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QUELQUES REMARQUES SUR LA
DIVISIBILITÉ DES COEFFICIENTS BINOMIAUX

par P. Cartier (Strasbourg)

L Dans toute cette note, on désigne par p un nombre premier.

Rappelons tout d'abord un résultat classique: pour tout entier i compris

pl
entre 1 et p — 1, le coefficient binomial (p) (égal à —— — par définition)

i\(p-i)\
est divisible par p. Il revient au même de dire que le polynôme à coefficients

entiers (Jf+ Y)p — Xp— Yp en les indéterminées Let 7a tous ses coefficients

divisibles par p. La démonstration est très simple; elle consiste à remarquer
que p divise le numérateur p\, mais non le dénominateur i (p — i) de la

fraction (p) et à appliquer le lemme d'Euclide: si p divise ab, mais non b,

il divise a.

Nous nous proposons de généraliser le résultat précédent aux coefficients
binomiaux de la forme (ph) où h est un entier positif et i un entier compris
entre 1 et p\ Ecrivons i sous la forme j. pa où a est un entier positif et j
un entier positif non divisible par p; on a nécessairement 0 !§ a ^ h et
1 ^ ph~a. Nous allons prouver que (ph) est divisible par ph~a, mais

non par ph~a + 1. (1)

On peut exprimer ce résultat en formule de la manière suivante. Pour
tout entier n g: 1, il existe un entier m positif déterminé par les conditions:
n est divisible par pm, mais non par pm+1; cet entier m sera noté vp(n). Par

définition, on peut donc écrire n sous la forme pVp(n) n' où n n'est pas
divisible par p. Ceci étant posé, notre résultat peut s'énoncer sous la forme

(F) vp((f)) + vp(i) h pour h k 0 et 1 % i ^ p\
2. Avant de passer à la démonstration, donnons quelques exemples

numériques simples. On a posé a vp((f)) et b vjj).
a) p 2, h 2, d'où ph 4:

ï 1 2 3 4

(f) 4 6 4 1

a 2 12 0
b 0 10 2

a + b 2 2 2 2

x) Ce résultat est conséquence de congruences établies par Artin (Collected papers,
pages 157-158, Addison-Wesley, Reading, 1965).
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; i K) h 3, d'où ooII%

i 1 2 3 4 5 6 7 8

8 28 56 70 56 28 8 1

a 3 2 3 1 3 2 3 0
b 0 1 0 2 0 1 0 3

a+b 3 3 3 3 3 3 3 3

C) p2, h -- 4, d'où ph 16

i 1 2 3 4 5 6 7 8

16 120 560 :1.820 4.368 i5.008 11.440 12.870

a 4 3 4 2 4 3 4 1

b 0 1 0 2 0 1 0 3

a+b 4 4 4 4 4 4 4 4

d) p 3, h -- 2, d'où ph 9:

i l 2 3 4 5 6 7 8 9

9 36 84 :126 126 84 36 9 1

> a 2 2 1 2 2 1 2 2 0
b 0 0 1 0 0 1 0 0 2

a+b 2 2 2 2 2 2 2 2 2

e) P 5, h 2, d'où ph 25

2 3 4 5 6 7 8 9 10 11

300 2.300 12.650 53.130 177.100 480.700 1.081.575 2.042.975 3.268.760 4.457.400
2 2 2 1 2 2 2 2 1 2
0 0 0 1 0 0 0 0 1 0

2 2 2 2 2 2 2 2 2 2

12

».300

«22221 22 2 2 1 2 2600001 00 0 0 1 0 0

On notera que pour i — ph, le coefficient binomial (f) vaut 1, donc
vP((ph)) 0, alors qu'on a évidemment vp(i) — h; la relation (F) est donc

toujours satisfaite dans ce cas. Par ailleurs, si l'on change i (différent de

ph) en son complémentaire ph — /', on ne change pas (f1) donc aussi

et l'on ne change pas non plus vp(i). Cette remarque explique pourquoi
nous nous sommes limités aux i compris entre 1 et phjl dans les exemples c)

et e), et confirme les symétries observées dans les autres exemples.

