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SUR UNE GÉNÉRALISATION
DES SYMBOLES DE LEGENDRE-JACOBI

par P. Cartier (Strasbourg)

Introduction

Un théorème assez peu connu (Zolotareff, Frobenius) donne une

interprétation des symboles de Legendre-Jacobi au moyen de la signature
de permutations convenables. Cette interprétation suggère une généralisation

de ces symboles, à laquelle nous consacrons dans ces pages une étude

élémentaire. Les propriétés des symboles généralisés redonnent facilement
les principaux résultats classiques de Legendre, Gauss et Jacobi et nous

permettront d'étendre le théorème de Zolotareff-Frobenius au cas des corps
de nombres algébriques. On peut utiliser les résultats de cette Note pour
donner un exposé rapide des propriétés des symboles de Legendre-Jacobi,
exposé qui différerait très peu de celui de Frobenius dans [2].

Première partie
La loi de réciprocité quadratique et le lemme de Gauss-Schering

1. Résumé des résultats classiques (Legendre, Gauss, Jacobi).

Soient a et b deux entiers, avec b > 0. On dit que a est reste quadratique
modulo b s'il existe deux entiers x et y tels que x2 a + by9 autrement dit,
si la classe de a est un carré dans l'anneau des entiers modulo b. Gauss

note a R b cette relation et a N b sa négation. Soient p et q deux nombres
premiers, distincts de 2 et distincts entre eux. La loi de réciprocité
quadratique, conjecturée par Euler, démontrée partiellement par Legendre, et
établie par Gauss en 1796, affirme qu'il n'y a que les quatre possibilités
suivantes :

p Rq et q R p)
^ Ar

> si p ou q est congru a 1 modulo 4,
pNqotqNpj
p Rq et q Np) „ t

Ar „ > si p et q sont congrus a 3 modulo 4.
p Nq et q RpJ ^ &

Le symbole de Legendre Q est défini pour un nombre premier p # 2
et un entier a non divisible par p ; il vaut 1 ou — 1 selon que a est reste
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quadratique modulo p ou non. L'introduction de ce symbole permet de

condenser la loi de réciprocité en la formule

(DC)-»--
Jacobi a généralisé les symboles de Legendre de la manière suivante: soit
b un entier positif impair, de la forme p± ph où les nombres premiers

pl9 ...,ph sont nécessairement distincts de 2; si a est un entier étranger à b,

il n'est divisible par aucun des nombres premiers pu ...,pk et l'on définit
le symbole de Jacobi (ab) comme le nombre (® (aPh). On a 1 si a

est reste quadratique modulo b, mais la réciproque n'est pas vraie, et la

signification des symboles de Jacobi est moins évidente que pour ceux de

Legendre.
Voici les principales propriétés des symboles de Jacobi:

A. Propriétés de multiplicativité et de congruence.

(I) Si b est impair et positif et a, a' étrangers à ù, on a (flf) (ab) (ab).

(II) Si b est impair et positif, a et a' étrangers à b et si a a' mod. ù,

on a (b) ~ (b)-

(III) Si b et b' sont impairs et positifs, et a étranger à b et b\ on a

— G)

(IV) Si b et b' sont impairs et positifs, a étranger à b et b\ a congru à 0

ou 1 modulo 4, et si b b' mod. \a\, on a Q (£).

B. Loi de réciprocité et compléments.

(V) Si a et b sont impairs et positifs, et a étranger à b, on a
a- 1 b- 1

OÙ(-1)~ ~
(VI) Si b est impair et positif, ona("[) (— 1}.

(VII) Si b est impair et positif, on a (l) 1 ou -1 selon que b est congru
modulo 8 à ± 1 ou à +3.

C. Restes quadratiques.

(VIII) Pour tout nombre premier p ^ 2, on a Q aUp~ 1} mod. p.

