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QUELQUES REMARQUES SUR LA
DIVISIBILITE DES COEFFICIENTS BINOMIAUX

par P. CARTIER (Strasbourg)

1. Dans toute cette note, on désigne par p un nombre premier.
Rappelons tout d’abord un résultat classique: pour tout entier i compris
!

entre 1 et p—1, le coefficient binomial () (égal a —z‘—(—p%—‘ par définition)
est divisible par p. Il revient au méme de dire que le polyndme a coeflicients
entiers (X4 Y)? — X?— Y? en les indéterminées X et Y a tous ses coefficients
divisibles par p. La démonstration est trés simple; elle consiste a remarquer
que p divise le numérateur p!, mais non le dénominateur i ! (p—i) ! de la
fraction (¥) et a appliquer le lemme d’Euclide: si p divise ab, mais non b,
il divise a.

Nous nous proposons de généraliser le résultat précédent aux coefficients
binomiaux de la forme (?h) ou /£ est un entier positif et i un entier compris
entre 1 et p". Ecrivons i sous la forme j. p* ol a est un entier positif et j
un entier positif non divisible par p; on a nécessairement 0 < a < & et
1 <j < p" % Nous allons prouver que (‘l-’h) est divisible par p"~° mais
non par p"eti @

On peut exprimer ce résultat en formule de la maniére suivante. Pour
tout entier n = 1, il existe un entier m positif déterminé par les conditions:

n est divisible par p™, mais non par p™*!; cet entier m sera noté v,(n). Par

n

4 [ r . Y ( A 9
définition, on peut donc écrire n sous la forme p #* " .n’ ou n’ n’est pas
divisible par p. Ceci étant posé, notre résultat peut s’énoncer sous la forme

(F) vp((?h)) +v,(i) = h pourn =2 0etl <i < ph.

2. Avant de passer 4 la démonstration, donnons quelques exemples
numériques simples. On a posé a = 'z)p((f}h)) et b = v,(i).

a) p=2, h=2, don p" = 4:

i 1 2 3 4
™ 4 6 4 1
a 2 1 2 0
b 0 1 0 2
atb 2 2 2 2

1) Ce résultat est conséquence de congruences établies par Artin (Collected papers,
pages 157-158, Addison-Wesley, Reading, 1965).
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b) p=2, h=23, dou p" = 8:

i 1 2 3 4 s 6 1 8
® 8 28 56 70 56 28 8 1
2 3 2 3 1 3 2 3 o0
b 0 1 0 2 0 1 o0 3
athb 3 3 3 3 3 3 3 3
c) p=2, h=4, dou p" = 16:
i 1 2 3 4 s 6 7 8
(" 16 120 560 1.820 4.368 8.008 11.440 12.870
a 4 3 4 2 4 3 4 1
b 0 1 0 2 0 1 0 3
atb 4 4 4 4 4 4 4 4

d)p=23, h=2, dou p*"=9:

hi 1 2 3 4 5 6 7 8 9

(1: ) 9 36 84 126 126 84 36 9 1

, a2 2 1 2 2 1 2 2 0

b 0 0 1 0 0 1 0 0 2

at+b 2 2 2 2 2 2 2 2 2

e) p=2>5, h =2, dou p" = 25:

hi 1 2 3 4 5 6 7 . 8 9 10 11 12
(f’ ) 25 300 2.300 12.650 53.130 177.100 480.700 1.081.575 2.042.975 3.268.760 4.457.400 5.200.300
a 2 2 2 2 1 2 2 2 2 i 2 2
b 0 O 0 0 1 0 0 0 0 1 0 0
a+b 2 2 2 2 2 2 2 2 2 2 2 2

On notera que pour i = p", le coefficient binomial (’,-’h) vaut 1, donc
vp((ﬁ.’h)) = 0, alors qu’on a évidemment v (i) == 4; la relation (F) est donc
toujours satisfaite dans ce cas. Par ailleurs, si I’on change i (différent de
p") en son complémentaire p"—i, on ne change pas (’,-’h) donc aussi v,(( ‘,-’h)),
et ’on ne change pas non plus v,(i). Cette remarque explique pourquol
nous nous sommes limités aux i/ compris entre 1 et p"/2 dans les exemples c)
et €), et confirme les symétries observées dans les autres exemples.