3. Nous donnerons deux démonstrations de la formule (F). La première
est très courte et se fait par récurrence sur i. Si a et b sont deux entiers tels

(a\ a
que 0 ^ b < a, la définition du coefficient binomialI

TX T\bj (a-b) b
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entraîne immédiatement la relation

Gtl)-(fc + 1)-(l)'("-fc) )!M)'

Appliquons cette relation au cas a — ph, & z, et tenons compte des

relations vp(mn) vp{m) + vp(n) et vp(ph — i) — ttp(z) (pour 1 ^ i ^ ph—l);

on obtient

vp((f+i))+vp(i + l) =vp((?h))+vp(i)

pour i compris entre 1 etph— 1. La quantité vp((f)) + vp(i) est donc

indépendante de z; on obtient sa valeur en faisant i — 1 et l'on trouve h car

(?)=Ph-

4. La seconde démonstration utilise une évaluation classique de vp(n

Si nous développons l'entier n dans la base p, nous obtenons la relation

n a0 + axp + a2p2 + + arpr ;

les entiers a0, au ar sont compris entre 0 et p— 1, et ar n'est pas nul.

Autrement dit, n s'écrit sous la forme ar... apaQ en base p, eta0, at, ar

sont les « chilïres » de son développement en base p. Soit

s a0 4- at + -f ar la somme de ces « chiffres ». On a alors

(1) vp(n!)=- S-.

p - 1

La démonstration de (1) est une application immédiate d'un principe
de comptage fort utile en Calcul des Probabilités, et qui n'est autre qu'un
cas élémentaire de la transformation d'Abel ou « sommation par parties ».

On considère l'ensemble fini X formé des entiers de 1 h n, et la fonction /
sur X qui à i associe l'entier positif vp(i). Comme on a vp(ab) vp(a) + vp(b)

pour deux entiers strictement positifs a et b, et que, par définition, la factorielle
n est le produit des entiers de 1 h n, le nombre vp(n est la somme I des

nombres /(/) pour i parcourant X. Il est clair que r est la plus grande des

valeurs prises par/ sur X; comme / est à valeurs entières positives, on voit
donc que/prend b0 fois la valeur 0, b± fois la valeur 1, br fois la valeur
r ; dans cette assertion, Z?0,..., br sont des entiers positifs, b0,..., br-x peuvent
être nuls, mais br ne l'est pas. Avec cette définition, on a évidemment

(2) H — b i + 2b2 + + r br.
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Par ailleurs, notons cq le nombre d'éléments i de X tels que/(z) Ä 1, c2 le

nombre d'éléments z de X tels que/(z) ^ 2, cr le nombre d'éléments i
de X tels que / (/) ^ r. On a évidemment

Ci — + b2 + b3 + + ~b br

c2 b2 b3 + br_ 1 + br

c3 b3 + + br_1 + br

cr_i br_1 + br

cr br,

d'où immédiatement c1 + + cr — bt + 2b2 + + rbr. Par comparaison

avec la formule (2), on obtient la formule de comptage cherchée

(3) Z Cl + + Cy

Il reste à évaluer les entiers cu cr. Or, par définition, Cj est le nombre
d'entiers i compris entre 1 et n et tels que vp(i) ^ 7, c'est-à-dire le nombre
des multiples de pj compris entre 1 et n. Par suite, Cj est égal à la partie
entière de njpj; en utilisant le développement de base p de n, on obtient
finalement

c1 =* a1 + a2p + a3p2 + + ar_1pr~2 + arpr~1

c2 a2 + a3p + + ar^tpr~3 + arpr~2

c3 a3+ + + arpr~3

Cr-1 ar-1 + arp

cr ar.

Par sommation, on a donc

V („!) 1=1 <|.(l-r/.-'-/.'') Z a i
j=i J o p - 1 p - 1

5. Soit h un entier positif et soit i un entier compris entre 1 ti ph— 1.

Nous écrirons de nouveau i sous la forme j. pa où 7 n'est pas divisible par
p. Comme j est compris entre 1 et ph~a— 1, son développement en base p
est de la forme

(4) j a0 + oqp + +
1
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avec bh-a\ les entiers a0, a6_! sont compris entre 0 etp-1, et

a0 n'est pas nul puisque jn'est pas divisible par De i — j p", on déduit

ph - i k p" où k pb-j a un développement de base p de la forme

(5) k ß0+ ßiP + +

avec

ßo p - ao,ß1 P -1 - ax, ,ßb-i p - 1 - a6-i •

Des relations précédentes, on déduit les développements de base p de

i et ph — i sous la forme

i cc0pa + a1p"+1 + + ab_1pa+b

Ph ~ißoP" + ßiP"+lP"*"-1

D'après la formule (1) du n° 4, on a donc

ph - 1

v vp(ph\)

v'