(IX) Si p / 2 est premier, l'entier Q est égal à 1 ou — 1 selon que a est ou

non reste quadratique modulo p.
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On peut étendre la définition des symboles de Jacobi en posant

(_ah) Q pour b positif impair et a étranger à b. Notons cr (x) le signe

d'un nombre x non nul, égal à x/|x| ; on a alors l'expression la plus générale

de la loi de réciprocité sous la forme

/ \ /7 \ a — 1 b 1 a (fl)-l o {b)~ 1

QCK1'" +

où a et b sont deux entiers impairs de signe quelconque, avec a étranger
à b. Nous laissons au lecteur le soin de modifier les propriétés (I) à (IV)
pour couvrir ce cas plus général.

Les propriétés (III) et (IX) ci-dessus ne font que traduire la construction
des symboles de Jacobi et en donnent donc une caractérisation axiomatique.

| Notons la généralisation suivante de (VI):

VF) Si b est impair et positif et a étranger à /;, on a ~ah) (— 1) - {b~n Q.
Une démonstration facile par récurrence sur le maximum de |a| et b montre

que les groupes de propriétés (II) + (IV) + (VU) et (II) -fi (V) + (VU)
fournissent deux caractérisations axiomatiques des symboles de Jacobi.

En principe, la théorie des symboles de Jacobi ne contient rien de plus

que celle des symboles de Legendre; en particulier, la loi générale de

réciprocité (2) est une conséquence facile de (1). Mais le calcul effectif
d'un symbole de Legendre par la formule de réciprocité oblige à de

nombreuses factorisations en nombres premiers, et l'on sait que celles-ci

sont ennuyeuses et longues pour des nombres un peu grands. Le lecteur

pourra s'exercer à montrer par cette méthode que le symbole de Legendre
S 5 23 8) vaut —1, c'est-à-dire que la congruence x2 —1148 mod. 523

n'a pas de solution (523 est premier). Voici à titre de comparaison le calcul

par les symboles de Jacobi. On a 523 3 mod. 8, d'où (523) — 1 par
(VII); on a — 1148 — 102 mod. 523, d'où S (V232) ~ (523) (523) ~( 523)

par (II) et (I). Comme on a —51 1 mod. 4 et 523 13 mod. 51, on a

(523) ("13) par (IV). Enfin, on a — 51 1 mod. 13 et donc Cu (13) 1

par (II), d'où S -1.

2. Démonstrations de la loi de réciprocité par le lemme de Gauss.

On sait que Gauss n'a pas donné moins de six (et même sept)
démonstrations de la loi de réciprocité [3]. Nous nous intéressons ici à la
troisième (1808) et à la cinquième (1818); elles reposent toutes deux sur
le lemme de Gauss (1808) qui s'énonce comme suit: étant donnés un
nombre premier p ^ 2 et un entier a non divisible par p, notons n le nombre

L'Enseignement mathém,. t. XVI, fasc. 1. 3



— 34 —

des entiers x compris entre 1 et (p— l)/2 et tels que — ax soit congru modulo p
à un entier compris entre 1 et (p—l)/2; on a alors Q (—l)n.

Nous allons donner une version simplifiée des deux démonstrations de

Gauss. Les notations sont les suivantes : p et q sont deux nombres premiers,
distincts de 2 et distincts entre eux; on pose p 2p' + 1 et q 2q' + 1,

et l'on note R l'ensemble des couples d'entiers (x9 y) avec 1 ^ x ^ p' et
1 ^ y ^ q'; enfin, on note \X\ le nombre d'éléments d'un ensemble

fini X.

Voici d'abord la troisième démonstration de Gauss, dans la présentation
«géométrique» d'Eisenstein. On note [f] la partie entière d'un nombre réel t,
c'est-à-dire le plus grand entier majoré par t. Supposons que a soit entier
et t non entier; on établit immédiatement la formule

(3) [a — t] a — [t] — 1.

Notons Y l'ensemble des entiers y compris entre 1 et 2q' et t la permutation
de Y qui transforme y en q — y; pour tout y e Y, on pose F (y) (— l)[w^].
Comme p est impair, la formule (3) où l'on fait a p et t — pyjq (*) donne

(4) F (t (y)) F (y) pour tout y dans Y.

