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FUNCTIONAL EQUATIONS CONNECTED WITH ROTATIONS
AND THEIR GEOMETRIC APPLICATIONS

by Rolf Schneider

1. Introduction

In the geometry of convex bodies there is a certain type of questions
which lead to some linear functional equations on the Euclidean sphere.

Among these equations are, e.g., certain integral equations as well as
relations between the values of a function at certain sets of finitely many
arguments. What we mean by " linear functional equations on the sphere "
is perhaps best described by giving some typical results:

Let Ed (d ^ 3) denote ^/-dimensional Euclidean space with scalar

product < and let

Qd: {xeEd |<x,x> 1}

be its unit sphere.

Theorem 1.1. Let f be a real continuous function on Qd satisfying

(1.1) f (u x) + + f (ud) 0

for any d pairwise orthogonal vectors uls u^ e Qd. Then f is a spherical
harmonic of degree 2.

Theorem 1.2. Let f be a real continuous function on Qd satisfying

(1.2) /Ol) + ••• +/0l+i) — 0

whenever u1?..., ud+1 are the vertices of a regular simplex inscribed in Qd.
Then f is a sum of spherical harmonics of degrees 0, 1, 2, 5 if d 3, and of
degrees 0, 1, 2 if d ^ 4.

For v e Qd let

sv: {ueQd | <h,ü> =0}
be the great sphere with pole v; and let Xv denote the (d- 2)-dimensional
Lebesgue measure on sv.
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Theorem 1.3. If f is a real, even, continuous function on Qd satisfying

(1.3) Ifdk, 0

for each v e Qd, then f 0.

In the following, by a measure on Qd we understand a real valued,
countably additive set function, defined on the n-field of Borel subsets of
Qd. A measure cp on Qd is called even (respectively odd) if (p (B) — (p (B*)
{(p (B) —cp (B*)) for any two antipodal Borel subsets B, B* of Qd.

Theorem 1.4. If cp is an even measure on Qd satisfying

(1.4) J I (u,v} I dcp{u) 0

Qd

for each v e Qd, then (p 0.

For v e Qd let
Sv: {ueQd\<u,v) >0}

be the open hemisphere with center v.

Theorem 1.5. If (p is an odd measure on Qd satisfying

(1.5) cp(Sv) 0

for each v e Qd, then cp 0.

To functional relations of the types (1.1) —(1.5) one is lead by some

uniqueness and characterization problems in the theory of convex bodies;
and the theorems quoted above (all of which are essentially known—see
section 3) have interesting geometric interpretations. The main purpose of
this note is to treat the above functional equations from a unifying point of
view and to exhibit them as special cases of one general equation.

In fact, each of these equations can be written in the form (see section 3)

(1.6) J f{du)d(p{u) — 0 for each ô e SO (d).
^d

Here SO (d) denotes the d-dimensional rotation group acting on Qd, f is

a function and cp a measure on Qd. Equation (1.6) may be read in two ways:
Either cp is given, then (1.6) is a functional equation for f or / is given
and (p is to be determined".

We shall now state a theorem which gives necessary and sufficient
conditions for a pairf cp in order that (1.6) be true. From these conditions the

uniqueness theorems 1.1 — 1.5, and some others, can be immediately
deduced via some elementary computations.
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2. The main theorem

Let us first give some definitions. In the following, all functions are

complex valued and continuous. Let co denote Lebesgue measure on Qd,

normalized so that œ (Qd) 1.

For functions f g and measures cp on Qd we write (/,g): IfgdcD and

(f </): j fdcp, where the integrals are extended over For /2 0, 1, 2,

let §„ denote the complex vector space of spherical harmonics of degree n

on Qd \ let NdjU be its dimension. If/ is a function on Qd, we say that

occurs in f if and only if the orthogonal projection of / onto §n does not
vanish, i.e. if (/, 7„) ^ 0 for some spherical harmonic Yn of degree n (or,

equivalently, if J/(u) CI ((u, v}) dco (u) does not vanish identically, where

Cvn is the Gegenbauer polynomial of degree n and order v — %(d— 2)).