P

x - a0 - oq - -
P - 1

Ph ~ i ~ ßo ~ ßi ~ ~ ßb-i
v" Vp((ph-i)\)

On en déduit

rrphw / ,/
(ao +^o — 1) +(ai +^i) + +(ab_i +^b_i)

vp((ï v -v-v
b h — a h — vp (i)

Nous avons donc terminé les démonstrations de notre résultat fondamental.

6. Nous allons traduire les résultats précédents en termes de polynômes.
Pour simplifier les notations, nous considérerons des polynômes en deux
indéterminées X et Y, mais les raisonnements sont parfaitement généraux
et s'appliquent à un nombre quelconque d'indéterminées.

Examinons d'abord le cas h 1, c'est-à-dire le théorème classique selon

lequel le coefficient binomial est divisible par p pour i compris entre
1 et p — 1. Il revient au même de dire que les coefficients du polynôme
(X-\- Y)p sont divisibles par p à l'exception de ceux de Xp et Yp. Autrement
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dit, (X+ Y)p appartient à l'ensemble W± de polynômes ainsi défini: les

éléments de Wx sont les polynômes à coefficients entiers en X et F, dans

lesquels le coefficient d'un monôme X1 YJ est divisible par p si i et j ne sont

pas tous deux divisibles par p. Il est clair que W1 est un groupe pour l'addition

des polynômes, et qu'il se compose des combinaisons linéaires à coefficients

entiers des polynômes de la forme Mp ou pM, où M est un monôme
XiYj.

Soient A et B deux polynômes à coefficients entiers en X et F; comme
est divisible par p pour 0 < z < p, la formule du binôme montre

qu'il existe un polynôme à coefficients entiers C tel que

(A±B)P AP ±Bp+pC.
Si A' et B' sont deux autres polynômes de même espèce, on a donc

(Ap+pA') ±{Bp+pB') (A±B)P + p(A'±Bf-C);
par suite, l'ensemble des polynômes de la forme Ap + pA' est un groupe
W[ pour l'addition.

Montrons que W[ est égal à W1. Rappelons d'abord la notation classique
A B mod p pour deux polynômes A et B à coefficients entiers ; elle

signifie que tous les coefficients de A — B sont divisibles par p. On peut
traduire ce qui précède par la congruence

(6) (A +B)P Ap +BP mod. p

Soit alors A un polynôme de la forme c1M1 + + crMn où cu cr

sont des entiers et Mu Mr des monômes; en tenant compte de la relation
d'Euler cp c mod p (pour tout entier c) et de la congruence (6), on
démontre par récurrence sur r la congruence

(7) Ap cxM{ + + crMpr mod. p

Si A' est un autre polynôme à coefficients entiers, Ap + pA' est congru
modulo p à cxM\ + + crMp; pour qu'un polynôme soit de la forme
Ap + pA\ il faut et il suffit par suite qu'il soit une combinaison linéaire à

coefficients entiers de monômes du type cxM{ + + crMpr + pcxM\ +
+ + pc'sM's. Ceci prouve que W1 et W[ sont égaux.

7. Dans le cas h 2, les propriétés de divisibilité des coefficients bino-
miaux (f) sont résumées dans le tableau suivant:

0 P 2 p3p (p-l)p P2

!•—,—p^s—'p'—^ p'1



La première ligne symbolise la suite des entiers de 0 à p2, mais on n'a explicitement

indiqué que des multiples de p; dans la deuxième ligne, on a figuré
en-dessous de chaque entier i de la première ligne la plus grande puissance
de p divisant (f). On peut donc dire que (X+ Y)p2 est combinaison linéaire
à coefficients entiers de termes de l'une des formes Mp2, pMp et p2M où

M est un monôme. Plus généralement, en raisonnant comme au n° 6, on
voit que tout polynôme Ap2, où A est à coefficients entiers, a la structure
précédente.

