g) =det g
pour tout ge GL(V). 1l suffit de vérifier cette assertion lorsque g est de
I'une des formes D, .., S; et T;; la vérification est €lémentaire dans
chaque cas.

Prenons pour A’ le sous-groupe {1, —1} de F*. Le lemme de Gauss-
Schering généralisé entraine (}) = @, (g) pour tout ge GL(V), d’ou

g * ’ 17 det u
= @ (g)'F" = (det g)*U™D) = :
<V> 4(9) (det g) ( F >

d’aprés (*). On a redémontré la formule (20).

Nous prenons cette fois pour A’ le groupe multiplicatif F'* d’un sous-
corps F' de F, a ¢’ éléments. Soit g un automorphisme de I’espace F-vectoriel
V; on peut considérer ¥ comme un F’-espace vectoriel V' et g comme un
automorphisme g’ de V’'. La propriété (*) ci-dessus entraine alors
det g’ = (det g)4~ /@~ On notera que la norme d’un élément a de
F par rapport & F’ est a9~ V/@ =1 donc det g’ est la norme de det g. Ce
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dernier résultat ne suppose pas F fini, il est valable pour un espace vectoriel
¥ de dimension finie sur un corps F de degré fini sur un sous-corps F".

3. Retour sur les symboles de Jacobi.

: Nous résumons d’abord les résultats des deux derniers numéros. On
f note G un groupe commutatif, d’ordre fini impair, et F un corps fini de
caractéristique # 2.

A. Propriétés de multiplicativite.
A,) Siu et v sont des automorphismes de G, on a () = (¢) (&)

A,) Soient G’ un sous-groupe de G, u un automorphisme de G tel que
P u(G) =G, u'etu"les automorphismes de G’ et G" = G/G’ respectivement
§ déduits de w. On a (g) = (2 (&)

A;) On suppose que le groupe G est somme directe des sous-groupes
¥ Gy, ..,G,; pour 1 £i < n, soit u; un automorphisme de G;, et soit u
'automorphisme de G induisant u; dans Gy, ..,u, dans G, On a
s (6) = (&) - (&)

B. Lemme de Gauss généralisé.

; B,) Soit S une partie de G ne contenant pas 0, et telle que pour tout
i xeG,on ait soit x € S, soit —x € S (mais non les deux). Soient u un auto-
; morphisme de G et m le nombre des éléments x de S tels que —u (x) € S.
On a alors () = (— D)™

B,) On a () = (=D*eI=D,

C. Corps finis et restes quadratiques.

C,) On a (§) = a*FI= 1 pour tout a # 0 dans F.
C,) On a (g) = 1 ou —1 selon que a est ou non un carré dans F.

C;) Soient V un espace vectoriel de dimension finie sur F, et u un
automorphisme de ¥. On a (3) = (“%¢").

Convenons maintenant de définir les symboles de Jacobi par (;) = (z%):
on note b un entier impair et positif, Z, le groupe additif des entiers modulo
b, a un entier étranger 2 a, et u, la multiplication par a dans Z,. En parti-
culier, si p est un nombre premier différent de 2, F, le corps des entiers
modulo p et a un entier non divisible par p, ona () = (%P) ou a est la classe
de @ modulo p. Les propriétés (I), (IT), (VI), (VIII) et (IX) des symboles
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de Jacobi résultent alors immédiatement des propriétés des symboles (¢);
on a montré au n° 2 de la premiére partie comment déduire la loi de réciproci-
t€¢ (V) du lemme de Gauss-Schering. Il reste & examiner (IIT), (IV) et (VII).

Ad (III): notons b et b” deux entiers impairs et positifs, et ¢ un entier
€tranger a b’ et b”. On pose G = Z,.,» et ’on définit "automorphisme u
de G par u(x) = ax. Soit G' le sous-groupe cyclique d’ordre b’ de G
engendré par la classe modulo 5’6" de b”; le groupe quotient G” = G/G’
est cyclique d’ordre 6”. Comme on a u (G') = G’, on peut appliquer (4,);
on a évidemment (&) = (%), () = (&) et (&) = (%), Aot () = (L)) ).

Ad (VII): soit b = 2b" + 1 un nombre impair et positif. Représentons
chaque classe modulo b par le plus petit entier positif qu’elle contient.
L’automorphisme u de Z, défini par u(x) = 2x est alors la permutation

B 12... b"b"+1b"+2... 2b
U=\24 .. 20 1 5 ...2b’—1>

dont le nombre d’inversions est égal a
L2440 =1) + b= 15" (b'+1) = (B> =18,
d’ot (2) = (= 1)®*~V/8; ceci établit (VII) (6.