Analogously, we say that Spn occurs in the measure cp if and only if Yn, cp) ^ 0

for some Yn e 9pn. If/is a function on Qd and be SO (d) is a rotation, the

left translate bf of/by b is defined by (bf (u) fib'1 u) for u e Qd.

Theorem 2.1. Let f be a continuous function and cp a measure on Qd.

In order that (bf cp) 0 for each b e SO (<d), it is necessary and sufficient
that none of the spaces §n, ne {0, 1, 2, ...}, occurs in both, f and cp.

We remark that this theorem, together with its proof to be given below,
carries over to the following more general situation: SO (d) and Qd may
be replaced, respectively, by a compact connected topological group G and

by the homogeneous manifold G/K, where K(= SO (d— 1) in our case) is

a closed subgroup of G. The rôle of the spherical harmonics is then played
by their natural generalizations. We do not write down this generalization
explicitly since we do not know any application of it.

Proof of Theorem 2.1. Let { Yni; i=l, Nd>n } be an orthonormal
basis of $pn(n 0,1,2,...). Let us first suppose that / is a finite sum of
spherical harmonics,

k Nn,d

O-i) / E E (/. YnJ)

n=0j=l
Since §„ is invariant under the action of SO (d) by left translation, we have
a relation

L'Enseignement mathém,. t. XVI, fasc. 3-4. 20
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Nd,n

(2.2) Ynj(ô~1u) £ tljiDYAu)
i — 1

for each <5 e SO (<d), by which continuous functions t"j on SO (d) are defined.

It is well known that, for each ne { 0,1,2,... }, the mapping ô -> (tljiô))
is a unitary, irreducible matrix valued representation of the group SO(d).
From (2.1) and (2.2) we get

k Nd,n

(2.3) (ôf,q>) X I Ynj)(Y„h<p)
n 0 i,j 0

If / is an arbitrary continuous function on Qd, then / can be uniformly
approximated by a sequence fu f2,where each A is a finite sum of
spherical harmonics of those degrees n only, for which §rt occurs in / (see,

e.g., Weyl [22], p. 499).
Let us now suppose that 9pn does not occur in both,/and cp (n — 0,1,2,...).

Approximate / as explained above. Then if (Ynh cp) ^ 0 for some n and

some / e { 1,..., n }, the space §n does not occur in/. Therefore we have

(A,Zjj) **= 0 (k 1,2,...) for each je{ 1, Nd^n }, sincefk is a finite sum
of spherical harmonics of degrees other than n. This shows that fk,Ynj)

Yni, cp) 0 for each possible choice of k, n, z,y, and hence (<5/fe, cp) 0

by (2.3). For &-» oo we get (^/, cp) 0, which proves one half of the theorem.

In order to prove the other direction of Theorem 2.1, we multiply equation

(2.3) by t\m (ô) and integrate over SO (d) with respect to the normalized
Haar measure /i. Using one of the well known orthogonality relations for
the matrix elements of unitary, irreducible representations of a compact

group, namely

Nd,n 1 ftJ(S)tïMdii(S)
SO(d)

we arrive at

Nd,n J (Sf, cp) CÄ) dfx (S) (/, Ynm) 7nfc, cp)

SO(d)

provided / is a finite sum of spherical harmonics. By approximation, this
holds for arbitrary continuous /. If now (1.6) is assumed, we get (/, Ynm)

Ynk, cp) 0 for n 0, 1, 2, and k, m e { 1, Nd>n }, which shows that
does not occur in both,/and cp. Theorem 2.1 is proved.



3. Applications

In this section we want to indicate how Theorems 1.1 — 1.5 come out as

corollaries of Theorem 2.1. Some other consequences of this theorem will
also be mentioned. Furthermore, we give references concerning equations
(1.1) —(1.5) and we review some geometric applications of the relevant

uniqueness theorems.