3. Nous donnerons deux démonstrations de la formule (F). La premiére
est trés courte et se fait par récurrence sur i. Si a et b sont deux entiers tels

al
que 0 = b < a, la définition du coefficient binomial <Z> = @—b) 1|
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entraine immédiatement la relation

a a . )
<b+ )(b“):()'(a— )< PRI

Apphquons cette relation au cas a = p", b = i, et tenons compte des
relations v, (mn) = v,(m) + v,(n) et v S —10) =v,(i) (pour 1 £ i = pt—=1);
~on obtient

v, (%)) +v,(i+1) = ((”h))—l—v (i)

pour i compris entre 1 et p"—1. La quantité v,(( ") + v,(i) est donc indé-
iipendante de i; on obtient sa valeur en faisant i = 1 et I’on trouve A car

(B =r"

4. La seconde démonstration utilise une évaluation classique de v,(n !).
- Si nous développons ’entier n dans la base p, nous obtenons la relation

no=a,+a;p+ap*+..+arp;

les entiers a,, ay, ..., a, sont compris entre 0 et p—1, et g, n’est pas nul.
Autrement dit, n s’écrit sous la forme a, ... a;a, en base p, etay, ay, ..., a,
sont les « chiffres » de son développement en base p. Soit

S =a, + a; + ... - a, la somme de ces « chiffres ». On a alors

n—=:.
p—1

(1) 0, () =

- La démonstration de (1) est une application immédiate d’un principe
~de comptage fort utile en Calcul des Probabilités, et qui n’est autre qu'un
~cas élémentaire de la transformation d’Abel ou « sommation par parties ».
On considére I’ensemble fini X formé des entiers de 1 a n, et la fonction f
sur X qui a i associe entier positif v (7). Comme on a v,(ab) = v,(a) + v,(b)
- pour deux entiers strictement positifs a et b, et que, par définition, la factorielle
~n !est le produit des entiers de 1 & #n, le nombre v,(n !) est la somme X des
-nombres f (i) pour i parcourant X. Il est clair que r est la plus grande des
“valeurs prises par fsur X; comme f est & valeurs entiéres positives, on voit
"donc que f prend b, fois la valeur 0, b, fois la valeur 1, ..., b, fois la valeur
_r; dans cette assertion, by, ..., b, sont des entiers positifs, by, ..., b,_; peuvent
“étre nuls, mais b, ne I’est pas. Avec cette définition, on a évidemment

(2 Y =by +2b, +...+rb,.
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Par ailleurs, notons ¢; le nombre d’éléments i de X tels que f(i) = 1, ¢, le
nombre d’éléments i de X tels que f(i) = 2, ..., ¢, le nombre d’éléments i
de X tels que (i) = r. On a évidemment

Cl —_ bl + b2 + b3 ‘]L ‘e + br_l + br
C2 —_ bz + b3 + cee + bl‘“l + br
C3 — b3 + + br—l + br
Cr—1 = br—l + br
c = b

d’ou immédiatement ¢, + ... -+ ¢, = by + 2b, + ... + rb,. Par compa-
raison avec la formule (2), on obtient la formule de comptage cherchée

(3) 2 =c¢ +..+¢,.

Il reste a évaluer les entiers ¢y, ..., ¢,. Or, par définition, c; est le nombre
d’entiers i compris entre 1 et n et tels que v,(i) = j, c’est-a-dire le nombre
des multiples de p’ compris entre 1 et n. Par suite, ¢; est égal a la partie
entiére de n/p’; en utilisant le développement de base p de n, on obtient
finalement

¢, =a, +ap+asp*+..+a_p*+ap?
¢, = a, +asp + ...+ a,_p"7 > +ap?
c; = ay +..4+a_p"t+ap
Cr—1 = a,—1q + a.p
¢, = a,

Par sommation, on a donc

r J_l .
Zajp _n s.
j=0 " p—1 p — 1

v,(nl) =2 = '21 a;(1+p+p*+...+p~ " =
i

5. Soit & un entier positif et soit i/ un entier compris entre 1 et p"—1.
Nous écrirons de nouveau 7 sous la forme j. p® ou j n’est pas divisible par
p. Comme j est compris entre 1 et p"~“—1, son développement en base p
est de la forme

(4) jo= o+ op A+ ..+ oy ptt
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1 et p—1. Il revient au méme de dire que les coefficients du polyndme
(X Y)? sont divisibles par p a I’exception de ceux de X? et Y?. Autrement

"
|
b

b
S
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avec b = h—a; les entiers oy, oy, ..., % sont compris entre 0 et p—1, et

o, n’est pas nul puisque j n’est pas divisible par p. De i = j . p® on déduit

' — i =k-p*ouk=p’—jaun développement de base p de la forme

(5 k = Bo +Bip + oo+ Pooid”
avec
Bo = p — o, Py =P_1—°‘1s---,5b—1 =p—1—0_1.

