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SUR UNE GENERALISATION
DES SYMBOLES DE LEGENDRE-JACOBI

par P. CARTIER (Strasbourg)

INTRODUCTION

Un théoréme assez peu connu (Zolotareff, Frobenius) donne une
interprétation des symboles de Legendre-Jacobi au moyen de la signature
de permutations convenables. Cette interprétation suggére une geénéralisa-
tion de ces symboles, a laquelle nous consacrons dans ces pages une €tude
élémentaire. Les propriétés des symboles généralisés redonnent facilement
les principaux résultats classiques de Legendre, Gauss et Jacobi et nous
permettront d’étendre le théoréme de Zolotareff-Frobenius au cas des corps
de nombres algébriques. On peut utiliser les résultats de cette Note pour
donner un exposé rapide des propriétés des symboles de Legendre-Jacobi,
exposé qui différerait trés peu de celui de Frobenius dans [2].

PREMIERE PARTIE
LA LOI DE RECIPROCITE QUADRATIQUE ET LE LEMME DE (GAUSS-SCHERING

1. Résumé des résultats classiques (Legendre, Gauss, Jacobi).

Soient a et b deux entiers, avec b > 0. On dit que a est reste quadratique
modulo b s’il existe deux entiers x et y tels que x> = a -+ by, autrement dit,
si la classe de a est un carré dans ’anneau des entiers modulo b. Gauss
note a R b cette relation et a N b sa négation. Soient p et ¢ deux nombres
premiers, distincts de 2 et distincts entre eux. La loi de réciprocité qua-
dratique, conjecturée par Euler, démontrée partiellement par Legendre, et
¢tablie par Gauss en 1796, affirme qu’il n’y a que les quatre possibilités
suivantes:
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pNgetg Rp} s1 p et g sont congrus a 3 modulo 4.

Le symbole de Legendre () est défini pour un nombre premier p # 2
et un entier a non divisible par p; il vaut 1 ou —1 selon que a est reste
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quadratique modulo p ou non. L’introduction de ce symbole permet de
condenser la loi de réciprocité en la formule

N
4/ \P

Jacobi a généralisé les symboles de Legendre de la maniére suivante: soit
b un entier positif impair, de la forme p, ... p, ou les nombres premiers
D1, -, Py SONt nécessairement distincts de 2; si a est un entier étranger a b,
il n’est divisible par aucun des nombres premiers p, ..., p, et on définit
le symbole de Jacobi (;) comme le nombre () ... (5,). On a (;) = 1 si a
est reste quadratique modulo b, mais la réciproque n’est pas vraie, et la
signification des symboles de Jacobi est moins évidente que pour ceux de
Legendre.
Voici les principales propriétés des symboles de Jacobi:

A. Propriétés de multiplicativité et de congruence.

(I) Si b est impair et positif et a, a’ étrangers & b, on a (“4) = (§) ().
(II) Si b est impair et positif, a et @’ étrangers a b et si a = a’ mod. b,
on a (3) = ().
(III) Si b et b’ sont impairs et positifs, et a étranger a b et b’, on a
(o) = () ()-
(IV) Si b et b’ sont impairs et positifs, a étranger a b et b’, a congru a 0
ou 1 modulo 4, et si b = b’ mod. |a|, on a (§) = (5).

B. Loi de réciprocité et compléments.

(V) Si a et b sont impairs et positifs, et a étranger a b, on a
a—1 ,b—1,

G@=(CD2 2

(VI) Si b est impair et positif, on a (73) = (—=1)*¢~ Y,

(VII) Si b est impair et positif, on a (;) = 1 ou —1 selon que b est congru
modulo 8 2 +1oua £3.

C. Restes quadratiques.

(VIII) Pour tout nombre premier p # 2, on a (3) = a**~ " mod. p.

(IX) Sip # 2 est premier, 'entier () est égal a 1 ou —1 selon que a est ou
non reste quadratique modulo p.




On peut étendre la définition des symboles de Jacobi en posant
| (_9) = (&) pour b positif impair et a étranger a b. Notons o (x) le signe
d’un nombre x non nul, égal & x/ x]; on a alors ’expression la plus générale
de la loi de réciprocité sous la forme

a—1 b—-1 g (a)—1 o (b)—1
<a><b>:(—1) T T e T
b) \a ‘

. ol a et b sont deux entiers impairs de signe quelconque, avec a étranger

b a4 b. Nous laissons au lecteur le soin de modifier les propriétés (I) a (IV)
' pour couvrir ce cas plus général.