In order to get the equations (1.1) —(1.3) from (1.6) one has to choose

the measure (p appropriately. The condition, e.g., that (1.1) be true for any d

pairwise orthogonal unit vectors uu ud e Qd is equivalent to the equation

(3.1) f(SuJ + ...+/(ôud) 0 for each ô e SO (d)

where now uu ud is a fixed d-tuple of pairwise orthogonal unit vectors.
Equation (3.1) results from (1.6) if cp is the discrete measure concentrated
in wl9 ud and assigning the same weight to each of these points. If now
(3.1) holds, then Theorem 2.1 shows that (/, Yni) 0 (z 1, Ndt„) must
hold for each ne { 0, 1, 2, } for which

Yn(u±) + + Yn (ud) Y= 0

for some spherical harmonic Yn of degree n. If we choose for Yn the zonal
harmonic defined by Yn (w) Cvn «iq, u>), where Cvn is the Gegenbauer
polynomial of degree n and order v — i(d— 2), then we get

d

y T„(i«,) Cv„(1) +(d-1) 0) 0 for * 2

r l
From the completeness of the system of spherical harmonics we conclude
fe§> 2-That each element of $2 is in fact a solution of (3.1) may be shown
directly.

Theorem 1.1 is, for d 3, due to Blaschke [3], who used it to derive the
following geometric result: If the vertices of the boxes circumscribed to a
given convex body Kc£3 lie on some fixed sphere, then K a solid ellipsoid.
Chakerian [7] has generalized this theorem by induction with respect to
the dimension and has drawn another geometric consequence.

Theorem 1.2 is proved similarly, though in this case the decision whether
for given n the inequality

(.«i) + + Yn(ud+l) y£ 0
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is valid for some Yn e or not, is a bit more difficult. For d 3, Theorem

1.2 is due to Meissner [13]; for general d it is contained in [19] (Hilfs-
satz 4.4). The geometric problem leading to equation (1.2) and more
generally to equations of type (1.6) with discrete cp, can be described as

follows: Let P c Ed be a ^-dimensional convex polytope; a convex body
K c Ed is called a rotor of P if to each ô e SO (d) there exists a translation

t of Ed such that tSK is contained in the polytope P and touches each

of its (d— l)-dimensional faces. Roughly speaking, a rotor can be completely
turned inside P, always gliding along its facets. As an example, we mention
the bodies of constant width one, which are the rotors of the unit cube.
Meissner [13] has determined all the nontrivial (i.e. non-spherical) rotors of
the threedimensional regular polyhedra. The general problem of determining
all pairs (P, K) where PaEd is a J-dimensional convex polytope (not necessarily

bounded) and K is a nontrivial rotor of P, has been completely solved
in [19].

In order to obtain Theorem 1.3 we choose cp as the measure concentrated

on a fixed great sphere sa and proportional to the (d— 2)-dimensional
Lebesgue measure on sa. Then (1.6) holds if and only if (1.3) holds for each

v 6 Qd. For a spherical harmonic Yn e $n an easy computation gives (see [17],
formula (5); put a 0)

(YH9<p) J Yndka co^CUl)-1C^(0)7„(a),

where cod_l is the surface area of the unit sphere in Ed~1 (this equation can
also be derived by a limit process from the Funk-Hecke-formula; compare
(3.4) below). If Yn is properly chosen, this is ^0 for even n. Thus by Theorem

2.1, a function satisfying

J / (ôu) dXa 0 for each <5 e SO (d)

must be orthogonal to each spherical harmonic of even degree, hence if/
itself is even, it must vanish identically.

For d 3, Theorem 1.3 is due to Minkowski [14], who used it to prove
that a convex body of constant girth is also a body of constant width. Other

proofs of Theorem 1.3 for d 3 may be found in Funk [8], Bonnesen-

Fenchel [6] (p. 136-138); proofs for d ^ 3 have been given by Petty [16]

and Schneider [17]. Funk [8] (p. 287) remarked the following geometric

consequence of Theorem 1.3: The spherical ball is the only centrally
symmetric convex body with the property that all intersections of the body with
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planes through its center have the same surface area. Other geometric
applications of Theorem 1.3 may be found in [2], [4], [12], [20].

