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SUR UNE GÉNÉRALISATION
DES SYMBOLES DE LEGENDRE-JACOBI

par P. Cartier (Strasbourg)

Introduction

Un théorème assez peu connu (Zolotareff, Frobenius) donne une

interprétation des symboles de Legendre-Jacobi au moyen de la signature
de permutations convenables. Cette interprétation suggère une généralisation

de ces symboles, à laquelle nous consacrons dans ces pages une étude

élémentaire. Les propriétés des symboles généralisés redonnent facilement
les principaux résultats classiques de Legendre, Gauss et Jacobi et nous

permettront d'étendre le théorème de Zolotareff-Frobenius au cas des corps
de nombres algébriques. On peut utiliser les résultats de cette Note pour
donner un exposé rapide des propriétés des symboles de Legendre-Jacobi,
exposé qui différerait très peu de celui de Frobenius dans [2].

Première partie
La loi de réciprocité quadratique et le lemme de Gauss-Schering

1. Résumé des résultats classiques (Legendre, Gauss, Jacobi).

Soient a et b deux entiers, avec b > 0. On dit que a est reste quadratique
modulo b s'il existe deux entiers x et y tels que x2 a + by9 autrement dit,
si la classe de a est un carré dans l'anneau des entiers modulo b. Gauss

note a R b cette relation et a N b sa négation. Soient p et q deux nombres
premiers, distincts de 2 et distincts entre eux. La loi de réciprocité
quadratique, conjecturée par Euler, démontrée partiellement par Legendre, et
établie par Gauss en 1796, affirme qu'il n'y a que les quatre possibilités
suivantes :

p Rq et q R p)
^ Ar

> si p ou q est congru a 1 modulo 4,
pNqotqNpj
p Rq et q Np) „ t

Ar „ > si p et q sont congrus a 3 modulo 4.
p Nq et q RpJ ^ &

Le symbole de Legendre Q est défini pour un nombre premier p # 2
et un entier a non divisible par p ; il vaut 1 ou — 1 selon que a est reste
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quadratique modulo p ou non. L'introduction de ce symbole permet de

condenser la loi de réciprocité en la formule

(DC)-»--
Jacobi a généralisé les symboles de Legendre de la manière suivante: soit
b un entier positif impair, de la forme p± ph où les nombres premiers

pl9 ...,ph sont nécessairement distincts de 2; si a est un entier étranger à b,

il n'est divisible par aucun des nombres premiers pu ...,pk et l'on définit
le symbole de Jacobi (ab) comme le nombre (® (aPh). On a 1 si a

est reste quadratique modulo b, mais la réciproque n'est pas vraie, et la

signification des symboles de Jacobi est moins évidente que pour ceux de

Legendre.
Voici les principales propriétés des symboles de Jacobi:

A. Propriétés de multiplicativité et de congruence.

(I) Si b est impair et positif et a, a' étrangers à ù, on a (flf) (ab) (ab).

(II) Si b est impair et positif, a et a' étrangers à b et si a a' mod. ù,

on a (b) ~ (b)-

(III) Si b et b' sont impairs et positifs, et a étranger à b et b\ on a

— G)

(IV) Si b et b' sont impairs et positifs, a étranger à b et b\ a congru à 0

ou 1 modulo 4, et si b b' mod. \a\, on a Q (£).

B. Loi de réciprocité et compléments.

(V) Si a et b sont impairs et positifs, et a étranger à b, on a
a- 1 b- 1

OÙ(-1)~ ~
(VI) Si b est impair et positif, ona("[) (— 1}.

(VII) Si b est impair et positif, on a (l) 1 ou -1 selon que b est congru
modulo 8 à ± 1 ou à +3.

C. Restes quadratiques.

(VIII) Pour tout nombre premier p ^ 2, on a Q aUp~ 1} mod. p.

(IX) Si p / 2 est premier, l'entier Q est égal à 1 ou — 1 selon que a est ou

non reste quadratique modulo p.
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On peut étendre la définition des symboles de Jacobi en posant

(_ah) Q pour b positif impair et a étranger à b. Notons cr (x) le signe

d'un nombre x non nul, égal à x/|x| ; on a alors l'expression la plus générale

de la loi de réciprocité sous la forme

/ \ /7 \ a — 1 b 1 a (fl)-l o {b)~ 1

QCK1'" +

où a et b sont deux entiers impairs de signe quelconque, avec a étranger
à b. Nous laissons au lecteur le soin de modifier les propriétés (I) à (IV)
pour couvrir ce cas plus général.

Les propriétés (III) et (IX) ci-dessus ne font que traduire la construction
des symboles de Jacobi et en donnent donc une caractérisation axiomatique.

| Notons la généralisation suivante de (VI):

VF) Si b est impair et positif et a étranger à /;, on a ~ah) (— 1) - {b~n Q.
Une démonstration facile par récurrence sur le maximum de |a| et b montre

que les groupes de propriétés (II) + (IV) + (VU) et (II) -fi (V) + (VU)
fournissent deux caractérisations axiomatiques des symboles de Jacobi.

