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SUR UNE GENERALISATION
DES SYMBOLES DE LEGENDRE-JACOBI

par P. CARTIER (Strasbourg)

INTRODUCTION

Un théoréme assez peu connu (Zolotareff, Frobenius) donne une
interprétation des symboles de Legendre-Jacobi au moyen de la signature
de permutations convenables. Cette interprétation suggére une geénéralisa-
tion de ces symboles, a laquelle nous consacrons dans ces pages une €tude
élémentaire. Les propriétés des symboles généralisés redonnent facilement
les principaux résultats classiques de Legendre, Gauss et Jacobi et nous
permettront d’étendre le théoréme de Zolotareff-Frobenius au cas des corps
de nombres algébriques. On peut utiliser les résultats de cette Note pour
donner un exposé rapide des propriétés des symboles de Legendre-Jacobi,
exposé qui différerait trés peu de celui de Frobenius dans [2].

PREMIERE PARTIE
LA LOI DE RECIPROCITE QUADRATIQUE ET LE LEMME DE (GAUSS-SCHERING

1. Résumé des résultats classiques (Legendre, Gauss, Jacobi).

Soient a et b deux entiers, avec b > 0. On dit que a est reste quadratique
modulo b s’il existe deux entiers x et y tels que x> = a -+ by, autrement dit,
si la classe de a est un carré dans ’anneau des entiers modulo b. Gauss
note a R b cette relation et a N b sa négation. Soient p et ¢ deux nombres
premiers, distincts de 2 et distincts entre eux. La loi de réciprocité qua-
dratique, conjecturée par Euler, démontrée partiellement par Legendre, et
¢tablie par Gauss en 1796, affirme qu’il n’y a que les quatre possibilités
suivantes:
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pNgetg Rp} s1 p et g sont congrus a 3 modulo 4.

Le symbole de Legendre () est défini pour un nombre premier p # 2
et un entier a non divisible par p; il vaut 1 ou —1 selon que a est reste
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quadratique modulo p ou non. L’introduction de ce symbole permet de
condenser la loi de réciprocité en la formule

N
4/ \P

Jacobi a généralisé les symboles de Legendre de la maniére suivante: soit
b un entier positif impair, de la forme p, ... p, ou les nombres premiers
D1, -, Py SONt nécessairement distincts de 2; si a est un entier étranger a b,
il n’est divisible par aucun des nombres premiers p, ..., p, et on définit
le symbole de Jacobi (;) comme le nombre () ... (5,). On a (;) = 1 si a
est reste quadratique modulo b, mais la réciproque n’est pas vraie, et la
signification des symboles de Jacobi est moins évidente que pour ceux de
Legendre.
Voici les principales propriétés des symboles de Jacobi:

A. Propriétés de multiplicativité et de congruence.

(I) Si b est impair et positif et a, a’ étrangers & b, on a (“4) = (§) ().
(II) Si b est impair et positif, a et @’ étrangers a b et si a = a’ mod. b,
on a (3) = ().
(III) Si b et b’ sont impairs et positifs, et a étranger a b et b’, on a
(o) = () ()-
(IV) Si b et b’ sont impairs et positifs, a étranger a b et b’, a congru a 0
ou 1 modulo 4, et si b = b’ mod. |a|, on a (§) = (5).

B. Loi de réciprocité et compléments.

(V) Si a et b sont impairs et positifs, et a étranger a b, on a
a—1 ,b—1,

G@=(CD2 2

(VI) Si b est impair et positif, on a (73) = (—=1)*¢~ Y,

(VII) Si b est impair et positif, on a (;) = 1 ou —1 selon que b est congru
modulo 8 2 +1oua £3.

C. Restes quadratiques.

(VIII) Pour tout nombre premier p # 2, on a (3) = a**~ " mod. p.

(IX) Sip # 2 est premier, 'entier () est égal a 1 ou —1 selon que a est ou
non reste quadratique modulo p.