Ad (IV): soient b et b’ deux entiers impairs et positifs, et a un entier
étranger a4 b et b'. Supposons d’abord @ = 1 mod. 4 et b = b’ mod. |al.
La loi de réciprocité entraine (5) = ;o) et (5) = (), et comme on a
évidemment (!Z|) = (ﬁ,'l), on a prouvé (;) = (;,). Supposons maintenant
qu'on ait b = b’ mod. 4 |a| et prouvons la formule (;) = (;). Or, on a
() = () (3) et pour tout entier impair x, 'un des nombres x et —x est
congru a 1 modulo 4. Il suffit donc d’examiner les cas a = 1 mod. 4 (qui
vient d’étre traité),a = — 1 (qui résulte de (VI)) et a = 2 (qui résulte de (VII)).

5 Le raisonnement qui établit (A4,) peut s’utiliser dans la théorie classique de la
maniere suivante. On suppose les symboles de Jacobi définis a partir de ceux de Legendre,
et le lemme de Gauss démontré. On admet aussi que dans I’énoncé du lemme de
Schering, on peut remplacer I’ensemble des entiers 1, 2, ..., b" par n’importe quel demi-
systeme modulo b (ce que Gauss et Schering savaient). Le raisonnement de (4,) montre
alors que si le lemme de Schering est vrai pour b, et by, il est vrai pour b = b,b,. Par
récurrence sur b, on se ramene donc au cas ou b est premier, c’est-a-dire au lemme de
Gauss. Cette démonstration du lemme de Schering est nettement plus simple que celle
de cet auteur.

6 Une autre méthode est la suivante: des deux nombres impairs b et b + 2, I'un

est congru a 1 modulo 4, dot (%) = (,2,) par laloi de réciprocité. On en déduit

()= (23) = (75) (b 2)= CDHEHD (2a), o (3) = (1) 0% par récur.
rence sur b.




4. Extension aux corps de nombres algébriques.

On note 4 anneau des entiers d’un corps de nombres algébriques, de
degré fini sur le corps des nombres rationnels. On note a, b, ... des indéaux
de A: si a est un idéal, on note N (a) le nombre des €léments de 'anneau
quotient 4/a. On note p un idéal premier de 4 tel que N (p) soit impair.

A. Symboles de restes quadratiques.

Soient a un idéal tel que N (a) soit impair et x un élément de 4. On
dit que x est étranger & a si I'on a 4 = Ax +- a, cest-a-dire si la classe X
de x modulo a est un élément inversible de 'anneau A/a. S’il en est ainsi,
la multiplication par X définit une permutation de I’ensemble fini 4/a, dont
la signature sera notée (3). Les propriétés des symboles () entrainent
immédiatement les régles suivantes:

(2)-()0)
200

| (23) <x> = x*(N @)~ mod. p
p

o4 <x> _ { 1 s’il existe y dans 4 avec y* = x mod. p,

P —1 dans les autres cas.

La démonstration de (22) utilise I'isomorphisme des groupes 4/a et b/ab.
Les régles (22) et (24) donnent une caractérisation des symboles (), qui
i coincident donc avec les symboles de restes quadratiques usuels (Hilbert,
B Hecke). Nous avons ainsi étendu au cas des corps de nombres algébriques
| le théoréme de Zolotareff-Frobenius.

B. Déterminants généralisés (7).

Notons M un A-module de type fini, annulé par une puissance de I’idéal
§ premier p et F le corps fini 4/p. Nous associerons a tout endomorphisme u
& de M un élément D (u) de F, qui doit étre considéré comme un déterminant

7 A Texception de la formule (]('4) = (DI(;“)) les résultats qui suivent sont valables

L sous les hypot,héses plus générales; A est un anneau commutatif, p est un idéal maximal
de 4 engendré par un nombre fini d’éléments, M est un 4-module de type fini.
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généralisé de u. Pour tout entier positif i, le A-module M; = p'M/p"" M
est annulé par p, donc peut €tre considéré comme un espace vectoriel sur
F, dont la dimension est finie. Comme u laisse stable chacun des sous-
modules p'M de M, il définit un endomorphisme u; de M,, dont le déter-

minant sera noté D (u). D’aprés les hypothéses faites, il existe un entier
N-1

N > 0 tel que M; = 0 pouri > N. On posera D (u) = || Dy(u)( définition
i=0

indépendante de N).

Lorsque M est annulé par p, on peut le considérer comme un espace
vectoriel sur F, et 'on a D (1) = det u dans ce cas. Il est clair que st u et v
sont deux endomorphismes de M, on a D (uv) = D (u). D (v), et enfin
si D (u) est non nul si et seulement u est un automorphisme de M. Les
propriétés (4,) et (C5) du n° 3 et une récurrence immédiate sur N entrainent
la formule (y) = (°4") pour tout automorphisme u de M.