Les propriétés (III) et (IX) ci-dessus ne font que traduire la construction

des symboles de Jacobi et en donnent donc une caractérisation axiomatique.
" Notons la généralisation suivante de (VI):

! (VI') Si b est impair et positif et a étranger & b, ona( ;) = (—1) = (=1,
% Une démonstration facile par récurrence sur le maximum de Ial et b montre
* que les groupes de propriétés (II) -+ (IV) 4+ (VI') et (1D + (V) + (VI')
fournissent deux caractérisations axiomatiques des symboles de Jacobi.
: En principe, la théorie des symboles de Jacobi ne contient rien de plus
s que celle des symboles de Legendre; en particulier, la loi générale de
% réciprocité (2) est une conséquence facile de (1). Mais le calcul effectif
. d'un symbole de Legendre par la formule de réciprocité oblige a de
€ nombreuses factorisations en nombres premiers, et ['on sait que celles-ci
_ sont ennuyeuses et longues pour des nombres un peu grands. Le lecteur
pourra s’exercer a montrer par cette méthode que le symbole de Legendre
3 o= (*5121348) vaut —1, c’est-a-dire que la congruence x* = — 1148 mod. 523
n’a pas de solution (523 est premier). Voici & titre de comparaison le calcul
par les symboles de Jacobi. On a 523 = 3 mod. 8, d’ol (s5;) = —1 par
B (VID);ona —1148 = —102mod. 523,d’0u S = (5439 = (533)(523) = — (53}
par (IT) et (I). Comme on a —51 = 1 mod. 4 et 523 = 13 mod. 51, on a
(539 = (T2 par (IV). Enfin, ona —51 = I mod. 13 etdonc (13 = (4) =1
¢ par (I), d’ou S = —1.

E: 2. Démonstrations de la loi de réciprocité par le lemme de Gauss.

On sait que Gauss n’a pas donné moins de six (et méme sept)
démonstrations de la loi de réciprocité [3]. Nous nous intéressons ici a la
B troisicme (1808) et a la cinquieme (1818); elles reposent toutes deux sur
le lemme de Gauss (1808) qui s’énonce comme suit: étant donnés un
R ombre premier p # 2 et un entier a non divisible par p, notons n le nombre

L’Enseignement mathém,. t. XVI, fasc. 1. 3



34 —

des entiers x compris entre 1 et (p—1)/2 et tels que — ax soit congru modulo p
a un entier compris entre 1 et (p—1)/2; on a alors (;) = (—1)".

Nous allons donner une version simplifiée des deux démonstrations de
Gauss. Les notations sont les suivantes: p et g sont deux nombres premiers,
distincts de 2 et distincts entre eux; on pose p = 2p’ -+ 1 et ¢ = 29" + 1,
et 'on note R I’ensemble des couples d’entiers (x, y) avec 1 < x < p' et
1 <y < q’; enfin, on note |X| le nombre d’éléments d’un ensemble
fini X.

Voici d’abord la troisiéme démonstration de Gauss, dans la présentation
«géométrique» d’Eisenstein. On note [¢]la partie entiere d’'un nombre réel ¢,
c’est-a-dire le plus grand entier majoré par ¢. Supposons que a soit entier
et ¢ non entier; on établit immédiatement la formule

(3) [a—t] =a —[f] — 1.

Notons Y ’ensemble des entiers y compris entre 1 et 2¢’ et t la permutation
de Y qui transforme y en ¢ — y; pour tout y € Y, on pose F (y) = (—1)p/4],
Comme p est impair, la formule (3) ou I'on fait a = p et t = py/q (}) donne

(4) F(t(y)) = F(y)  pour tout y dans Y.

Or, tous les cycles de la permutation t sont d’ordre deux, et le produit

[T F (y) a donc la méme valeur pour toutes les parties S de Y rencontrant
yeS

chaque cycle de 7 en un point et un seul. On peut prendre pour S
I’ensemble {1, 2, ..., q'} ou ’ensemble {2,4, ..., 2q'}, dou la formule

5 [1F ) = [1F @,

Soit y un entier compris entre 1 et ¢’; il existe un unique entier v compris
entre —g' et g’ et congru a py modulo ¢; on peut donc poser py = qu + v,
ou u et v sont entiers et |v| < ¢g’. Comme ¢ ne divise pas py ('), ona v # 0,
et il est immédiat que [2py/q] est égal a 2u ou 2u—1selon que 'onav > 0
ouv < 0. Autrement dit, ona F(2y) = 1siv > 0et F2y) = —1siv < 0.
Le lemme de Gauss entraine alors la formule

© () =11ren

q

Enfin, soit P I’ensemble des couples (x, y) appartenant a R et tels que
v

py > gx; il est immédiat qu’on a |P| = Y [py/q], d’oli, par définition de
y=1

F, la formule
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(7) (=DIF = UIF(y)-

Les formules (5), (6) et (7) donnent (?) = (—1)!*l. En échangeant les
roles de p et ¢, on trouve (;) = (— 1)!2l out O se compose des couples (x, »)
appartenant & R et tels que py < gx. Pour tout (x, y) dans R, on a

© px # qy (Y); par suite, les ensembles P et Q forment une partition de R,

SRR
Il 2

S——

T

 dou |P| +
LG = (=D

Q| = |R| = p’q’; on a donc prouvé la formule de réciprocité

Nous exposons maintenant la cinquiéme démonstration de Gauss sous
la forme trés transparente due a Frobenius [2]. On a utilisé précédemment
le fait que py—gqx est non nul pour tout couple (x, y) appartenant a R.

