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3. APPLICATIONS

In this section we want to indicate how Theorems 1.1—1.5 come out as
corollaries of Theorem 2.1. Some other consequences of this theorem will
also be mentioned. Furthermore, we give references concerning equations
(1.1)—(1.5) and we review some geometric applications of the relevant
' uniqueness theorems.

In order to get the equations (1.1)—(1.3) from (1.6) one has to choose
the measure ¢ appropriately. The condition, e.g., that (1.1) be true for any d
pairwise orthogonal unit vectors uy, ..., u, € Q, is equivalent to the equation

(3.1) fuy) + ... +f(ouy) =0 for each 6 € SO (d) ,

where now uy, ..., y,; is a fixed d-tuple of pairwise orthogonal unit vectors.
Equation (3.1) results from (1.6) if ¢ is the discrete measure concentrated
in uy, ..., u; and assigning the same weight to each of these points. If now
(3.1) holds, then Theorem 2.1 shows that (f, Y,) =0({ =1, ..., N;,) must
hold for each ne {0, 1, 2, ... } for which

Yy(uy) + ... + Y, (ug) #0

for some spherical harmonic Y, of degree . If we choose for Y, the zonal
harmonic defined by Y, (u) = C, (Cu;, up), where C, is the Gegenbauer
polynomial of degree » and order v = £ (d—2), then we get

d
Y, Y, (u) =Cr(l)+(d—-1)C(0) #0 forn # 2.
r=1 ' ‘

From the completeness of the system of spherical harmonics we conclude
f€9,. That each element of §, is in fact a solution of (3.1) may be shown
directly.

Theorem 1.1 is, for 4 = 3, due to Blaschke [3], who used it to derive the
following geometric result: If the vertices of the boxes circumscribed to a
given convex body K < E* lie on some fixed sphere, then K is a solid ellipsoid.
Chakerian [7] has generalized this theorem by induction with respect to
the dimension and has drawn another geometric consequence.

Theorem 1.2 is proved similarly, though in this case the decision whether
for given n the inequality

Yo (up) + oo 4+ Y, (ugeq) #0
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is valid for some Y, € §, or not, is a bit more difficult. For d = 3, Theo-
rem 1.2 is due to Meissner [13]; for general d it is contained in [19] (Hilfs-
. satz 4.4). The geometric problem leading to equation (1.2) and more
generally to equations of type (1.6) with discrete ¢, can be described as
follows: Let P = E? be a d-dimensional convex polytope; a convex body
K < E? is called a rotor of P if to each 6 € SO (d) there exists a transla-
tion t of E? such that 6K is contained in the polytope P and touches each
of its (d— 1)-dimensional faces. Roughly speaking, a rotor can be completely
turned inside P, always gliding along its facets. As an example, we mention
the bodies of constant width one, which are the rotors of the unit cube.
Meissner [13] has determined all the nontrivial (i.e. non-spherical) rotors of
the threedimensional regular polyhedra. The general problem of determining
all pairs (P, K) where P< E?is a d-dimensional convex polytope (not necess-
arily bounded) and K is a nontrivial rotor of P, has been completely solved
in [19].

In order to obtain Theorem 1.3 we choose ¢ as the measure concentrated
on a fixed great sphere s, and proportional to the (d—2)-dimensional
Lebesgue measure on s,. Then (1.6) holds if and only if (1.3) holds for each
v € Q,. For a spherical harmonic Y, € §, an easy computation gives (see [17],
formula (5); put « = 0)

(Yn’@) = § Yndla = Wy C;(l)—l C;(O) Yn(a) ’
Sa

where w,_, is the surface area of the unit sphere in £~ (this equation can
also be derived by a limit process from the Funk-Hecke-formula; compare
(3.4) below). If Y, is properly chosen, this is %0 for even n. Thus by Theo-
rem 2.1, a function satisfying

[ fuwydi, =0 for each 6 € SO (d)
Sa

must be orthogonal to each spherical harmonic of even degree, hence if f
itself is even, it must vanish identically. ‘

For d = 3, Theorem 1.3 is due to Minkowski [14], who used it to prove
that a convex body of constant girth is also a body of constant width. Other
proofs of Theorem 1.3 for d = 3 may be found in Funk [8], Bonnesen-
Fenchel [6] (p. 136-138); proofs for d = 3 have been given by Petty [16]
and Schneider [17]. Funk [8] (p. 287) remarked the following geometric
consequence of Theorem 1.3: The spherical ball is the only centrally sym-
metric convex body with the property that all intersections of the body with




— 303 —

planes through its center have the same surface area. Other geometric appli-
cations of Theorem 1.3 may be found in [2], [4], [12], [20].