De manière générale, soit h un entier positif. Nous introduisons deux
ensembles de polynômes à coefficients entiers en X et Y:

a) Wh se compose des polynômes de la forme Y ctjXlYj où ctj est
iJ

divisible par ph~a si a est un entier compris entre 0 et h tel que pa divise i
et j. Il revient au même de définir Wh comme l'ensemble des combinaisons
linéaires à coefficients entiers des termes de l'une des formes Mph, pMph~l,
p2Mph~2, ...,ph~1Mp, phM, où M est un monôme.

b) W'h se compose des polynômes de la forme

ipU?-1 Af + pA?-1 + +Ph~1A^1 +phAh,
/ o

où A0, Ah sont des polynômes à coefficients entiers.
Nous prouverons au n° suivant que Wh et W'h sont égaux. Voici

un corollaire immédiat: le théorème sur la divisibilité des coefficients
binomiaux {f) exprime que le polynôme | [(X+ Y)ph—Xph— Yph]

appartient à Wh_1. Comme on a Wh_1 Wj't_u il existe donc des polynômes
Au Ah à coefficients entiers en X et Y, pour lesquels on a l'identité

(8) (X + Y)»hX"h + Y"h+ pA?-1 + p2Ap2h~2 + + phAh

' Par exemple, pour p3, h2, on a

Ai X2Y+XY2, A2 (*8Y + X+ 4(Z7 +

+ 9{X6Y2 +X2Y6) +13(Z5F4+X4Y5),

et pour p5, h2, on a

Ax =(I47 + iy4) + 2(I3F2+I2Y3),
12

A2^ diiX^-'Y'+X'Y25-1)
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avec le tableau suivant de coefficients

i 1 2 3 4 5 6 7 8 9 10 11 12

at 1 12 92 506 2.125 7.082 19.218 43.230 81.639 130.600 178.070 207.736

8. Passons à la démonstration de l'égalité Wh W*h. Nous raisonnerons

par récurrence sur l'entier positif h. Il est clair que W0 et Wq se composent
de tous les polynômes à coefficients entiers en X et Y. Supposons désormais

que l'on ait h ^ 1 et Wh_1 W'h_1. Soient A et B deux polynômes à

coefficients entiers; d'après la formule du binôme et les propriétés de

divisibilité des coefficients (ph)9 le polynôme (AA~B)ph —Aph — Bph est

somme de termes du type
cph~aAjpa Bkpa

avec des entiers positifs c, a, j et k tels que a < h et y + k ph~a. Chacun
des termes précédents est de la forme p cph~a~1Cpa, donc appartient au

groupe additif pW'h-% pWh^1. On a donc établi la congruence

(9) (A + B)phAph + Bph mod. pWh-t

Soit alors A c1M1 -j~ -L crMr un polynôme à coefficients entiers;
dans cette formule, c1? cr sont des entiers et Mu Mr des monômes.
En raisonnant par récurrence sur r et en utilisant les congruences cf= ct
mod p, on déduit de (9) la congruence

(10) Aph çtM?+ + crMph mod.

La construction même de Wh et W'h montre que Wh se compose des

polynômes de la forme cxMf + + crMph + pB, où cu cr sont des entiers,

Mu Mr des monômes et B un élément de Wh_L; par ailleurs, W'h se

compose des polynômes de la forme Aph + pB avec B dans L'égalité
postulée Wh-1 Wrh_i et la congruence (10) entraînent l'égalité Wh ^ W'h.

9. Expliquons sur un exemple élémentaire les principes du calcul
de Witt, en les déduisant de l'égalité Wh W'h. Nous considérons des

polynômes à coefficients entiers en des indéterminées X0, Xl9 Xh,

Y09 Yl9 Yh, et les ensembles Wh et W'h correspondants. Nous
introduirons les polynômes

Fh X*0h + pX?-1 + + phXh

Gh= Y? + pY?-1 + + phYh.