1 Les inégalités suivantes

Ry: py — gx < —q/2
R,: —g2<py—gqgx< O
Ry: 0 <py—gx< pl2
Ryt pl2 <py —qx

définissent donc une partition de I’ensemble R en quatre parties notées
encore Ry, ..., R,. Pour y donné compris entre 1 et ¢’, I'inégalit¢ R, ne
peut avoir lieu que pour une valeur au plus de x et 'ona alors 1 < x < p’;
on a donc (%) = (—1)!®2! par le lemme de Gauss. On établit de méme la
relation (j) = (—1)!®3! Enfin, I'application (x, y) |= (p'+1—x, ¢'+1—)
est une bijection de R, sur R,, d’ou IRI! = |R4|. On a alors

p'a’ = IRl = [Ry| + IRy + [Ry| + [Ry| = |Ry| + |Ry| mod. 2,

d’olt immédiatement la formule de réciprocité (%) (£) = (—1)P?.

3. Démonstration du lemme de Gauss-Schering.

Les démonstrations précédentes n’utilisent que le lemme de Gauss pour
calculer () et le résultat suivant: si x et y sont des entiers telsque 1 < x < p’
et 1 £y =gq’,onapy# gx. Or, ce dernier fait ne nécessite pas que p et ¢
solent premiers, mais simplement qu’ils soient étrangers (lemme d’Euclide).
Les deux démonstrations de Gauss établissent donc la loi de réciprocité (V)
pour les symboles de Jacobi, pourvu que 'on prouve la généralisation
sutvante du lemme de Gauss: soient b un entier impair et positif et a un

1' Si x est un _entier et y un entier compris entre 1 et ¢/, on a py = gx: en effet, g est
premier et ne divise pas le nombre premier p # ¢, ni le nombre y < g, donc il ne divise

pas py.
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entier étranger a b; on a (5) = (— 1) o A est Iensemble des entiers x
compris entre 1 et (b—1)/2 et tels que — ax soit congru modulo b a un entier
compris entre 1 et (b—1)/2. C’est ce qu'a démontré Schering (éditeur des
cuvres de Gauss) en 1876; nous allons donner un exposé simplifié de sa
méthode [5].

Pour tout diviseur m de b, soit 4,, ’ensemble défini de maniére analogue
a A, au remplacement prés de b par m; on note aussi B, ’ensemble des
entiers compris entre 1 et (m—1)/2 et étrangers a m. On montre facilement

b

que tout élément de A s’écrit de maniére unique sous la forme —.x ou m
m

est un diviseur de b et x un élément de 4,, » B,,;

posant 5 (a, m) = |4,, © B,|, on a donc
(8) |A] = Zl n(a, m).
m|b

L’argument suivant est une extension de celui par lequel Gauss établit
son lemme. Soit m un diviseur de b. Il existe une permutation u de B,, et
une fonction ¢ sur B, a valeurs dans {1, —1} caractérisées par la congruence

(9) ax = e¢(x).u(x) mod. m pour tout x € B,,.

Or, Bm| est égal a 15 ¢ (m), ou ¢ (m) est 'indicateur d’Euler bien connu;

comme u est une permutation de B,, on a [[x = []u(x); enfin, on a
x € By, x € By,

¢(x) = —1 si et seulement si x appartient a 4,, n B,,. Multipliant les

congruences (9), on obtient aprés simplification (?)

(10) a*?tm = (—qyem mod. m.

Supposons m # 1 et soit p un diviseur premier de m; on pose m = p’.m’
-1

avec m’ non divisible parpetf > 1.Or, ona 14 (m) :PT -pf Lo (m'),

p est impair et ¢ (m’) est pair si m’ # 1; la congruence (10) entraine une

congruence analogue modulo p, et 'on a @**~ 1 = (%) mod. p par le lemme

d’Euler (cf. (VIII)). De tout ceci, on déduit

a
si m = p/ avec p premier et f > 1,

(11) (=™ =J\p
1 dans les autres cas.

2 Le résultat le plus général de ce type est le suivant: soient G un groupe commutatif
fini et G’ un sous-groupe de G; ’homomorphisme de transfert de G dans G’ transforme
tout @ € G en alG/G'l, Ici, G est le groupe multiplicatif des éléments inversibles de ’anneau
des entiers modulo m, et G'={1,—1}.
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Posons alors b = p{l p{r, les nombres premiers pq, ..., p, étant distincts et

" les exposants f,, ..., f, strictement positifs. De (8) et (11), on déduit sans peine

—1 4] = ¢ <a) = < >9
e <p1) 28 b

c’est-a-dire le résultat de Schering.

DEUXIEME PARTIE

SYMBOLES GENERALISES

Il est assez tentant de renverser I’ordre des démonstrations précédentes et
de définir le symbole de Jacobi par le lemme de Gauss-Schering; les raisonne-

- ments de la premiére partie montrent comment établir la loi de réciprocité (V)

a partir de cette définition, et il ne serait pas difficile d’obtenir avec cette
définition les propriétés (I) a (IX) des symboles de Jacobi. Un tel exposé
serait assez artificiel, mais il se présente heureusement une possibilité bien

plus satisfaisante. Notons Z, le groupe additif des entiers modulo b et u,

automorphisme de Z, défini par la multiplication par a; par des raison-o
nements élémentaires exposes plus bas, on montre que le lemme de Gauss-

+ Schering équivaut au résultat suivant: (3) est la signature de la permutation u,
 de I’ensemble Jfini Z,. Ce théoréme a été prouvé par Zolotareft [6] en 1872
pour le cas ou b est premier, et généralis¢ immédiatement par Frobenius [2];
il suggere immédiatement la définition suivante des symboles ().