Or, tous les cycles de la permutation t sont d'ordre deux, et le produit
Y\ F (y) a donc la même valeur pour toutes les parties S de Y rencontrant
y e S

chaque cycle de t en un point et un seul. On peut prendre pour S

l'ensemble {1, 2, q'} ou l'ensemble {2, 4, 2q'}, d'où la formule

(5) f[F(y) f[F(ly).
y=1 y= 1

Soit y un entier compris entre 1 et q' ; il existe un unique entier v compris
entre — q' et q' et congru àpy modulo q\ on peut donc poser py — qu + v,
où u et v sont entiers et |i>| ^ q'. Comme q ne divise pas py C), on a v # 0,

et il est immédiat que [2pyjq\ est égal à lu ou lu— 1 selon que l'on a v > 0

ou v < 0. Autrement dit, on a F (ly) 1 si v > 0 et F (ly) — 1 si v < 0.

Le lemme de Gauss entraîne alors la formule

(6) (p) ÎIF(2y)-
• \qj y=1

Enfin, soit P l'ensemble des couples (x, y) appartenant à F et tels que
q'

py > qx; il est immédiat qu'on a |P| £ [py/q], d'où, par définition de
y i

F, la formule



(-D|p| riwy i

I Les formules (5), (6) et (7) donnent Q (-l)|p|. En échangeant les

^ rôles de p et q, on trouve («) (- l)löi où Q se compose des couples (*, j)
'

appartenant h R et tels que py < qx. Pour tout (x,y) dans R, on a

t] px ^ C1); par suite, les ensembles P et Q forment une partition de R,

d'où (P| + \Q\ |i?| p'q'\ on a donc prouvé la formule de réciprocité

!©© (- 1)PV-
[;.! Nous exposons maintenant la cinquième démonstration de Gauss sous

|j la forme très transparente due à Frobenius [2]. On a utilisé précédemment
l | le fait que py — qx est non nul pour tout couple (x9 y) appartenant à R.

u Les inégalités suivantes

<! Ri'- py - qx < -q/2
fj R2 : — q/2 < py — qx < 0

R3: 0 < py — qx < p/2
7 R4: p/2 < py - qx

définissent donc une partition de l'ensemble R en quatre parties notées
I i encore Ru R4. Pour y donné compris entre 1 et q'9 l'inégalité R2 ne

y peut avoir lieu que pour une valeur au plus de x et l'on a alors 1 ^ x S p' ;

w on a donc (pq) (— l)1*2' par le lemme de Gauss. On établit de même la
1 relation Q — (-1)1*3'. Enfin, l'application (x, y) [-» {p'+ l-x, q'+\-y)
:J est une bijection de R1 sur R4, d'où \Ri \ |^4|. On a alors

- p'q' |R| - \RX\ + \R2\ + \R3\ + |Ä4| \R2\ + \R3\ mod. 2,

v d'où immédiatement la formule de réciprocité (J) (J) (— l)p'q\

p 3. Démonstration du lemme de Gauss-Schering.
%

Les démonstrations précédentes n'utilisent que le lemme de Gauss pour
h calculer Q et le résultat suivant: si x et y sont des entiers tels que 1 ^ x ^ p'
|;,l et 1 :g y ^ q\ on py ^ qx. Or, ce dernier fait ne nécessite pas que p et q
r, : soient premiers, mais simplement qu'ils soient étrangers (lemme d'Euclide).
î\ Les deux démonstrations de Gauss établissent donc la loi de réciprocité (V)
y pour les symboles de Jacobi, pourvu que l'on prouve la généralisation
^ suivante du lemme de Gauss: soient b un entier impair et positif et a un

f
H 1 Si x- est un entier et y un entier compris entre 1 et q\ on a py ^ qx: en effet, q est

p premier et ne divise pas le nombre premier p ^ q, ni le nombre y < q, donc il ne divise
M pas py.



— 36 —

entier étranger à b; on a (£) — (—l)''41 où A est Vensemble des entiers x
compris entre 1 et (b — l)/2 et tels que — ax .vp/7 congru modulo b à un entier

compris entre 1 et (b— l)/2. C'est ce qu'a démontré Schering (éditeur des

œuvres de Gauss) en 1876; nous allons donner un exposé simplifié de sa

méthode [5].