En principe, la théorie des symboles de Jacobi ne contient rien de plus

que celle des symboles de Legendre; en particulier, la loi générale de

réciprocité (2) est une conséquence facile de (1). Mais le calcul effectif
d'un symbole de Legendre par la formule de réciprocité oblige à de

nombreuses factorisations en nombres premiers, et l'on sait que celles-ci

sont ennuyeuses et longues pour des nombres un peu grands. Le lecteur

pourra s'exercer à montrer par cette méthode que le symbole de Legendre
S 5 23 8) vaut —1, c'est-à-dire que la congruence x2 —1148 mod. 523

n'a pas de solution (523 est premier). Voici à titre de comparaison le calcul

par les symboles de Jacobi. On a 523 3 mod. 8, d'où (523) — 1 par
(VII); on a — 1148 — 102 mod. 523, d'où S (V232) ~ (523) (523) ~( 523)

par (II) et (I). Comme on a —51 1 mod. 4 et 523 13 mod. 51, on a

(523) ("13) par (IV). Enfin, on a — 51 1 mod. 13 et donc Cu (13) 1

par (II), d'où S -1.

2. Démonstrations de la loi de réciprocité par le lemme de Gauss.

On sait que Gauss n'a pas donné moins de six (et même sept)
démonstrations de la loi de réciprocité [3]. Nous nous intéressons ici à la
troisième (1808) et à la cinquième (1818); elles reposent toutes deux sur
le lemme de Gauss (1808) qui s'énonce comme suit: étant donnés un
nombre premier p ^ 2 et un entier a non divisible par p, notons n le nombre

L'Enseignement mathém,. t. XVI, fasc. 1. 3
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des entiers x compris entre 1 et (p— l)/2 et tels que — ax soit congru modulo p
à un entier compris entre 1 et (p—l)/2; on a alors Q (—l)n.

Nous allons donner une version simplifiée des deux démonstrations de

Gauss. Les notations sont les suivantes : p et q sont deux nombres premiers,
distincts de 2 et distincts entre eux; on pose p 2p' + 1 et q 2q' + 1,

et l'on note R l'ensemble des couples d'entiers (x9 y) avec 1 ^ x ^ p' et
1 ^ y ^ q'; enfin, on note \X\ le nombre d'éléments d'un ensemble

fini X.

Voici d'abord la troisième démonstration de Gauss, dans la présentation
«géométrique» d'Eisenstein. On note [f] la partie entière d'un nombre réel t,
c'est-à-dire le plus grand entier majoré par t. Supposons que a soit entier
et t non entier; on établit immédiatement la formule

(3) [a — t] a — [t] — 1.

Notons Y l'ensemble des entiers y compris entre 1 et 2q' et t la permutation
de Y qui transforme y en q — y; pour tout y e Y, on pose F (y) (— l)[w^].
Comme p est impair, la formule (3) où l'on fait a p et t — pyjq (*) donne

(4) F (t (y)) F (y) pour tout y dans Y.

Or, tous les cycles de la permutation t sont d'ordre deux, et le produit
Y\ F (y) a donc la même valeur pour toutes les parties S de Y rencontrant
y e S

chaque cycle de t en un point et un seul. On peut prendre pour S

l'ensemble {1, 2, q'} ou l'ensemble {2, 4, 2q'}, d'où la formule

(5) f[F(y) f[F(ly).
y=1 y= 1

Soit y un entier compris entre 1 et q' ; il existe un unique entier v compris
entre — q' et q' et congru àpy modulo q\ on peut donc poser py — qu + v,
où u et v sont entiers et |i>| ^ q'. Comme q ne divise pas py C), on a v # 0,

et il est immédiat que [2pyjq\ est égal à lu ou lu— 1 selon que l'on a v > 0

ou v < 0. Autrement dit, on a F (ly) 1 si v > 0 et F (ly) — 1 si v < 0.

Le lemme de Gauss entraîne alors la formule

(6) (p) ÎIF(2y)-
• \qj y=1

Enfin, soit P l'ensemble des couples (x, y) appartenant à F et tels que
q'

py > qx; il est immédiat qu'on a |P| £ [py/q], d'où, par définition de
y i

F, la formule



(-D|p| riwy i

I Les formules (5), (6) et (7) donnent Q (-l)|p|. En échangeant les

^ rôles de p et q, on trouve («) (- l)löi où Q se compose des couples (*, j)
'

appartenant h R et tels que py < qx. Pour tout (x,y) dans R, on a

t] px ^ C1); par suite, les ensembles P et Q forment une partition de R,

d'où (P| + \Q\ |i?| p'q'\ on a donc prouvé la formule de réciprocité

!©© (- 1)PV-
[;.! Nous exposons maintenant la cinquième démonstration de Gauss sous

|j la forme très transparente due à Frobenius [2]. On a utilisé précédemment
l | le fait que py — qx est non nul pour tout couple (x9 y) appartenant à R.