4. Etudes des symboles (¢).

Soit G un groupe commutatif fini, d’ordre impair 21z -+ 1, dont "opéra-
tion est notée additivement. Pour toute partie X de G, on note X ~ ["’ensemble
des €léments —x de G, pour x parcourant X. Pour tout automorphisme u
de G, on note () la signature de la permutation u de ’ensemble fini G. La
multiplicativité des signatures entraine immédiatement

(12) <?> B (Lé?) (72?)

pour deux automorphismes u et v de G.

L’application x |—» —Xx est un automorphisme de G que I’on notera

~ simplement — 1. Pour tout x € G, on a (2n--1).x = 0, et I'on ne peut donc
- avoir x = —x que lorsque x = 0. Il s’ensuit que — 1 a un cycle de longueur

W
A



1 et n cycles de longueur 2, et par suite sa signature est (— 1)". Autrement dit,
on a la formule

(13) (;1) = (—1)dsi-n,

Nous passons maintenant a une généralisation du lemme de Gauss-
Schering. On appelle demi-systéme toute partie S de G* = G — {0} qui
rencontre chaque cycle de —1 dans G* en un point et un seul; il revient au
méme de dire que les ensembles S, S~ et {0} forment une partition de G.
Par exemple, si G cst le groupe additif des entiers modulo b (b est un entier
impair et positif), I'ensemble des classes modulo b des entiers compris
entre 1 et (b—1)/2 est un demi-systéme. Nous allons établir la formule

u — ( _ lu(S)NS ™ |
(14) <G>“( DL

ol u est un automorphisme de G et S un demi-systéme. La démonstration
est analogue a celle de Frobenius [2, page 630].

On a u (0) = 0, donc () est aussi la signature de la permutation u*
de G* induite par u. Posons S = {x, ..., x,} et énumérons les éléments
de G* sous la forme

xl,x2,..., xn_l,x —xn, —xn_l,..., _xz, —x1;

n>

st x et y sont deux éléments de G*, la relation x < y signifie que x précede
y dans la liste précédente. L’ordre choisi sur G* est donc tel que x < y
entraine —x > —y et que S se compose des x € G* tels que x < —x. On
appelle inversion de u* un couple (x, y) d’éléments de G* tel que x < y et
u(x) > u(y). On note I ’ensemble de ces inversions, de sorte qu’on a

u
(15) (G) = (="

d’aprés 'une des définitions usuelles de la signature. Par ailleurs, on a
u(—x) = —u(x), et les propriétés de la relation d’ordre sur G* montrent
que I’application (x, y) |-(—y, —x) est une permutation ¢ d’ordre 2 de I;
par conséquent, |I a méme parité que le nombre m des éléments de 1
invariants par o et I'on a donc (¢) = (—1)" d’aprés (15). Or m est le nombre
des couples (x, —x) avec x < —x et u(x) > —u(x), c’est-a-dire xe S et
u(x)e S™; on a donc n = |[u(S) N S~|, d’ou (14).
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Nous établissons maintenant la deuxiéme formule de multiplicativité. On
note G’ un sous-groupe de G et G” le groupe-quotient G/G'; on se donne
aussi un automorphisme u de G laissant stable G'. On note u’ I'auto-
morphisme de G’ induit par u et " 'automorphisme de G” déduit de u par
passage au quotient. Je dis que ’on a

1 u u'\ /u”

( ) G — G/ G" :

Notons n ’homomorphisme canonique de G sur G”, S” un demi-systéme
dans G’ et S” un demi-systéme dans G”;onpose T = n~ (§")etS = S v T.

Il est immédiat que S est un demi-systéme dans G et que les ensembles
u'(S)y S~ et u(T) n T~ forment une partition de u(S) n S~, d’ou

(17) w(SYn S| = [u'(S)Yn S| + u(T)n T—|.

Par ailleurs, I’ensemble u(T) » T~ est la réunion des classes modulo G’
appartenant a u"(S") N S”7; 'ordre d’une telle classe est égal a IG'[, et
comme |G’| divise le nombre impair |G|, il est impair. Ceci montre que
lu(T) n T~ | a méme parité que |u"(S”) n §"7|, et la formule (16) résulte
alors de (14) et (17).

Mentionnons un cas particulier important de (16); c’est celui ou le
groupe G est somme directe de deux sous-groupes G’ et G”, ol u’ est un
automorphisme de G’ et u” un automorphisme de G”, et ou u est I'auto-
morphisme de G qui induit ¥’ sur G’ et «” sur G”. La démonstration s’obtient
au moyen de I'isomorphisme bien connu du sous-groupe G” de G sur le
groupe-quotient G/G’ qui transforme u” en I"automorphisme déduit de u
par passage au quotient. On peut aussi déduire ce cas du résultat suivant:
soient X' et X" deux ensembles finis, s’ une permutation de X' et s” une

o permutation de X"; on pose X = X' X X" et I'on note s la permutation

(x, x") > (s'(x"),s"(x")) de X. Si ¢ (resp. &', &") est la signature de s
(resp. s', s"), on a ¢ = &'X"1 _¢"X'l_ La démonstration est facile et laissée
au lecteur.