In order to get the equations (1.4) and (1.5) from (1.6) one has to choose
the function f appropriately. Both equations can be written in the form

(3.2) [ 9g(u,v))dow) =0 for each ve Q,,
2
where g (f) = | 7| in the case of (1.4), and g (¢) = 1 for >0 and = 0 for

t <0 in the case of (1.5). If we put f (u) = g ({u, a)) for some fixed a € ,,
then (3.2) is equivalent to

[ f(éuw)dow) =0 for each eSO (d) .

Q, |
If now (3.2) holds, then Theorem 2.1 shows that (Y,;, ) =0 =1, ..., Ny,)
must hold for each ne {0, 1, 2, ... } for which

(3.3) | g (Cu,a)) Y, @) do () # 0
2,

for some spherical harmonic Y, of degree n. Here we should observe that g
1s only piecewise continuous in the case of equation (1.5), so that we cannot
apply Theorem 2.1 verbally. It is, however, not difficult to generalize Theo-
rem 2.1 appropriately. In order to decide whether (3.3) holds we apply the
Funk-Hecke-formula (see, e.g., Miiller [15], p. 20)

G4 J gKu,a)) Y, (wdo )

oF
1
=0, C, (D™ [ g CrOA =)D dt Y, (a) .
—1
If we now make the additional assumption that (Y,;, ¢) =00 =1, ..., N,,)
for each »n for which

1
(3.5) [ gmCrH(1—-1)3qgt =0,
- |

then we get (Y,;, ) =0@G=1,..,N,,) for n=0,1,2,... and hence
(h, ) = 0 for each continuous function /# on Q,, which shows that ¢ = 0.
In special applications this additional assumption turns out to be less
formal than it might seem. For instance, if g (¢) = [ t |, then (3.5) holds
exactly for odd n, hence it suffices to assume that ¢ is even. Thus Theorem 1.4
comes out. Theorem 1.5 is obtained similarly.
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Theorem 1.4, for d = 3 and special measures, may be found in the book
of Blaschke [5] (p. 152, 154-155). The general case is due to A. D. Aleksan-
drov [1] (§8) (though in the form of a seemingly more special geometric
theorem); compare also Petty [16] (p. 1545-1546). The case d = 3 (and
¢ specialized) of Theorem 1.5 is due to Funk [9]; another proof (of special
cases in geometric formulation) has been given by Kubota [11]. The com-
mon generalization of both uniqueness theorems, which is given above, may
be found in [18]. To this paper we refer also for references to the known
geometric consequences of Theorems 1.4 and 1.5, as well as for some new
applications thereof.

The question leading to Theorem 1.5 can be generalized in the following
way: Let D < Q, be any domain, and let us say for the moment that D is
non-special if and only if every measure ¢ on Q, for which ¢ (D") = 0 for
each domain D’ (properly) congruent to D, must vanish identically;
otherwise D is called special. If D is a spherical cap of radius « € (O, =),
it has been shown that D is special if and only if « is contained in a certain
set of values which is denumerable and dense in (O, n) (Ungar [21], more
general in [18]). Ungar [21] has given an example of a non-circular special
domain on ;. Now Theorem 2.1 (if generalized to piecewise continuous
functions) allows, at least theoretically, to decide whether a given domain
DcQ, is non-special: For this to be the case it is necessary and sufficient
that

[ Ydo #0
D

for each ne{0,1,2,..} and some ie{1,.., N;,}. Thus the answer
depends on the computation of denumerably many definite integrals.

Finally we mention that a special case of the 2-dimensional analogue
of Theorem 2.1 was used by Gortler [10] in characterizing those pairs of
plane convex domains whose mixed area is invariant under arbitrary (non-
simultaneous) motions of the domains.
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