u Les inégalités suivantes

<! Ri'- py - qx < -q/2
fj R2 : — q/2 < py — qx < 0

R3: 0 < py — qx < p/2
7 R4: p/2 < py - qx

définissent donc une partition de l'ensemble R en quatre parties notées
I i encore Ru R4. Pour y donné compris entre 1 et q'9 l'inégalité R2 ne

y peut avoir lieu que pour une valeur au plus de x et l'on a alors 1 ^ x S p' ;

w on a donc (pq) (— l)1*2' par le lemme de Gauss. On établit de même la
1 relation Q — (-1)1*3'. Enfin, l'application (x, y) [-» {p'+ l-x, q'+\-y)
:J est une bijection de R1 sur R4, d'où \Ri \ |^4|. On a alors

- p'q' |R| - \RX\ + \R2\ + \R3\ + |Ä4| \R2\ + \R3\ mod. 2,

v d'où immédiatement la formule de réciprocité (J) (J) (— l)p'q\

p 3. Démonstration du lemme de Gauss-Schering.
%

Les démonstrations précédentes n'utilisent que le lemme de Gauss pour
h calculer Q et le résultat suivant: si x et y sont des entiers tels que 1 ^ x ^ p'
|;,l et 1 :g y ^ q\ on py ^ qx. Or, ce dernier fait ne nécessite pas que p et q
r, : soient premiers, mais simplement qu'ils soient étrangers (lemme d'Euclide).
î\ Les deux démonstrations de Gauss établissent donc la loi de réciprocité (V)
y pour les symboles de Jacobi, pourvu que l'on prouve la généralisation
^ suivante du lemme de Gauss: soient b un entier impair et positif et a un

f
H 1 Si x- est un entier et y un entier compris entre 1 et q\ on a py ^ qx: en effet, q est

p premier et ne divise pas le nombre premier p ^ q, ni le nombre y < q, donc il ne divise
M pas py.
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entier étranger à b; on a (£) — (—l)''41 où A est Vensemble des entiers x
compris entre 1 et (b — l)/2 et tels que — ax .vp/7 congru modulo b à un entier

compris entre 1 et (b— l)/2. C'est ce qu'a démontré Schering (éditeur des

œuvres de Gauss) en 1876; nous allons donner un exposé simplifié de sa

méthode [5].

Pour tout diviseur m de b, soit Am l'ensemble défini de manière analogue
à A, au remplacement près de b par m; on note aussi Bm l'ensemble des

entiers compris entre 1 et (m — l)/2 et étrangers à m. On montre facilement
b

que tout élément de A s'écrit de manière unique sous la forme —.x où m
m

est un diviseur de b et x un élément de Am n Bm\

posant f] (ia, m) |Am n Bm\, on a donc

(8) \A\£
m | b

L'argument suivant est une extension de celui par lequel Gauss établit
son lemme. Soit m un diviseur de b. Il existe une permutation u de Bm et

une fonction s sur Bm à valeurs dans {1, — 1} caractérisées par la congruence

(9) ax m s (x) u (x) mod. m pour tout x g Bm.

Or, \Bm\ est égal à {/2 cp (m), où cp (m) est l'indicateur d'Euler bien connu;
comme u est une permutation de Bm, on a ] ] x Y[ u(x) '> enfin, on a

x e Bm x6 Bm

s (x) — 1 si et seulement si x appartient à Am n Bm. Multipliant les

congruences (9), on obtient après simplification (2)

(10) a^{m) (_!)"(«, »0 mod>

Supposons m A 1 et soit p un diviseur premier de m; on pose m pf.m'
p — 1

avec m' non divisible par p et/ > 1. Or, on a y2cp (m) =»—• p3 .cp (m'),

p est impair et cp (/m') est pair si m' ^ 1 ; la congruence (10) entraîne une

congruence analogue modulo p, et l'on a a*ip~1} Q) mod. p par le lemme

d'Euler (cf. (VIII)). De tout ceci, on déduit

(H) (-1) t]{a, m)
si m pf avec p premier et /> 1,

p)
1 dans les autres cas.

2 Le résultat le plus général de ce type est le suivant : soient G un groupe commutatif
fini et G' un sous-groupe de G; l'homomorphisme de transfert de G dans G' transforme
tout a e G en a\ G!G' L Ici, G est le groupe multiplicatif des éléments inversibles de l'anneau
des entiers modulo m, et G/={1,—1}.



— 37 —

Posons alors/? p{1... p{.\ les nombres premiers pu ...,pr étant distincts et

les exposantsfu ...,/r strictement positifs. De (8) et (11), on déduit sans peine

c'est-à-dire le résultat de Schering.