Il est clair que ces polynômes appartiennent à Wh9 et l'on se convainc
aisément qu'il en est de même des polynômes Fh + G,v Fh — Gh et FhGh.
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Comme on a Wh W'h9 il existe donc des polynômes à coefficients entiers

Sh Dt et Pt (pour 0 ^ i ^ h) satisfaisant aux relations

Nous noterons par ailleurs Vh l'ensemble des « vecteurs »

a (a0, au ah) dont les h + 1 composantes sont des entiers modulo p,
et Zh l'ensemble des entiers modulo ph+1. Les ensembles Vh et Zh ont le

même nombre fini ph+1 d'éléments. Nous allons définir une bijection Th de

Vh sur Zh9 c'est-à-dire un « codage » des entiers modulo ph+1 au moyen de

suites de h + 1 entiers modulo p. Tout d'abord, la formule du binôme et

les congruences 0 mod. p pour 0 < i < p entraînent le résultat

suivant: si x et y sont deux entiers congrus modulo p\ les entiers xp et yp

sont congrus modulo pl+1. Soient x0, xu xh9 y0,yu yh des entiers;
les congruences

(14) x0 y09 yi> -, xh yh mod- P

entraînent alors la congruence

15) xf + pxf 1

+ + phxh yf + pyf 1

+ + phyh mod. ph+ \
Réciproquement, on montre par récurrence sur h que la congruence (15)
.entraîne les congruences (14): en effet, le résultat étant supposé vrai pour

/- 1, on déduit de (15) les congruences xp yp mod. p pour 0 g j g /z — 1 ;

a congruence d'Euler xp x mod. p permet alors de conclure qu'on a

y i y i mod. p pour 0 ^ i ^ h— 1; de (15), on tire alors phxh phyh

nod. ph+1, d'où xh yh mod. p.
La définition de Th est maintenant aisée: étant donné un vecteur

i (a0, au ah) appartenant à Vh, on choisit des représentants x0
aour a0, xl pour al9 xh pour ah, et Th (a) est la classe de l'entier
:Po + pxPi~l + ••• + PhXh modulo ph+1. La bijection Th permet de

transporter de Zh à Vh les opérations de somme, différence et produit. D'autre
part, S0, Su Sh étant des polynômes à coefficients entiers, on peut
substituer aux variables des entiers modulo p dans ces polynômes, et le

résultat est un entier modulo p. La formule (11) et la définition de Th

montrent que la somme de deux vecteurs a (a0, al9 ah) et
b (b09 bu bh) est le vecteur c (c0, cl9 ch) donné par

(11)

(12)

(13)

Fh + Gh - St + pS?'1 + ...+PhSh

Fh- Gh= Df + pD?-1 + ...+/A,
FhGh Pt + pPf-1 + +

c — S(a0, au ah;b0, bu pour 0 ^ <; h.
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De manière analogue, la différence et le produit de a et b se calculent en

utilisant respectivement les polynômes Dt et Pt.
En résumé, les opérations de somme, différence et produit dans

l'ensemble des entiers modulo p permettent de définir un calcul polynomial
pour les entiers modulo />, et les polynômes Sh Dt et Pt permettent d'introduire

dans l'ensemble Vh des vecteurs a (a0î «î, -, ^h) des opérations
de somme, différence et produit. Le calcul ainsi défini dans Vh est le calcul
de Witt (1936); la bijection Th permet en principe de ramener les calculs

algébriques sur les entiers modulo ph+1 à des calculs analogues (mais plus
compliqués) sur les entiers modulo p.

Pour terminer, explicitons le cas p 5, h 1 ; nous représentons
chaque classe de congruence modulo 5 ou 25 par le plus petit entier positif
qu'elle contient, de sorte que T1 (x, y) est le reste de la division par 25

de x5 + 5y. Le tableau suivant donne les valeurs de Tt (x,y):

\ X

y \
0 1 2 3 4

0 0 1 7 18 24

1 5 6 12 23 4

2 10 11 17 3 9

3 15 16 22 8 14

4 20 21 2 13 19

Les opérations sur les vecteurs sont les suivantes :

(aa, ai) + (b0,bi) a0+b0,ai+bi-alb0-2albl-2albl-a0bo)

(ö0, ai)- {b0,bi) (a0 —b0,ai~bi+atb0-2albl+2albl-a0bl)

(a0, ai){b0, bi) (a0b0, aibs0+a50bi).

On en déduit par exemple (2, 3) + (4, 1) (1, 0), et T1 transforme cette

relation en la congruence 22 + 4 1 mod. 25.

Institut de recherche mathématique avancée
Rue René-Descartes, 67

Strasbourg
(Reçu le 1er novembre 1969)
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