In order to get the equations (1.4) and (1.5) from (1.6) one has to choose

the function / appropriately. Both equations can be written in the form

(3.2) J g «u, v}) dcp (u) 0 for each v e Qd

Od

where g (t) =* | t ] in the case of (1.4), and g {t) 1 for t >0 and 0 for

t^ 0 in the case of (1.5). If we put/ (u) g «m, a» for some fixed a e Qd,

then (3.2) is equivalent to

J f (Su) dcp (u) 0 for each ô e SO (d)

If now (3.2) holds, then Theorem 2.1 shows that Yni, cp) 0 (i 1, Ndt„)

must hold for each n e { 0, 1,2,...} for which

(3.3) J g «h, a» Yn (iu) dœ (u) # 0

Qd

for some spherical harmonic Tn of degree /?. Here we should observe that g
is only piecewise continuous in the case of equation (1.5), so that we cannot
apply Theorem 2.1 verbally. It is, however, not difficult to generalize Theorem

2.1 appropriately. In order to decide whether (3.3) holds we apply the

Funk-Hecke-formula (see, e.g., Müller [15], p. 20)

(3.4) J g«m, a» Y„ (u) dœ (u)
Qd

1

| g(t)c;(t)Y„(a)'

-1
If we now make the additional assumption that Yni, 0 — 1, „)
for each n for which

1

(3.5) J -t2)^3Ut=o,
-l

then we get (Ynh(p)0 (/ 1,Nd n) for n 0, 1, 2,... and hence
(h ,<p) 0 for each continuous function A on Qd, which shows that cp 0.

In special applications this additional assumption turns out to be less
formal than it might seem. For instance, if (t) | |, then (3.5) holds
exactly for odd n,henceit suffices to assume that cp is even. Thus Theorem 1.4

comes out. Theorem 1.5 is obtained similarly.
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Theorem 1.4, for d 3 and special measures, may be found in the book
of Blaschke [5] (p. 152, 154-155). The general case is due to A. D. Aleksan-
drov [1] (§8) (though in the form of a seemingly more special geometric
theorem); compare also Petty [16] (p. 1545-1546). The case d= 3 (and
<p specialized) of Theorem 1.5 is due to Funk [9]; another proof (of special
cases in geometric formulation) has been given by Kubota [11]. The common

generalization of both uniqueness theorems, which is given above, may
be found in [18]. To this paper we refer also for references to the known
geometric consequences of Theorems 1.4 and 1.5, as well as for some new
applications thereof.

The question leading to Theorem 1.5 can be generalized in the following
way: Let D c= Qd be any domain, and let us say for the moment that D is

non-special if and only if every measure cp on Qd for which cp (D 0 for
each domain D' (properly) congruent to D, must vanish identically;
otherwise D is called special. If D is a spherical cap of radius ae(d, te),

it has been shown that D is special if and only if ct is contained in a certain
set of values which is denumerable and dense in (0, n) (Ungar [21], more
general in [18]). Ungar [21] has given an example of a non-circular special
domain on Q3. Now Theorem 2.1 (if generalized to piecewise continuous

functions) allows, at least theoretically, to decide whether a given domain
DcnQd is non-special: For this to be the case it is necessary and sufficient
that

j Yni dco ^ 0

D

for each ne { 0, 1, 2,... } and some i e { 1, Nd>n}. Thus the answer

depends on the computation of denumerably many definite integrals.

Finally we mention that a special case of the 2-dimensional analogue
of Theorem 2.1 was used by Görtier [10] in characterizing those pairs of
plane convex domains whose mixed area is invariant under arbitrary (non-
simultaneous) motions of the domains.
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