Des relations précédentes, on déduit les développements de base p de
i et p"—i sous la forme

a+t1 atb—1

i = ogp” + o4p + ... F 01 P
p'— i = Bop” + BpT o+ By DT

D’aprés la formule (1) du n° 4, on a donc

h
p'—1
— hny —
P =% N =
» (7)) > 1
i—O(O—Ocl—...—O(b_l
v =v_ (i!) =
(i) o
h .
p . pr—i—Ppo— B — - — PBy-1
v’ =0, ("= = e :

" On en déduit

h (“0*‘ﬁ0“1)‘k(a14‘51)*‘~-‘F(ab—1'Fﬁb—1)
v,((7) =v —v —v" = _
p—1
=b=h—a=nh —-vpﬁ).

- Nous avons donc terminé les démonstrations de notre résultat fondamental.

6. Nous allons traduire les résultats précédents en termes de polyndmes.

- Pour simplifier les notations, nous considérerons des polyndmes en deux
- indéterminées X et Y, mais les raisonnements sont parfaitement généraux
© et s’appliquent a un nombre quelconque d’indéterminées.

Examinons d’abord le cas & = 1, c’est-a-dire le théoréme classique selon

lequel le coefficient binomial () est divisible par p pour i compris entre
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dit, (X-+Y)? appartient & ’ensemble W, de polyndmes ainsi défini: les
¢léments de W, sont les polyndmes a coefficients entiers en X et Y, dans
lesquels le coefficient d’'un mondme X' Y7 est divisible par p si i et j ne sont
pas tous deux divisibles par p. 1l est clair que W, est un groupe pour I’addi-
tion des polyndmes, et qu’il se compose des combinaisons linéaires a coeffi-
cients entiers des polyndomes de la forme M? ou pM, ou M est un mondme
XY,
Soient A et B deux polyndmes a coefficients entiers en X et ¥; comme
(%) est divisible par p pour 0 < i < p, la formule du bindbme montre
qu’il existe un polyndme a coefficients entiers C tel que

(A+B)? = A + B? + pC.
Si A" et B’ sont deux autres polyndomes de méme espece, on a donc
(A% +pA’) + (B +pB’) = (A£B)” + p(A"+B" - C);

par suite, ’ensemble des polynémes de la forme A? + pA’ est un groupe
W pour I’addition.
Montrons que W est égal a W,. Rappelons d’abord la notation classique
= B mod . p pour deux polynomes A et B a coefficients entiers; elle
signifie que tous les coefficients de 4— B sont divisibles par p. On peut
traduire ce qui précéde par la congruence

(6) (A+B)? = AP + B? mod. p .

Soit alors 4 un polyndme de la forme ¢, M; + ... + ¢, M,, ou c4, ..., C,
sont des entiers et M, ..., M, des monOmes; en tenant compte de la relation
d’Euler ¢ = ¢ mod . p (pour tout entier ¢) et de la congruence (6), on
démontre par récurrence sur r la congruence

(7) A? = ¢ MY + ... + ¢, M" mod. p.

Si A’ est un autre polyndme a coefficients entiers, A” 4- p4’ est congru
modulo p & ¢ M% + ... + ¢,M%; pour qu'un polyndme soit de la forme
AP + pA’, il faut et il suffit par suite qu’il soit une combinaison linéaire a
coefficients entiers de mondmes du type ¢;M% -+ ... + ¢,M? -+ pc, M +
... 4 pcIM!. Ceci prouve que W, et W/ sont égaux.

7. Dans le cas h = 2, les propriétés de divisibilité des coefficients bino-
miaux (?°) sont résumées dans le tableau suivant:
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La premiére ligne symbolise la suite des entiers de 0 & p?, mais on n’a explici-
tement indiqué que des multiples de p; dans la deuxiéme ligne, on a figuré
en-dessous de chaque entier i de la premiére ligne la plus grande puissance
de p divisant (2%). On peut donc dire que (X Y)?* est combinaison linéaire
| 4 coefficients entiers de termes de 'une des formes MP, pM? et p>M ou
8 M est un monome. Plus généralement, en raisonnant comme au n° 6, on
B voit que tout polyndme A”z, ou A est a coefficients entiers, a la structure
B précédente.