¥/ 2. Restes quadratiques dans les corps finis.

Dans tout ce numéro, on note ¥ un corps fini, et q le nombre de ses éléments,

% quel’on suppose impair ; il revient au méme de supposer que la caractéristique
2t p de F est différente de 2. On a g = p’, ol fest le degré de F sur le sous-

corps F, formé des entiers modulo p. Si a est un élément non nul de F, la
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multiplication par a est un automorphisme du groupe additif F* de F,
dont la signature sera notée (3). la formule (12) du n° 4 entraine alors

ab a\ /b
(18) \) = pour a, b non nuls dans F.
F F)\F

/

Nous établissons maintenant la formule (°)

ab .
(19) ( F) — g7~V pour a non nul dans F.
La démonstration est une extension de celle que Gauss a utilisée pour
démontrer son lemme. On choisit un demi-systéme S dans F* ; tout élément
non nul de F s’écrit de manicre unique sous la forme ¢ x avec e € {1, —1}
et x € S. Il existe donc une permutation u de S et une application ¢ de S
dans {1, —1} telles que ax = ¢ (x) u (x) pour tout x € S; multipliant ces
égalités entre elles et tenant compte de la relation [ Ju (x) = [ ] x, on trouve

xeS xesS
aprés simplification a'S! = []e(x). Or, on a |S| = l4(g—1) et P'on a
xe S
e(x) = —1 st et seulement si axe S~ . La formule (14) achéve alors la

démonstration.

La signification des symboles (g) est la suivante: ce nombre est égal a 1
ou —1 selon que a est ou non un carré dans le corps F. Rappelons que le
groupe multiplicatif du corps F est cyclique d’ordre ¢—1; nous choisirons
un générateur z de ce groupe et poserons g—1 = 2n. Alors les éléments non
nuls de F peuvent s’énumérer comme suit

7=, ..., e

1 .3 2(n—1)+1
Z ,2%,...,2 ,

la premicre ligne contenant les carrés et la deuxieme les non-carrés. Comme

18) entraine (%) = 1 et (° 2"Jrl) = (), il nous suffira de prouver la relation
¥ F F

3= -1

A. Premiére démonstration (BEuler): on a z" # 1 et (2% = z?" =1
car z est d’ordre 2n; on a donc z" = —1,dou (f) = 220"V = 2" = —|
d’apres (19). A

B. Deuxiéeme démonstration (Zolotareff): la multiplication par z dans F
transforme O en lui-méme et permute circulairement les 2n éléments

3 Dans cette formule, on considére (Fa) comme un élément de F, en identifiant les
entiers 1 et —1 a leurs images naturelles dans le corps F.
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2%, z%, ..., z?"~ 1 donc c’est une permutation impaire, et () = —1 d’apres
la définition de (§) comme signature.

Nous considérons maintenant un espace vectoriel ¥ de dimension finie d
sur le corps F et un automorphisme u de V; on note det u le déterminant
de u. J’affirme que 'on a

uwy) det u
(20) (V) \F

On ne restreint pas la généralité en supposant qu'on a ¥ = F%. D’aprés
un résultat classique et facile (*), le groupe des automorphismes de V' est
engendré par les éléments de la forme suivante

Dal, cs ad (xla -'-sxd) = ((lel, . nEy adxd)
Si (X5 eees Xg) = (Xq, vns Xym 15 Xig 15 Xp5 Xyt 25 o005 Xg)
T (Xg, s Xg) = (Xg5 ooy Xim 15 X F X5 15 Xy 15 Xig 25 o005 Xg),

ou ay, ..., a, sont des éléments non nuls de F et / un entier compris entre
1 et d—1. Or, les deux membres de la formule (20) dépendent multiplicative-
ment de u d’apres les relations (12) et (18); il suffit donc d’examiner les cas
ou u est de I'une des formes D, S;etT,

seeesAd?

a) Le cas de D, ... posons Gy = ..= G, =F" et notons u,
lautomorphisme de G; défini par la multiplication par a;; on a donc

V: Gl X ..o X Gd et u (Xl, cees xd) — (ul(xl), veey ud(xd))

pour x; € Gy, ..., x;€ G, De la formule (16), on déduit par récurrence
sur d la formule (y) = (g) ... (¢9); or ona (1) = (§) par définition, et le
déterminant deu est a, ... a4, d’ou (20).

b) Le cas de S;: dans ce cas, u échange les coordonnées d’indice i et
[ + 1; c’est une permutation d’ordre 2, qui posséde g*~' points fixes, et
a donc la méme parité que 15(¢°—¢*" ") = 1h(g—1)7*"t. Comme ¢ est
impair, on a donc (y) = (—1)*“~ 1 = (1), et le déterminant de u est égal
a —1; on a prouvé (20).

* Ce résultat équivaut a4 un lemme classique sur les matrices inversibles: une telle
matrice peut €tre ramenée a la forme diagonale au moyen d’un nombre fini d’applications
des transformations du type suivant:

a) permuter deux colonnes;
b) ajouter a une colonne un multiple d’une autre.
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¢) Le cas de T;: on a alors u” = 1, d’ou (y)” = (%) = 1; comme p est
impair, on a donc () = 1. Par ailleurs, le déterminant de u est 1, d’ou (20).
Ceci achéve la démonstration de (20).