Deuxième partie

Symboles généralisés

Il est assez tentant de renverser l'ordre des démonstrations précédentes et

de définir le symbole de Jacobi par le lemme de Gauss-Schering; les raisonnements

de la première partie montrent comment établir la loi de réciprocité (V)
à partir de cette définition, et il ne serait pas difficile d'obtenir avec cette

définition les propriétés (I) à (IX) des symboles de Jacobi. Un tel exposé
serait assez artificiel, mais il se présente heureusement une possibilité bien

plus satisfaisante. Notons Zb le groupe additif des entiers modulo b et ua

l'automorphisme de Z& défini par la multiplication par a; par des raison-o
nements élémentaires exposés plus bas, on montre que le lemme de Gauss-

Schering équivaut au résultat suivant: Q est la signature de la permutation ua
de l'ensemble fini Zb. Ce théorème a été prouvé par Zolotarefï [6] en 1872

pour le cas où b est premier, et généralisé immédiatement par Frobenius [2] ;

il suggère immédiatement la définition suivante des symboles (£).

4. Etudes des symboles (£).

Soit G un groupe commutatif fini, d'ordre impair 2n + 1, dont l'opération

est notée additivement. Pour toute partie X de G, on note X~ l'ensemble
des éléments — x de G, pour x parcourant X. Pour tout automorphisme u

de G, on note (£) la signature de la permutation u de l'ensemble fini G. La
multiplicativité des signatures entraîne immédiatement

("HU
pour deux automorphismes u et v de G.

L'application x \->-xest un automorphisme de G que l'on notera
simplement - 1. Pour tout x eG,ona (2/7+ l).x 0, et l'on ne peut donc
avoir x — x que lorsque x 0. Il s'ensuit que - 1 a un cycle de longueur
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1 et n cycles de longueur 2, et par suite sa signature est — 1)". Autrement dit,
on a la formule

(13) (ç1) =(-D*(1c'-1) •

Nous passons maintenant à une généralisation du lemme de Gauss-

Schering. On appelle demi-système toute partie S de G* G — {0} qui
rencontre chaque cycle de — 1 dans G* en un point et un seul ; il revient au
même de dire que les ensembles S, S~ et {0} forment une partition de G.

Par exemple, si G est le groupe additif des entiers modulo b (b est un entier

impair et positif), l'ensemble des classes modulo b des entiers compris
entre 1 et {b—1)/2 est un demi-système. Nous allons établir la formule

(14) (G)=(- l)'"<S)nS"l'

où u est un automorphisme de G et S un demi-système. La démonstration
est analogue à celle de Frobenius [2, page 630].

On a u (0) 0, donc (£) est aussi la signature de la permutation w*

de G* induite par u. Posons S {xl5 xn} et énumérons les éléments
de G* sous la forme

Xj i 3Cn — ^ Xn, Xn? Xn — i, •••, X2 3

si x et y sont deux éléments de G*, la relation x < y signifie que x précède

y dans la liste précédente. L'ordre choisi sur G* est donc tel que x < y
entraîne — x > — y et que S se compose des x e G* tels que x < — x. On

appelle inversion de w* un couple (x, y) d'éléments de G* tel que x < y et

u(pc) > u(y). On note I l'ensemble de ces inversions, de sorte qu'on a

(15) (ë)-'-1»1"

d'après l'une des définitions usuelles de la signature. Par ailleurs, on a

u( — x) — w(x), et les propriétés de la relation d'ordre sur G* montrent

que l'application (x, y) |-»(—y9 —x) est une permutation a d'ordre 2 de I;
par conséquent, |l| a même parité que le nombre m des éléments de I
invariants par g et l'on a donc (£) (— l)m d'après (15). Or m est le nombre
des couples (x, — x) avec x < — x et u(x) > —u(x), c'est-à-dire xeS et

u(x) e S~ ; on a donc n |w(S) n S~ |, d'où (14).



Nous établissons maintenant la deuxième formule de multiplicativité. On

note G' un sous-groupe de G et G" le groupe-quotient G/G'; on se donne

aussi un automorphisme u de G laissant stable G'. On note u' l'auto-

morphisme de G' induit par u et u" l'automorphisme de G" déduit de u par

passage au quotient. Je dis que l'on a

(«)-£)(£
Notons 7i l'homomorphisme canonique de G sur GSf un demi-système

dans G' et S" un demi-système dans G"; on pose T et S S' v T.

Il est immédiat que S est un demi-système dans G et que les ensembles

u'(S') n S'~ et u(T) n T~ forment une partition de u(S) n S~, d'où

(17) \u(S)nS'\ \uXS')nS'"\ + \u(T)nT-\.
Par ailleurs, l'ensemble u(T) nT~ est la réunion des classes modulo G'

appartenant à u"{S") n S>r~ ; l'ordre d'une telle classe est égal à |G'|, et

comme (G171 divise le nombre impair |G|, il est impair. Ceci montre que
|u(T) n T~\ a même parité que \u"{S") n £"~l> la formule (16) résulte
alors de (14) et (17).

Mentionnons un cas particulier important de (16); c'est celui où le

groupe G est somme directe de deux sous-groupes Gf et G", où u' est un
automorphisme de Gf et u" un automorphisme de G", et où u est

l'automorphisme de G qui induit u sur G' et u" sur G". La démonstration s'obtient
au moyen de l'isomorphisme bien connu du sous-groupe G" de G sur le

groupe-quotient G/G' qui transforme u" en l'automorphisme déduit de u

par passage au quotient. On peut aussi déduire ce cas du résultat suivant:
soient X' et X" deux ensembles finis, s' une permutation de X' et s" une

permutation de X"; on pose X X' X X" et Von note s la permutation
(x'5 x") (- (s'(x'), s"(x")) de X. Si s (resp. g', s") est la signature de s

I (resp. s', s"), on a s s'1*"1 g"1*'1. La démonstration est facile et laissée

au lecteur.

