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Theorem 1.4, for d = 3 and special measures, may be found in the book
of Blaschke [5] (p. 152, 154-155). The general case is due to A. D. Aleksan-
drov [1] (§8) (though in the form of a seemingly more special geometric
theorem); compare also Petty [16] (p. 1545-1546). The case d = 3 (and
¢ specialized) of Theorem 1.5 is due to Funk [9]; another proof (of special
cases in geometric formulation) has been given by Kubota [11]. The com-
mon generalization of both uniqueness theorems, which is given above, may
be found in [18]. To this paper we refer also for references to the known
geometric consequences of Theorems 1.4 and 1.5, as well as for some new
applications thereof.

The question leading to Theorem 1.5 can be generalized in the following
way: Let D < Q, be any domain, and let us say for the moment that D is
non-special if and only if every measure ¢ on Q, for which ¢ (D") = 0 for
each domain D’ (properly) congruent to D, must vanish identically;
otherwise D is called special. If D is a spherical cap of radius « € (O, =),
it has been shown that D is special if and only if « is contained in a certain
set of values which is denumerable and dense in (O, n) (Ungar [21], more
general in [18]). Ungar [21] has given an example of a non-circular special
domain on ;. Now Theorem 2.1 (if generalized to piecewise continuous
functions) allows, at least theoretically, to decide whether a given domain
DcQ, is non-special: For this to be the case it is necessary and sufficient
that

[ Ydo #0
D

for each ne{0,1,2,..} and some ie{1,.., N;,}. Thus the answer
depends on the computation of denumerably many definite integrals.

Finally we mention that a special case of the 2-dimensional analogue
of Theorem 2.1 was used by Gortler [10] in characterizing those pairs of
plane convex domains whose mixed area is invariant under arbitrary (non-
simultaneous) motions of the domains.
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