Remarque : on conserve les notations F et V' précédentes, et I’on note
V* I’ensemble des éléments non nuls de V. Notons aussi F* le groupe
multiplicatif des éléments non nuls de F. Le groupe F* agit sans point fixe
sur V* par multiplication, et son action commute a celle du groupe GL(V')
des automorphismes de I'espace F-vectoriel V.

Dans une Note antérieure (Sur une généralisation du transfert en théorie
des groupes, ce méme journal, pp. 49-57), nous avons €tudié la situation
générale suivante: X est un ensemble fini, G et A sont deux groupes agissant
sur X; on suppose que A est commutatif et agit sans point fixe sur X, et
que les actions de G' et 4 commutent. On a défini un homomorphisme @,
de G dans A par la construction suivante: on choisit un ensemble S < X
tel que tout élément de X s’écrive de maniére unique sous la forme a. s
avec a€e A et s€.S; pour tout g € G, 1l existe une permutation o de S et
une application « de .S dans A telles que g (s) = a (s) . a(s) pour touts € S;
on a alors @,(g) = [] «(s), ce produit ne dépendant pas du choix de S.

se S
Si A" est un sous-groupe de A, on peut définir de maniere analogue un

homomorphisme &, de G dans A’, et I'on vérifie facilement que 1’on a
(%) @4 (g9) = D4 (&) pour tout geG.

Lorsque 'on a X = V* G =GL(V)et A =F* on a Pp(g) =det g
pour tout ge GL(V). 1l suffit de vérifier cette assertion lorsque g est de
I'une des formes D, .., S; et T;; la vérification est €lémentaire dans
chaque cas.

Prenons pour A’ le sous-groupe {1, —1} de F*. Le lemme de Gauss-
Schering généralisé entraine (}) = @, (g) pour tout ge GL(V), d’ou

g * ’ 17 det u
= @ (g)'F" = (det g)*U™D) = :
<V> 4(9) (det g) ( F >

d’aprés (*). On a redémontré la formule (20).

Nous prenons cette fois pour A’ le groupe multiplicatif F'* d’un sous-
corps F' de F, a ¢’ éléments. Soit g un automorphisme de I’espace F-vectoriel
V; on peut considérer ¥ comme un F’-espace vectoriel V' et g comme un
automorphisme g’ de V’'. La propriété (*) ci-dessus entraine alors
det g’ = (det g)4~ /@~ On notera que la norme d’un élément a de
F par rapport & F’ est a9~ V/@ =1 donc det g’ est la norme de det g. Ce
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dernier résultat ne suppose pas F fini, il est valable pour un espace vectoriel
¥ de dimension finie sur un corps F de degré fini sur un sous-corps F".

3. Retour sur les symboles de Jacobi.

: Nous résumons d’abord les résultats des deux derniers numéros. On
f note G un groupe commutatif, d’ordre fini impair, et F un corps fini de
caractéristique # 2.

A. Propriétés de multiplicativite.
A,) Siu et v sont des automorphismes de G, on a () = (¢) (&)

A,) Soient G’ un sous-groupe de G, u un automorphisme de G tel que
P u(G) =G, u'etu"les automorphismes de G’ et G" = G/G’ respectivement
§ déduits de w. On a (g) = (2 (&)

A;) On suppose que le groupe G est somme directe des sous-groupes
¥ Gy, ..,G,; pour 1 £i < n, soit u; un automorphisme de G;, et soit u
'automorphisme de G induisant u; dans Gy, ..,u, dans G, On a
s (6) = (&) - (&)

B. Lemme de Gauss généralisé.

; B,) Soit S une partie de G ne contenant pas 0, et telle que pour tout
i xeG,on ait soit x € S, soit —x € S (mais non les deux). Soient u un auto-
; morphisme de G et m le nombre des éléments x de S tels que —u (x) € S.
On a alors () = (— D)™

B,) On a () = (=D*eI=D,

C. Corps finis et restes quadratiques.

C,) On a (§) = a*FI= 1 pour tout a # 0 dans F.
C,) On a (g) = 1 ou —1 selon que a est ou non un carré dans F.

C;) Soient V un espace vectoriel de dimension finie sur F, et u un
automorphisme de ¥. On a (3) = (“%¢").

Convenons maintenant de définir les symboles de Jacobi par (;) = (z%):
on note b un entier impair et positif, Z, le groupe additif des entiers modulo
b, a un entier étranger 2 a, et u, la multiplication par a dans Z,. En parti-
culier, si p est un nombre premier différent de 2, F, le corps des entiers
modulo p et a un entier non divisible par p, ona () = (%P) ou a est la classe
de @ modulo p. Les propriétés (I), (IT), (VI), (VIII) et (IX) des symboles
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de Jacobi résultent alors immédiatement des propriétés des symboles (¢);
on a montré au n° 2 de la premiére partie comment déduire la loi de réciproci-
t€¢ (V) du lemme de Gauss-Schering. Il reste & examiner (IIT), (IV) et (VII).