2. Restes quadratiques dans les corps finis.

Dans tout ce numéro, on note F un corpsfini, et q le nombre de ses éléments,
que Von suppose impair ; il revient au même de supposer que la caractéristique
p de F est différente de 2. On a q pf, où/ est le degré de F sur le sous-
corps Fp formé des entiers modulo p. Si a est un élément non nul de F, la
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multiplication par a est un automorphisme du groupe additif F+ de F,
dont la signature sera notée (p). la formule (12) du n° 4 entraîne alors

[ab\ (a\(b\(18)
y ^ ~ y^J y^ J pour a, b non nuls dans F.

Nous établissons maintenant la formule (3)

(19) ^
^ ^ 1} pour a non nul dans F.

La démonstration est une extension de celle que Gauss a utilisée pour
démontrer son lemme. On choisit un demi-système S dans F+ ; tout élément

non nul de F s'écrit de manière unique sous la forme s x avec 8 e {1, — 1}

et x e S. Il existe donc une permutation u de S et une application s de S
dans {1, — 1} telles que ax s (x) u (x) pour tout x e S; multipliant ces

égalités entre elles et tenant compte de la relation n«w=n x, on trouve
x e S x e S

après simplification a'5' Yl e (x). Or, on a \S\ Viiq— 1) l'on a
x e S

8 (x) — — 1 si et seulement si ax e S~. La formule (14) achève alors la
démonstration.

La signification des symboles (p) est la suivante : ce nombre est égal à 1

ou — 1 selon que a est ou non un carré dans le corps F. Rappelons que le

groupe multiplicatif du corps F est cyclique d'ordre q— 1; nous choisirons

un générateur z de ce groupe et poserons q — 1 2n. Alors les éléments non
nuls de F peuvent s'énumérer comme suit

z°,z2 z2^-1»

z\z3,...,z2("-1) + 1,

la première ligne contenant les carrés et la deuxième les non-carrés. Comme

(18) entraîne (zp) 1 et (z2p+1) Q, il nous suffira de prouver la relation

(z)--l.
A. Première démonstration (Euler): on a z" =£ 1 et (z")2 z2" 1

car z est d'ordre 2n; on a donc z" — —1, d'où (p) z^q~x) z" — 1

d'après (19).

B. Deuxième démonstration (Zolotareff) : la multiplication par z dans F

transforme 0 en lui-même et permute circulairement les 2n éléments

3 Dans cette formule, on considère Qf) comme un élément de F, en identifiant les

entiers 1 et —1 à leurs images naturelles dans le corps F.
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z°, z1, z2"-1, donc c'est une permutation impaire, et (p) — 1 d'après

la définition de (p) comme signature.
Nous considérons maintenant un espace vectoriel V de dimension finie d

sur le corps F et un automorphisme u de V; on note det u le déterminant
de u. J'affirme que l'on a

On ne restreint pas la généralité en supposant qu'on a V F4. D'après
un résultat classique et facile (4), le groupe des automorphismes de V est

engendré par les éléments de la forme suivante

Dait ...,ad(xu -->xd) ...,adxd)

Ti(xu ,..5xd) (xl5 ...,xi,uxi + xi+uxi+u xi+2, ...,xd),

où au an sont des éléments non nuls de F et i un entier compris entre
1 et d— 1. Or, les deux membres de la formule (20) dépendent multiplicative-
ment de u d'après les relations (12) et (18); il suffit donc d'examiner les cas

où u est de l'une des formes Dah St et T{.

a) Le cas de Dah ad: posons G1 Gd — F+ et notons ut
l'automorphisme de Gt défini par la multiplication par at; on a donc

V= G1 X X Gd et u (xu xd) ud(xd))

pour e Gu xdeGd. De la formule (16), on déduit par récurrence
sur d la formule (£) (^) QQi or on a (nu\) Q) par définition, et le
déterminant d tu est a1 ad, d'où (20).

b) Le cas de St: dans ce cas, u échange les coordonnées d'indice i et
i + 1; c'est une permutation d'ordre 2, qui possède qd~1 points fixes, et
a donc la même parité que Vi(qd-qd~1) « l/i(q-l)qd~1. Comme q est
impair, on a donc (£) — (-î)^«"1) (~1)j et le déterminant de west égal
à — 1 ; on a prouvé (20).

4 Ce résultat équivaut à un lemme classique sur les matrices inversibles: une telle
matrice peut être ramenée à la forme diagonale au moyen d'un nombre fini d'applications
des transformations du type suivant:

a) permuter deux colonnes;
b) ajouter à une colonne un multiple d'une autre.