De maniére générale, soit 4 un entier positif. Nous introduisons deux
g cnsembles de polyndmes a coefficients entiers en X et Y:

a) W, se compose des polyndmes de la forme X ¢;X'¥’ ol ¢;; est
E i.j

8§ divisible par p"~* si a est un entier compris entre 0 et 4 tel que p® divise i
¥ ct /. Il revient au méme de définir W, comme I’ensemble des combinaisons
E ., . . . . h h—1
B lindaires a coeflicients entiers des termes de 1'une des formes M?", pM? ™",

h——2 — \ ~
@ M7, L "I MP, p"M, ol M est un mondme.

b) W, se compose des polyndmes de la forme

h
.ZOP‘A’i-h—’ = AR+ p AR T L+ PR 4 P,

Nous prouverons au n® suivant que W, et W, sont égaux. Voici
# un corollaire immédiat: le théoréme sur la divisibilité des coefficients
. . I3 . A h h h

i binomiaux (7) exprime que le polyndme 5 [(X4 YY) — X" — Y?] ap-
# partient a W,_;. Comme on a W,_; = W, _,, il existe donc des polyndmes

Ay, ..., Ay a coefficients entiers en X et Y, pour lesquels on a I'identité

(8)  (X+Y)" = X2 4 yP 4 pa™ " 4 p2AR 4 A,

Par exemple, pour p =3, h =2, on a
A = XY XY A, = (XY 4 XYY 4 4TV 4 XPY) o
+9(X°Y?+X°Y%) + 13(X°Y* +X*Y?9),

et pour p=>5,h=2, on a
; A = (X*Y + XY% + 2(X3Y2 + X279,
12

A2 o 2 ai(XZS*iyi+XiY25~i)

i=1
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avec le tableau suivant de coefficients

i 1 2 3 4 3 6 7 8 9 10 11 12

a; 1 12 92 506 2.125 7.082 19.218 43.230 81.639 130.600 178.070 207.736

8. Passons a la démonstration de I’égalité W, = W,. Nous raisonnerons
par récurrence sur I’entier positif 4. Il est clair que W, et W, se composent
de tous les polynomes a coefficients entiers en X et Y. Supposons désormais
que 'on ait A =1 et W,_; = W,_,. Soient 4 et B deux polyndmes a
coefficients entiers; d’aprés la formule du bindme et les propriétés de
divisibilité des coefficients ( f.’h), le polyndme (A+B)ph — A" — B™ est
somme de termes du type

cpha 4T grp

avec des entiers positifs ¢, a, j et k tels que a < h et j + k = p"~* Chacun
des termes précédents est de la forme p . cp" *~1CP*, donc appartient au
groupe additif pW;_, = pW,_,. On a donc établi la congruence

(9) (A+B)" = A" + B"  mod. pW,_, .

Soit alors A = ¢, M, + ... + ¢,M, un polyndme a coefficients entiers;
dans cette formule, ¢4, ..., ¢, sont des entiers et M,, ..., M, des mondmes.
En raisonnant par récurrence sur r et en utilisant les congruences cf}h = ¢;
mod . p, on déduit de (9) la congruence

(10) A = e M 4+ .+ ¢, M mod. pW,_, .

La construction méme de W, et W, montre que W, se compose des poly-
ndmes de la forme clMi’h + ...+ chﬁ’h + pB, ou cy, ..., ¢, sont des entiers,
M, ..., M, des mondmes et B un élément de W,_,; par ailleurs, W, sc
compose des polyndmes de la forme AP+ pB avec B dans W, _,. L’égalité
postulée W,_, = W, _, etla congruence (10) entrainent ’égalité W, = W;.

9. Expliquons sur un exemple élémentaire les principes du calcul
de Witt, en les déduisant de I’égalité W, = W,. Nous considérons des
polyndmes a coefficients entiers en des indéterminées X,, Xy, ..., X,
Yo, Yy, ..., Y,, et les ensembles W, et W, correspondants. Nous intro-
duirons les polyndmes

F,= X 4+ px™ '+ .+ pXx,
G, = Y& +p YT Y

Il est clair que ces polyndmes appartiennent a W,, et 'on se convainc
aisément qu’il en est de méme des polyndémes F, 4+ G,, F,—G, et F,G,.
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Comme on a W, = W,, il existe donc des polyndmes & coefficients entiers
S, D, et P, (pour 0 < i < h) satisfaisant aux relations

(11) F,+ G, = S+ pSt"™" + ..+ p"S,
(12) F,— G, = DZ" + pD?" ™' + ..+ p"D,
(13) F,G, = PP+ pPM" ™' . 4+ p'P,.