Ad (III): notons b et b” deux entiers impairs et positifs, et ¢ un entier
€tranger a b’ et b”. On pose G = Z,.,» et ’on définit "automorphisme u
de G par u(x) = ax. Soit G' le sous-groupe cyclique d’ordre b’ de G
engendré par la classe modulo 5’6" de b”; le groupe quotient G” = G/G’
est cyclique d’ordre 6”. Comme on a u (G') = G’, on peut appliquer (4,);
on a évidemment (&) = (%), () = (&) et (&) = (%), Aot () = (L)) ).

Ad (VII): soit b = 2b" + 1 un nombre impair et positif. Représentons
chaque classe modulo b par le plus petit entier positif qu’elle contient.
L’automorphisme u de Z, défini par u(x) = 2x est alors la permutation

B 12... b"b"+1b"+2... 2b
U=\24 .. 20 1 5 ...2b’—1>

dont le nombre d’inversions est égal a
L2440 =1) + b= 15" (b'+1) = (B> =18,
d’ot (2) = (= 1)®*~V/8; ceci établit (VII) (6.

Ad (IV): soient b et b’ deux entiers impairs et positifs, et a un entier
étranger a4 b et b'. Supposons d’abord @ = 1 mod. 4 et b = b’ mod. |al.
La loi de réciprocité entraine (5) = ;o) et (5) = (), et comme on a
évidemment (!Z|) = (ﬁ,'l), on a prouvé (;) = (;,). Supposons maintenant
qu'on ait b = b’ mod. 4 |a| et prouvons la formule (;) = (;). Or, on a
() = () (3) et pour tout entier impair x, 'un des nombres x et —x est
congru a 1 modulo 4. Il suffit donc d’examiner les cas a = 1 mod. 4 (qui
vient d’étre traité),a = — 1 (qui résulte de (VI)) et a = 2 (qui résulte de (VII)).

5 Le raisonnement qui établit (A4,) peut s’utiliser dans la théorie classique de la
maniere suivante. On suppose les symboles de Jacobi définis a partir de ceux de Legendre,
et le lemme de Gauss démontré. On admet aussi que dans I’énoncé du lemme de
Schering, on peut remplacer I’ensemble des entiers 1, 2, ..., b" par n’importe quel demi-
systeme modulo b (ce que Gauss et Schering savaient). Le raisonnement de (4,) montre
alors que si le lemme de Schering est vrai pour b, et by, il est vrai pour b = b,b,. Par
récurrence sur b, on se ramene donc au cas ou b est premier, c’est-a-dire au lemme de
Gauss. Cette démonstration du lemme de Schering est nettement plus simple que celle
de cet auteur.

6 Une autre méthode est la suivante: des deux nombres impairs b et b + 2, I'un

est congru a 1 modulo 4, dot (%) = (,2,) par laloi de réciprocité. On en déduit

()= (23) = (75) (b 2)= CDHEHD (2a), o (3) = (1) 0% par récur.
rence sur b.




4. Extension aux corps de nombres algébriques.

On note 4 anneau des entiers d’un corps de nombres algébriques, de
degré fini sur le corps des nombres rationnels. On note a, b, ... des indéaux
de A: si a est un idéal, on note N (a) le nombre des €léments de 'anneau
quotient 4/a. On note p un idéal premier de 4 tel que N (p) soit impair.

A. Symboles de restes quadratiques.

Soient a un idéal tel que N (a) soit impair et x un élément de 4. On
dit que x est étranger & a si I'on a 4 = Ax +- a, cest-a-dire si la classe X
de x modulo a est un élément inversible de 'anneau A/a. S’il en est ainsi,
la multiplication par X définit une permutation de I’ensemble fini 4/a, dont
la signature sera notée (3). Les propriétés des symboles () entrainent
immédiatement les régles suivantes:

(2)-()0)
200

| (23) <x> = x*(N @)~ mod. p
p

o4 <x> _ { 1 s’il existe y dans 4 avec y* = x mod. p,

P —1 dans les autres cas.

La démonstration de (22) utilise I'isomorphisme des groupes 4/a et b/ab.
Les régles (22) et (24) donnent une caractérisation des symboles (), qui
i coincident donc avec les symboles de restes quadratiques usuels (Hilbert,
B Hecke). Nous avons ainsi étendu au cas des corps de nombres algébriques
| le théoréme de Zolotareff-Frobenius.

B. Déterminants généralisés (7).

Notons M un A-module de type fini, annulé par une puissance de I’idéal
§ premier p et F le corps fini 4/p. Nous associerons a tout endomorphisme u
& de M un élément D (u) de F, qui doit étre considéré comme un déterminant

7 A Texception de la formule (]('4) = (DI(;“)) les résultats qui suivent sont valables

L sous les hypot,héses plus générales; A est un anneau commutatif, p est un idéal maximal
de 4 engendré par un nombre fini d’éléments, M est un 4-module de type fini.
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généralisé de u. Pour tout entier positif i, le A-module M; = p'M/p"" M
est annulé par p, donc peut €tre considéré comme un espace vectoriel sur
F, dont la dimension est finie. Comme u laisse stable chacun des sous-
modules p'M de M, il définit un endomorphisme u; de M,, dont le déter-

minant sera noté D (u). D’aprés les hypothéses faites, il existe un entier
N-1

N > 0 tel que M; = 0 pouri > N. On posera D (u) = || Dy(u)( définition
i=0

indépendante de N).