On peut étendre la définition des symboles de Jacobi en posant
| (_9) = (&) pour b positif impair et a étranger a b. Notons o (x) le signe
d’un nombre x non nul, égal & x/ x]; on a alors ’expression la plus générale
de la loi de réciprocité sous la forme

a—1 b—-1 g (a)—1 o (b)—1
<a><b>:(—1) T T e T
b) \a ‘

. ol a et b sont deux entiers impairs de signe quelconque, avec a étranger

b a4 b. Nous laissons au lecteur le soin de modifier les propriétés (I) a (IV)
' pour couvrir ce cas plus général.

Les propriétés (III) et (IX) ci-dessus ne font que traduire la construction

des symboles de Jacobi et en donnent donc une caractérisation axiomatique.
" Notons la généralisation suivante de (VI):

! (VI') Si b est impair et positif et a étranger & b, ona( ;) = (—1) = (=1,
% Une démonstration facile par récurrence sur le maximum de Ial et b montre
* que les groupes de propriétés (II) -+ (IV) 4+ (VI') et (1D + (V) + (VI')
fournissent deux caractérisations axiomatiques des symboles de Jacobi.
: En principe, la théorie des symboles de Jacobi ne contient rien de plus
s que celle des symboles de Legendre; en particulier, la loi générale de
% réciprocité (2) est une conséquence facile de (1). Mais le calcul effectif
. d'un symbole de Legendre par la formule de réciprocité oblige a de
€ nombreuses factorisations en nombres premiers, et ['on sait que celles-ci
_ sont ennuyeuses et longues pour des nombres un peu grands. Le lecteur
pourra s’exercer a montrer par cette méthode que le symbole de Legendre
3 o= (*5121348) vaut —1, c’est-a-dire que la congruence x* = — 1148 mod. 523
n’a pas de solution (523 est premier). Voici & titre de comparaison le calcul
par les symboles de Jacobi. On a 523 = 3 mod. 8, d’ol (s5;) = —1 par
B (VID);ona —1148 = —102mod. 523,d’0u S = (5439 = (533)(523) = — (53}
par (IT) et (I). Comme on a —51 = 1 mod. 4 et 523 = 13 mod. 51, on a
(539 = (T2 par (IV). Enfin, ona —51 = I mod. 13 etdonc (13 = (4) =1
¢ par (I), d’ou S = —1.

E: 2. Démonstrations de la loi de réciprocité par le lemme de Gauss.

On sait que Gauss n’a pas donné moins de six (et méme sept)
démonstrations de la loi de réciprocité [3]. Nous nous intéressons ici a la
B troisicme (1808) et a la cinquieme (1818); elles reposent toutes deux sur
le lemme de Gauss (1808) qui s’énonce comme suit: étant donnés un
R ombre premier p # 2 et un entier a non divisible par p, notons n le nombre

L’Enseignement mathém,. t. XVI, fasc. 1. 3
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des entiers x compris entre 1 et (p—1)/2 et tels que — ax soit congru modulo p
a un entier compris entre 1 et (p—1)/2; on a alors (;) = (—1)".

Nous allons donner une version simplifiée des deux démonstrations de
Gauss. Les notations sont les suivantes: p et g sont deux nombres premiers,
distincts de 2 et distincts entre eux; on pose p = 2p’ -+ 1 et ¢ = 29" + 1,
et 'on note R I’ensemble des couples d’entiers (x, y) avec 1 < x < p' et
1 <y < q’; enfin, on note |X| le nombre d’éléments d’un ensemble
fini X.

Voici d’abord la troisiéme démonstration de Gauss, dans la présentation
«géométrique» d’Eisenstein. On note [¢]la partie entiere d’'un nombre réel ¢,
c’est-a-dire le plus grand entier majoré par ¢. Supposons que a soit entier
et ¢ non entier; on établit immédiatement la formule

(3) [a—t] =a —[f] — 1.

Notons Y ’ensemble des entiers y compris entre 1 et 2¢’ et t la permutation
de Y qui transforme y en ¢ — y; pour tout y € Y, on pose F (y) = (—1)p/4],
Comme p est impair, la formule (3) ou I'on fait a = p et t = py/q (}) donne

(4) F(t(y)) = F(y)  pour tout y dans Y.