Nous noterons par ailleurs V), lensemble des «vecteurs»
a = (ay, dy, ..., a,) dont les & + 1 composantes sont des entiers modulo p,
et Z, Pensemble des entiers modulo p"*!. Les ensembles V), et Z, ont le
méme nombre fini p"** d’éléments. Nous allons définir une bijection 7}, de
V, sur Z,, c’est-a-dire un « codage » des entiers modulo p*** au moyen de
suites de /# + 1 entiers modulo p. Tout d’abord, la formule du bindme et
les congruences () =0 mod. p pour 0 < i < p entrainent le résultat
suivant: si x et y sont deux entiers congrus modulo p’, les entiers x? et y?
sont congrus modulo p'* 1. Soient xq, X{, ..oy Xy Vos V1» ---r Vi des entiers;
les congruences

14) xO = yOa xl = yla vy Xp = yh mOdp

entrainent alors la congruence
15) xB x4 i, = Byt T 4y, mod. pttL
Réciproquement, on montre par récurrence sur 4 que la congruence (15)
:ntraine les congruences (14): en effet, le résultat étant supposé vrai pour
1—1, on déduit de (15) les congruences x? = y¥ mod. ppour0 £ i < h—1;
-a congruence d’Euler x? = x mod. p permet alors de conclure qu'on a
¢, =y, mod. p pour 0 £i < h—1; de (15), on tire alors p"x, = p'y,
qod. p"*1, d’ou x, = y, mod. p.

La définition de 7, est maintenant aisée: étant donné un vecteur
+ = (ag, ay, ..., a,) appartenant a V,, on choisit des représentants x,
our a,, X; pour d,.., X, pour a, et T,(a) est la classe de l’entier
' pxP U b L+ p'x, modulo p**!. La bijection 7, permet de trans-
vorter de Z, a V), les opérations de somme, différence et produit. D’autre
part, Sy, Sy, ..., S, €tant des polyndémes a coefficients entiers, on peut
substituer aux variables des entiers modulo p dans ces polyndmes, et le
résultat est un entier modulo p. La formule (11) et la définition de T,
montrent que la somme de deux vecteurs a = (aq, aq,..,q,) et

t . J
2= (by, by, ..., by) est le vecteur ¢ = (cy, ¢y, ..., ¢,) donné par

c = S(ay, ay, ..., ay; by, by, ... b)) pour 0 < | < h.
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De mani¢re analogue, la différence et le produit de a et b se calculent en
utilisant respectivement les polyndmes D, et P..

En résumé, les opérations de somme, différence et produit dans
I’ensemble des entiers modulo p permettent de définir un calcul polynomial
pour les entiers modulo p, et les polyndmes S;, D; et P; permettent d’intro-
duire dans I’ensemble V), des vecteurs a = (aq, a4, ..., a,) des opérations
de somme, différence et produit. Le calcul ainsi défini dans V), est le calcul
de Witt (1936); la bijection 7, permet en principe de ramener les calculs
algébriques sur les entiers modulo p**1 2 des calculs analogues (mais plus
compliqués) sur les entiers modulo p.

Pour terminer, explicitons le cas p =5, h = 1; nous représentons
chaque classe de congruence modulo 5 ou 25 par le plus petit entier positif
qu’elle contient, de sorte que 7', (x, y) est le reste de la division par 25
de x> 4+ 5y. Le tableau suivant donne les valeurs de T (x, y):

y o 1 2 3 4
y
0 o 1 7 18 24
1 5 6 12 23 4
2 0 11 17 3 9
3 5 16 2 8 14
4 20 20 2 13 19

Les opérations sur les vecteurs sont les suivantes:
(ag, @y) + (bo, by) = (ag+bo, a-+by—agho—2agbs—2ashy — aohy)
(@gs ay) — (bos by) = (ag—bg, ay —by+agho—2ashg+2a5b5 — ayby)
(g, a;)(bo, by) == (agho, a;by+aghy).
On en déduit par exemple (2, 3) + (4, 1) = (1, 0), et T; transforme cette

relation en la congruence 22 + 4 = 1 mod. 25.
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