Lorsque M est annulé par p, on peut le considérer comme un espace
vectoriel sur F, et 'on a D (1) = det u dans ce cas. Il est clair que st u et v
sont deux endomorphismes de M, on a D (uv) = D (u). D (v), et enfin
si D (u) est non nul si et seulement u est un automorphisme de M. Les
propriétés (4,) et (C5) du n° 3 et une récurrence immédiate sur N entrainent
la formule (y) = (°4") pour tout automorphisme u de M.

On peut établir pour les déterminants généralisés une propriété analogue
a la propriété de multiplicativité (4,): si u est un automorphisme de M,
M’ un sous-module de M tel que u(M') = M’, u' (resp. u”) 'automor-
phisme de M’ (resp. M/M") déduit de u, on a D (u) = D (u'). D (u"). En
bref, la démonstration est la suivante. On traite d’abord le cas ou M est
annulé par p, ce qui raméne a une propriété connue des déterminants:
si T est une matrice partitionnée en (5y,), on a det T = det U. det W.
Appelons sous-groupe stable de M tout sous-module de M stable par w.
On peut prolonger la suite (M, pM, ..., p"M) de sous-groupes stables en
une suite de Jordan-Hélder (P,, Py, ..., P,). Chaque module Q; = P;/P;,,

(pour 0 £ j < r) est annulé par p, et si v; est Pautomorphisme de Q;
r—1

déduit de u, on a D (u) = || detv; par le cas déja étudié. Il existe par
=0

J
ailleurs un entier s tel que 0 < s < r et une suite de Jordan-Holder

(Py, P1, ..., P,) de sous-groupes stables de M, telle que P, = M’. D’apreés

r—1 r—1
le théoréme de Jordan-Holder, on a [[detv; = [] detv; si v; est 'auto-
’ J=0 j=0

r—1

morphisme de Q; = Pj/P;,,; déduit de u. On a donc D (u)= [[det v;;
: j=0
comme (Po/M’',P{/M’, ..., P./M’) est une suite de Jordan-Holder de M/M’

s—1

et de méme (P, Py, 1, ..., P;) pour M', on a D (u") = []detv; et
Jj=0

r—1
D (u') = [] detv;. Ceci établit la formule D (u) = D (u'). D (u").

j=s
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5. Calcul des symboles ().

On note G un groupe commutatif fini d’ordre impair et u un auto-
morphisme de G. On sait que G est somme directe de sous-groupes cycliques
Gy, ..., G,; notons d; ordre et x; un générateur de G,. 1l est loisible de
supposer que d; divise d;,; pour 1 £ i=n—1; on définit les entiers
e, = d;/d,_, pour 1 < i < n, avec la convention d, = 1. Par ailleurs, on

n
choisit des entiers u;; tels que u (x;) = Yu;j.x;pour 1 =i = net I’on
j=1

note D, le déterminant de la matrice

....................
....................

Up; u’n, i+1 - Upy

Nous allons établir la formule

u D, D,
@ (@)= ()-(2)

Traitons d’abord lecasolld, = ... == d, = d.Onaalors e; = dete; = 1
pour 2 < i < n, de sorte que la formule a prouver s’écrit () = () ou Dest
le déterminant de la matrice U = (4;;)1 —;, j—n- 1l €xiste des nombres premiers
P1, .., p, Non nécessairement distincts, tels que d = p; ... p,. On pose
H{ = G|p\G, Hy = p,G|pp,G, ..., H, = p1Ps .. Dy—1G/p1D2 - Py 1040
Alors H ; est un espace vectoriel de dimension 7 sur le corps F v ap;€léments;
a u est associé un automorphisme u; de H;, admettant la réduction de U
modulo p; pour matrice par rapport & une base convenable de H;. D’aprés
(Cy), on a (ﬁj:) = (fj), et la propriété de multiplicativité (4,) entraine alors
= =R B =

Le cas général se traite par récurrence sur zn. Si 'on n’est pas dans le
cas précédent, il existe un entier r compris entre 1 et n—1 et tel que
di=..=d.etd, #d,.,. Posons d = d; et notons D le déterminant de
U. Posons aussi G' = dG et G" = G/G'; 1l est clair que u laisse G’ stable,
donc définit des automorphismes u" et u” de G’ et G” respectivement. Or
le groupe G’ est somme directe des sous-groupes cycliques engendrés
respectivement par les éléments «',, ; = dx,, , ..., &' = dx,, x; est d’ordre
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n
djjd et I'on a u'(x) = ) Uiy w; pour r + 1 < i < n. Lhypothése de
j=r+
récurrence entraine alors

' M/ -Dr+1 -Dr
o (-0

Par ailleurs, le groupe G” est somme directe des sous-groupes cycliques
engendrés respectivement par x; = x,; + G',...,x, = x, + G', et ces
éléments sont tous d’ordre d. D’aprés l'alinéa précédent, on a donc
(t)y=(); or, nae, =dete,=..=e, =1, et aussi D, = D, d’oll

u” D, D,
o )C0)

D’aprés la propriété (4,), on a (&) = (&) (&) et la formule & démontrer
résulte de (26) et (27).
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