Or, tous les cycles de la permutation t sont d’ordre deux, et le produit

[T F (y) a donc la méme valeur pour toutes les parties S de Y rencontrant
yeS

chaque cycle de 7 en un point et un seul. On peut prendre pour S
I’ensemble {1, 2, ..., q'} ou ’ensemble {2,4, ..., 2q'}, dou la formule

5 [1F ) = [1F @,

Soit y un entier compris entre 1 et ¢’; il existe un unique entier v compris
entre —g' et g’ et congru a py modulo ¢; on peut donc poser py = qu + v,
ou u et v sont entiers et |v| < ¢g’. Comme ¢ ne divise pas py ('), ona v # 0,
et il est immédiat que [2py/q] est égal a 2u ou 2u—1selon que 'onav > 0
ouv < 0. Autrement dit, ona F(2y) = 1siv > 0et F2y) = —1siv < 0.
Le lemme de Gauss entraine alors la formule

© () =11ren

q

Enfin, soit P I’ensemble des couples (x, y) appartenant a R et tels que
v

py > gx; il est immédiat qu’on a |P| = Y [py/q], d’oli, par définition de
y=1

F, la formule




Tea kiAo U
T R ER RN

— 35 —

(7) (=DIF = UIF(y)-

Les formules (5), (6) et (7) donnent (?) = (—1)!*l. En échangeant les
roles de p et ¢, on trouve (;) = (— 1)!2l out O se compose des couples (x, »)
appartenant & R et tels que py < gx. Pour tout (x, y) dans R, on a

© px # qy (Y); par suite, les ensembles P et Q forment une partition de R,

SRR
Il 2

S——

T

 dou |P| +
LG = (=D

Q| = |R| = p’q’; on a donc prouvé la formule de réciprocité

Nous exposons maintenant la cinquiéme démonstration de Gauss sous
la forme trés transparente due a Frobenius [2]. On a utilisé précédemment
le fait que py—gqx est non nul pour tout couple (x, y) appartenant a R.

1 Les inégalités suivantes

Ry: py — gx < —q/2
R,: —g2<py—gqgx< O
Ry: 0 <py—gx< pl2
Ryt pl2 <py —qx

définissent donc une partition de I’ensemble R en quatre parties notées
encore Ry, ..., R,. Pour y donné compris entre 1 et ¢’, I'inégalit¢ R, ne
peut avoir lieu que pour une valeur au plus de x et 'ona alors 1 < x < p’;
on a donc (%) = (—1)!®2! par le lemme de Gauss. On établit de méme la
relation (j) = (—1)!®3! Enfin, I'application (x, y) |= (p'+1—x, ¢'+1—)
est une bijection de R, sur R,, d’ou IRI! = |R4|. On a alors

p'a’ = IRl = [Ry| + IRy + [Ry| + [Ry| = |Ry| + |Ry| mod. 2,

d’olt immédiatement la formule de réciprocité (%) (£) = (—1)P?.

3. Démonstration du lemme de Gauss-Schering.

Les démonstrations précédentes n’utilisent que le lemme de Gauss pour
calculer () et le résultat suivant: si x et y sont des entiers telsque 1 < x < p’
et 1 £y =gq’,onapy# gx. Or, ce dernier fait ne nécessite pas que p et ¢
solent premiers, mais simplement qu’ils soient étrangers (lemme d’Euclide).
Les deux démonstrations de Gauss établissent donc la loi de réciprocité (V)
pour les symboles de Jacobi, pourvu que 'on prouve la généralisation
sutvante du lemme de Gauss: soient b un entier impair et positif et a un

1' Si x est un _entier et y un entier compris entre 1 et ¢/, on a py = gx: en effet, g est
premier et ne divise pas le nombre premier p # ¢, ni le nombre y < g, donc il ne divise

pas py.
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entier étranger a b; on a (5) = (— 1) o A est Iensemble des entiers x
compris entre 1 et (b—1)/2 et tels que — ax soit congru modulo b a un entier
compris entre 1 et (b—1)/2. C’est ce qu'a démontré Schering (éditeur des
cuvres de Gauss) en 1876; nous allons donner un exposé simplifié de sa
méthode [5].