(20)
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c) Le cas de Tp on a alors up 1, d'où (y)p ('uy) 1; comme/»est
impair, on a donc (y) 1. Par ailleurs, le déterminant de west ï, d'où (20).
Ceci achève la démonstration de (20).

Remarque : on conserve les notations F et F précédentes, et l'on note
F* l'ensemble des éléments non nuls de F. Notons aussi F* le groupe
multiplicatif des éléments non nuls de F. Le groupe F* agit sans point fixe

sur F* par multiplication, et son action commute à celle du groupe GL(V)
des automorphismes de l'espace F-vectoriel F.

Dans une Note antérieure (Sur une généralisation du transfert en théorie
des groupes, ce même journal, pp. 49-57), nous avons étudié la situation
générale suivante : X est un ensemble fini, G et A sont deux groupes agissant

sur X; on suppose que A est commutatif et agit sans point fixe sur X, et

que les actions de G et A commutent. On a défini un homomorphisme <PA

de G dans A par la construction suivante: on choisit un ensemble S c X
tel que tout élément de X s'écrive de manière unique sous la forme a s

avec a g A et s g S; pour tout g g G, il existe une permutation o de S et

une application oc de S dans A telles que g (s) oc (s). crfs) pour tout s g S;
on a alors <PA(g) Yl oc (s), ce produit ne dépendant pas du choix de S.

s e S

Si A' est un sous-groupe de A, on peut définir de manière analogue un

homomorphisme de G dans A\ et l'on vérifie facilement que l'on a

(*) ®a'(S)~ pour tout g
Lorsque l'on a X — F*, G GL(V) et A F*, on a <PF* (g) det g

pour tout g g GL(V). Il suffit de vérifier cette assertion lorsque g est de

l'une des formes Dah...ian, St et Tt; la vérification est élémentaire dans

chaque cas.

Prenons pour A' le sous-groupe {1, —1} de F*. Le lemme de Gauss-

Schering généralisé entraîne (f) ^ $A. (g) pour tout g g GL(V), d'où

(*) *a(0)IF,,a'' (det g)*«-1*

d'après (*). On a redémontré la formule (20).

Nous prenons cette fois pour A' le groupe multiplicatif Fr* d'un sous-

corps Fr de F, à q' éléments. Soit g un automorphisme de l'espace F-vectoriel

F; on peut considérer F comme un F'-espace vectoriel F' et g comme un
automorphisme g' de F'. La propriété (*) ci-dessus entraîne alors

det g' (det gfq~ 1)/(F~ x\ On notera que la norme d'un élément a de

F par rapport à F' est a(q~ donc det g' est la norme de det g. Ce
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dernier résultat ne suppose pas F fini, il est valable pour un espace vectoriel

V de dimension finie sur un corps F de degré fini sur un sous-corps F

3. Retour sur les symboles de Jacobi.

Nous résumons d'abord les résultats des deux derniers numéros. On

note G un groupe commutatif, d'ordre fini impair, et F un corps fini de

caractéristique # 2.

A. Propriétés de multiplicativité.

Ax) Si u et v sont des automorphismes de G, on a (g) (£) (g)-

A2) Soient G' un sous-groupe de G, u un automorphisme de G tel que

u (G') G', u et u" les automorphismes de G' et G" G/G' respectivement

déduits de u. On a (£) (Y) (£")•

A3) On suppose que le groupe G est somme directe des sous-groupes

Gu G„; pour 1 ^ i < n9 soit ut un automorphisme de Gf, et soit u

l'automorphisme de G induisant u1 dans Gl5 un dans Gn. On a

(g) (G\) &
B. Lemme de Gauss généralisé.

Bx) Soit S une partie de G ne contenant pas 0, et telle que pour tout

x g G, on ait soit x e S, soit —xeS (mais non les deux). Soient u un
automorphisme de G et m le nombre des éléments x de G tels que — u (x) g S.

On a alors (£) — (- l)m.

B2) On a Cg) (-l)i(|G|_1>.

C. Corps finis et restes quadratiques.

Ct) On a (p) 1} pour tout a # 0 dans F.

C2) On a (p) 1 ou — 1 selon que a est ou non un carré dans F.

C3) Soient V un espace vectoriel de dimension finie sur F, et u un
automorphisme de V. On a (£) (dep").

Convenons maintenant de définir les symboles de Jacobi par ® (^):
on note b un entier impair et positif, Zb le groupe additif des entiers modulo
b, a un entier étranger à a, et ua la multiplication par a dans Zb. En
particulier, si p est un nombre premier différent de 2, ¥p le corps des entiers
modulo p et g un entier non divisible par p, on a Q (f^) où â est la classe

de a modulo p. Les propriétés (I), (II), (VI), (VIII) et (IX) des symboles
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de Jacobi résultent alors immédiatement des propriétés des symboles (£);
on a montré au n° 2 de la première partie comment déduire la loi de réciprocité

(Y) du lemme de Gauss-Schering. Il reste à examiner (III), (IV) et (VII).