On peut établir pour les déterminants généralisés une propriété analogue
a la propriété de multiplicativité (4,): si u est un automorphisme de M,
M’ un sous-module de M tel que u(M') = M’, u' (resp. u”) 'automor-
phisme de M’ (resp. M/M") déduit de u, on a D (u) = D (u'). D (u"). En
bref, la démonstration est la suivante. On traite d’abord le cas ou M est
annulé par p, ce qui raméne a une propriété connue des déterminants:
si T est une matrice partitionnée en (5y,), on a det T = det U. det W.
Appelons sous-groupe stable de M tout sous-module de M stable par w.
On peut prolonger la suite (M, pM, ..., p"M) de sous-groupes stables en
une suite de Jordan-Hélder (P,, Py, ..., P,). Chaque module Q; = P;/P;,,

(pour 0 £ j < r) est annulé par p, et si v; est Pautomorphisme de Q;
r—1

déduit de u, on a D (u) = || detv; par le cas déja étudié. Il existe par
=0

J
ailleurs un entier s tel que 0 < s < r et une suite de Jordan-Holder

(Py, P1, ..., P,) de sous-groupes stables de M, telle que P, = M’. D’apreés

r—1 r—1
le théoréme de Jordan-Holder, on a [[detv; = [] detv; si v; est 'auto-
’ J=0 j=0

r—1

morphisme de Q; = Pj/P;,,; déduit de u. On a donc D (u)= [[det v;;
: j=0
comme (Po/M’',P{/M’, ..., P./M’) est une suite de Jordan-Holder de M/M’

s—1

et de méme (P, Py, 1, ..., P;) pour M', on a D (u") = []detv; et
Jj=0

r—1
D (u') = [] detv;. Ceci établit la formule D (u) = D (u'). D (u").

j=s
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5. Calcul des symboles ().

On note G un groupe commutatif fini d’ordre impair et u un auto-
morphisme de G. On sait que G est somme directe de sous-groupes cycliques
Gy, ..., G,; notons d; ordre et x; un générateur de G,. 1l est loisible de
supposer que d; divise d;,; pour 1 £ i=n—1; on définit les entiers
e, = d;/d,_, pour 1 < i < n, avec la convention d, = 1. Par ailleurs, on

n
choisit des entiers u;; tels que u (x;) = Yu;j.x;pour 1 =i = net I’on
j=1

note D, le déterminant de la matrice

....................
....................

Up; u’n, i+1 - Upy

Nous allons établir la formule

u D, D,
@ (@)= ()-(2)

Traitons d’abord lecasolld, = ... == d, = d.Onaalors e; = dete; = 1
pour 2 < i < n, de sorte que la formule a prouver s’écrit () = () ou Dest
le déterminant de la matrice U = (4;;)1 —;, j—n- 1l €xiste des nombres premiers
P1, .., p, Non nécessairement distincts, tels que d = p; ... p,. On pose
H{ = G|p\G, Hy = p,G|pp,G, ..., H, = p1Ps .. Dy—1G/p1D2 - Py 1040
Alors H ; est un espace vectoriel de dimension 7 sur le corps F v ap;€léments;
a u est associé un automorphisme u; de H;, admettant la réduction de U
modulo p; pour matrice par rapport & une base convenable de H;. D’aprés
(Cy), on a (ﬁj:) = (fj), et la propriété de multiplicativité (4,) entraine alors
= =R B =

Le cas général se traite par récurrence sur zn. Si 'on n’est pas dans le
cas précédent, il existe un entier r compris entre 1 et n—1 et tel que
di=..=d.etd, #d,.,. Posons d = d; et notons D le déterminant de
U. Posons aussi G' = dG et G" = G/G'; 1l est clair que u laisse G’ stable,
donc définit des automorphismes u" et u” de G’ et G” respectivement. Or
le groupe G’ est somme directe des sous-groupes cycliques engendrés
respectivement par les éléments «',, ; = dx,, , ..., &' = dx,, x; est d’ordre
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n
djjd et I'on a u'(x) = ) Uiy w; pour r + 1 < i < n. Lhypothése de
j=r+
récurrence entraine alors

' M/ -Dr+1 -Dr
o (-0

Par ailleurs, le groupe G” est somme directe des sous-groupes cycliques
engendrés respectivement par x; = x,; + G',...,x, = x, + G', et ces
éléments sont tous d’ordre d. D’aprés l'alinéa précédent, on a donc
(t)y=(); or, nae, =dete,=..=e, =1, et aussi D, = D, d’oll

u” D, D,
o )C0)

D’aprés la propriété (4,), on a (&) = (&) (&) et la formule & démontrer
résulte de (26) et (27).
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