Pour tout diviseur m de b, soit Am l'ensemble défini de manière analogue
à A, au remplacement près de b par m; on note aussi Bm l'ensemble des

entiers compris entre 1 et (m — l)/2 et étrangers à m. On montre facilement
b

que tout élément de A s'écrit de manière unique sous la forme —.x où m
m

est un diviseur de b et x un élément de Am n Bm\

posant f] (ia, m) |Am n Bm\, on a donc

(8) \A\£
m | b

L'argument suivant est une extension de celui par lequel Gauss établit
son lemme. Soit m un diviseur de b. Il existe une permutation u de Bm et

une fonction s sur Bm à valeurs dans {1, — 1} caractérisées par la congruence

(9) ax m s (x) u (x) mod. m pour tout x g Bm.

Or, \Bm\ est égal à {/2 cp (m), où cp (m) est l'indicateur d'Euler bien connu;
comme u est une permutation de Bm, on a ] ] x Y[ u(x) '> enfin, on a

x e Bm x6 Bm

s (x) — 1 si et seulement si x appartient à Am n Bm. Multipliant les

congruences (9), on obtient après simplification (2)

(10) a^{m) (_!)"(«, »0 mod>

Supposons m A 1 et soit p un diviseur premier de m; on pose m pf.m'
p — 1

avec m' non divisible par p et/ > 1. Or, on a y2cp (m) =»—• p3 .cp (m'),

p est impair et cp (/m') est pair si m' ^ 1 ; la congruence (10) entraîne une

congruence analogue modulo p, et l'on a a*ip~1} Q) mod. p par le lemme

d'Euler (cf. (VIII)). De tout ceci, on déduit

(H) (-1) t]{a, m)
si m pf avec p premier et /> 1,

p)
1 dans les autres cas.

2 Le résultat le plus général de ce type est le suivant : soient G un groupe commutatif
fini et G' un sous-groupe de G; l'homomorphisme de transfert de G dans G' transforme
tout a e G en a\ G!G' L Ici, G est le groupe multiplicatif des éléments inversibles de l'anneau
des entiers modulo m, et G/={1,—1}.
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Posons alors/? p{1... p{.\ les nombres premiers pu ...,pr étant distincts et

les exposantsfu ...,/r strictement positifs. De (8) et (11), on déduit sans peine

c'est-à-dire le résultat de Schering.

Deuxième partie

Symboles généralisés

Il est assez tentant de renverser l'ordre des démonstrations précédentes et

de définir le symbole de Jacobi par le lemme de Gauss-Schering; les raisonnements

de la première partie montrent comment établir la loi de réciprocité (V)
à partir de cette définition, et il ne serait pas difficile d'obtenir avec cette

définition les propriétés (I) à (IX) des symboles de Jacobi. Un tel exposé
serait assez artificiel, mais il se présente heureusement une possibilité bien

plus satisfaisante. Notons Zb le groupe additif des entiers modulo b et ua

l'automorphisme de Z& défini par la multiplication par a; par des raison-o
nements élémentaires exposés plus bas, on montre que le lemme de Gauss-

Schering équivaut au résultat suivant: Q est la signature de la permutation ua
de l'ensemble fini Zb. Ce théorème a été prouvé par Zolotarefï [6] en 1872

pour le cas où b est premier, et généralisé immédiatement par Frobenius [2] ;

il suggère immédiatement la définition suivante des symboles (£).

4. Etudes des symboles (£).

Soit G un groupe commutatif fini, d'ordre impair 2n + 1, dont l'opération

est notée additivement. Pour toute partie X de G, on note X~ l'ensemble
des éléments — x de G, pour x parcourant X. Pour tout automorphisme u

de G, on note (£) la signature de la permutation u de l'ensemble fini G. La
multiplicativité des signatures entraîne immédiatement

("HU
pour deux automorphismes u et v de G.

L'application x \->-xest un automorphisme de G que l'on notera
simplement - 1. Pour tout x eG,ona (2/7+ l).x 0, et l'on ne peut donc
avoir x — x que lorsque x 0. Il s'ensuit que - 1 a un cycle de longueur
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