Pour tout diviseur m de b, soit 4,, ’ensemble défini de maniére analogue
a A, au remplacement prés de b par m; on note aussi B, ’ensemble des
entiers compris entre 1 et (m—1)/2 et étrangers a m. On montre facilement

b

que tout élément de A s’écrit de maniére unique sous la forme —.x ou m
m

est un diviseur de b et x un élément de 4,, » B,,;

posant 5 (a, m) = |4,, © B,|, on a donc
(8) |A] = Zl n(a, m).
m|b

L’argument suivant est une extension de celui par lequel Gauss établit
son lemme. Soit m un diviseur de b. Il existe une permutation u de B,, et
une fonction ¢ sur B, a valeurs dans {1, —1} caractérisées par la congruence

(9) ax = e¢(x).u(x) mod. m pour tout x € B,,.

Or, Bm| est égal a 15 ¢ (m), ou ¢ (m) est 'indicateur d’Euler bien connu;

comme u est une permutation de B,, on a [[x = []u(x); enfin, on a
x € By, x € By,

¢(x) = —1 si et seulement si x appartient a 4,, n B,,. Multipliant les

congruences (9), on obtient aprés simplification (?)

(10) a*?tm = (—qyem mod. m.

Supposons m # 1 et soit p un diviseur premier de m; on pose m = p’.m’
-1

avec m’ non divisible parpetf > 1.Or, ona 14 (m) :PT -pf Lo (m'),

p est impair et ¢ (m’) est pair si m’ # 1; la congruence (10) entraine une

congruence analogue modulo p, et 'on a @**~ 1 = (%) mod. p par le lemme

d’Euler (cf. (VIII)). De tout ceci, on déduit

a
si m = p/ avec p premier et f > 1,

(11) (=™ =J\p
1 dans les autres cas.

2 Le résultat le plus général de ce type est le suivant: soient G un groupe commutatif
fini et G’ un sous-groupe de G; ’homomorphisme de transfert de G dans G’ transforme
tout @ € G en alG/G'l, Ici, G est le groupe multiplicatif des éléments inversibles de ’anneau
des entiers modulo m, et G'={1,—1}.
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Posons alors b = p{l p{r, les nombres premiers pq, ..., p, étant distincts et

" les exposants f,, ..., f, strictement positifs. De (8) et (11), on déduit sans peine

—1 4] = ¢ <a) = < >9
e <p1) 28 b

c’est-a-dire le résultat de Schering.

DEUXIEME PARTIE

SYMBOLES GENERALISES

Il est assez tentant de renverser I’ordre des démonstrations précédentes et
de définir le symbole de Jacobi par le lemme de Gauss-Schering; les raisonne-

- ments de la premiére partie montrent comment établir la loi de réciprocité (V)

a partir de cette définition, et il ne serait pas difficile d’obtenir avec cette
définition les propriétés (I) a (IX) des symboles de Jacobi. Un tel exposé
serait assez artificiel, mais il se présente heureusement une possibilité bien

plus satisfaisante. Notons Z, le groupe additif des entiers modulo b et u,

automorphisme de Z, défini par la multiplication par a; par des raison-o
nements élémentaires exposes plus bas, on montre que le lemme de Gauss-

+ Schering équivaut au résultat suivant: (3) est la signature de la permutation u,
 de I’ensemble Jfini Z,. Ce théoréme a été prouvé par Zolotareft [6] en 1872
pour le cas ou b est premier, et généralis¢ immédiatement par Frobenius [2];
il suggere immédiatement la définition suivante des symboles ().

4. Etudes des symboles (¢).

Soit G un groupe commutatif fini, d’ordre impair 21z -+ 1, dont "opéra-
tion est notée additivement. Pour toute partie X de G, on note X ~ ["’ensemble
des €léments —x de G, pour x parcourant X. Pour tout automorphisme u
de G, on note () la signature de la permutation u de ’ensemble fini G. La
multiplicativité des signatures entraine immédiatement

(12) <?> B (Lé?) (72?)

pour deux automorphismes u et v de G.

L’application x |—» —Xx est un automorphisme de G que I’on notera

~ simplement — 1. Pour tout x € G, on a (2n--1).x = 0, et I'on ne peut donc
- avoir x = —x que lorsque x = 0. Il s’ensuit que — 1 a un cycle de longueur

W
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