Ad (III): notons b' et b" deux entiers impairs et positifs, et a un entier
étranger à b' et b". On pose G Zb,b„ et l'on définit l'automorphisme u
de G par u(x) ax. Soit G' le sous-groupe cyclique d'ordre ^ de G

engendré par la classe modulo b'b" de b"; le groupe quotient G" G/G'
est cyclique d'ordre b". Comme on a u (G') G\ on peut appliquer (A2)l
on a évidemment (S) (bab„),(£,)Q et (£) d'où (£)(£) (5).

Ad (VII): soit b 2b' + 1 un nombre impair et positif. Représentons
chaque classe modulo b par le plus petit entier positif qu'elle contient.
L'automorphisme u de Zb défini par u(x) 2x est alors la permutation

_/12... b' b' + l b' + 2 2bf \
u~\24...2 b'1 3

dont le nombre d'inversions est égal à

1 + 2 + + (b'-l)+ b'-y2b'(b' + l) (ù2 —1)/8,

d'Où (l)(-I)«62-!)/8; ceci établit (VII) (6).

Ad (IV): soient b et b' deux entiers impairs et positifs, et a un entier

étranger à b et b'. Supposons d'abord a 1 mod. 4 et b b' mod. \a\.
La loi de réciprocité entraîne Q (\ba\) et (b,) (^), et comme on a

évidemment (^) (|ba)), on a prouvé ® (^). Supposons maintenant

qu'on ait b b' mod. 4 \a\ et prouvons la formule Q (£,). Or, on a

(xb (b) il) pour tout entier impair x, l'un des nombres x et — x est

congru à 1 modulo 4. Il suffit donc d'examiner les cas a 1 mod. 4 (qui
vient d'être traité), a — 1 (qui résulte de (VI)) et a 2 (qui résulte de (VII)).

5 Le raisonnement qui établit (A2) peut s'utiliser dans la théorie classique de la
manière suivante. On suppose les symboles de Jacobi définis à partir de ceux de Legendre,
et le lemme de Gauss démontré. On admet aussi que dans l'énoncé du lemme de
Schering, on peut remplacer l'ensemble des entiers 1, 2, b' par n'importe quel demi-
système modulo b (ce que Gauss et Schering savaient). Le raisonnement de (Â2) montre
alors que si le lemme de Schering est vrai pour bx et b2, il est vrai pour b b±bv Par
récurrence sur b, on se ramène donc au cas où b est premier, c'est-à-dire au lemme de
Gauss. Cette démonstration du lemme de Schering est nettement plus simple que celle
de cet auteur.

6 Une autre méthode est la suivante: des deux nombres impairs b et b + 2, l'un
est congru à 1 modulo 4, d'où (&|2) " G,+ 2) Par la loi de réciprocité. On en déduit

fi) (0+2) G+2)GL)= d'où (—1) «>2-i)/8 par récur_

rence sur b.
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4. Extension aux corps de nombres algébriques.

On note A l'anneau des entiers d'un corps de nombres algébriques,, de

degré fini sur le corps des nombres rationnels. On note a, fi, desindéaux

de A; si a est un idéal, on note N (a) le nombre des éléments de l'anneau

quotient A/a. On note p un idéal premier de A tel que N (p) soit impair.

A. Symboles de restes quadratiques.

Soient a un idéal tel que N (a) soit impair et x un élément de A. On

dit que x est étranger à a si l'on a A Ax + a, c'est-à-dire si la classe x
de x modulo a est un élément inversible de l'anneau A/a. S'il en est ainsi,

la multiplication par x définit une permutation de l'ensemble fini A/a, dont

la signature sera notée (*). Les propriétés des symboles (£) entraînent

immédiatement les règles suivantes:

(23) Q ee mod_ p

/x\ f 1 s'il existe y dans A avec y2 x mod. p,
(24) IH-l dans les autres cas.

La démonstration de (22) utilise l'isomorphisme des groupes A/a et b/ab.
Les règles (22) et (24) donnent une caractérisation des symboles (*), qui

coïncident donc avec les symboles de restes quadratiques usuels (Hilbert,
Hecke). Nous avons ainsi étendu au cas des corps de nombres algébriques
le théorème de Zolotareff-Frobenius.

B. Déterminants généralisés (7).

Notons M un .^-module de type fini, annulé par une puissance de l'idéal
premier p et F le corps fini A/p. Nous associerons à tout endomorphisme u
de M un élément D (u) de F, qui doit être considéré comme un déterminant

7 A l'exception de la formule (Dp"}) les résultats qui suivent sont valables
sous les hypothèses plus générales: A est un anneau commutatif, y est un idéal maximal
de A engendré par un nombre fini d'éléments, M est un /4-module de type fini.
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généralise de u. Pour tout entier positif i, le A-module Mt plM/pI+1Af
est annulé par p, donc peut être considéré comme un espace vectoriel sur
F, dont la dimension est finie. Comme u laisse stable chacun des sous-
modules p\M de M, il définit un endomorphisme ut de Mu dont le
déterminant sera noté Dt{u). D'après les hypothèses faites, il existe un entier

N- 1

iV > 0 tel que Mt 0 pour / > N. On posera D (u) Yl A(w)( définition
i 0

indépendante de N).
Lorsque M est annulé par p, on peut le considérer comme un espace

vectoriel sur F, et l'on a D (u) det u dans ce cas. Il est clair que si u et v

sont deux endomorphismes de M, on a D (uv) D (u). D (v), et enfin
si D (u) est non nul si et seulement u est un automorphisme de M. Les

propriétés (A2) et (C3) du n° 3 et une récurrence immédiate sur N entraînent
la formule (^) (DpW)) pour tout automorphisme u de M.

On peut établir pour les déterminants généralisés une propriété analogue
à la propriété de multiplicativité (A2): si u est un automorphisme de M,
M' un sous-module de M tel que u (.M') M\ u' (resp. u") l'automor-
phisme de M' (resp. MjM') déduit de u, on a D (u) D {u') D {u"). En

bref, la démonstration est la suivante. On traite d'abord le cas où M est

annulé par p, ce qui ramène à une propriété connue des déterminants:
si T est une matrice partitionnée en (owX on a det T det U. det W.

Appelons sous-groupe stable de M tout sous-module de M stable par u.

On peut prolonger la suite (M, pM, yNM) de sous-groupes stables en

une suite de Jordan-Hölder (P0,PU ...,Pr). Chaque module Qj Pj/Pj+1
(pour 0 ^ j < r) est annulé par p, et si Vj est l'automorphisme de Qj

r — 1

déduit de w, on a D (u) det Vj par le cas déjà étudié. Il existe par
j 0

ailleurs un entier s tel que 0 ^ ^ ^ r et une suite de Jordan-Hölder
(P0,PU ...,Pr) de sous-groupes stables de M, telle que Ps M'. D'après

r - 1 r - 1

le théorème de Jordan-Hölder, on a |] det Vj — Y\ ^ vj vj est l'auto-
7=0 7=0

r- 1

morphisme de Qj =Pj/Pj+l déduit de u. On a donc D(u)= [|det vy;
7 0

comme (Pq/M^P'JM', P'JM') est une suite de Jordan-Hölder de M/M'
s-i

et de même (P'S9P'S+1, Pr) pour M', on a D (u") det v] et
7 0

r - 1

£) (u') det Vj. Ceci établit la formule D (u) D {u') D {u").
j=S
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5. Calcul des symboles (UG).

On note G un groupe commutatif fini d'ordre impair et u un auto-

morphisme de G. On sait que G est somme directe de sous-groupes cycliques

Gu Gn; notons dt l'ordre et xt un générateur de G> Il est loisible de

supposer que dt divise di+1 pour 1 ^ i ^ n— 1; on définit les entiers

et di/di-1 pour 1 ^ i ^ n, avec la convention d0 1. Par ailleurs, on
n

choisit des entiers utj tels que u (xt) Ydlij • XJ Pour * z= n ^ on
j i

note Zfi le déterminant de la matrice

Nous allons établir la formule

Traitons d'abord le cas où dx -- dn d. On a alors ex dQtet 1

pour 2 ^ ^ de sorte que la formule à prouver s'écrit (£) (J) où 2) est

le déterminant de la matrice U (Uij)imJ^n.11 existe ^es nombres premiers

px,...,ph non nécessairement distincts, tels que d px ph. On pose

Hx G/pxG, H2 pxG/pxp2G,..., Hh pxp2 ...ph- iG/PiPi - Ph-iPifi-
Alors est un espace vectoriel de dimension ^ sur le corps ¥p. à pj éléments ;

à u est associé un automorphisme Uj de Hj, admettant la réduction de U
modulo pj pour matrice par rapport à une base convenable de Hj. D'après
(C3), on a (7"p (^.), et la propriété de multiplicativité (A 2) entraîne alors

(g) Ch\) (S) - to... Q -
Le cas général se traite par récurrence sur n. Si l'on n'est pas dans le

cas précédent, il existe un entier r compris entre 1 et n — 1 et tel que
dx dr et dr ^ dr+1. Posons d dx et notons D le déterminant de

U. Posons aussi G' dG et G" G/G'; il est clair que u laisse G' stable,
donc définit des automorphismes u' et u" de G' et G" respectivement. Or
le groupe G' est somme directe des sous-groupes cycliques engendrés
respectivement par les éléments x'r+ x dxr+ l5 x dxn, xt est d'ordre
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dtjd et l'on a u'(xf) utj x'j pour r + 1 ^ ^ n. L'hypothèse de

j r+ 1

récurrence entraîne alors

Par ailleurs, le groupe G" est somme directe des sous-groupes cycliques
engendrés respectivement par x[ xl + G', xr — + G', et ces

éléments sont tous d'ordre d. D'après l'alinéa précédent, on a donc

(g-) (d)> or> °n a e1 d et e2 er 1, et aussi D, d'où

D'après la propriété (A2), on a (^) — (g') (g») et la formule à démontrer
résulte de (26) et (27).
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