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are then seen from (10.9), (10.10) and (10.11) to satisfy

\\Qj\\è.h
SP (Qj) S [Aj],

I Jv DAj Q'jdXGI£ (l-3v-*)|| A..U,

(10.13)

provided v is chosen ^ 9 || DAj [|7 » In view of (7.6), we may choose

the integer v ^ max^ (36, 9 || DAj fli"1)- Then (10.13) shows that there

are unimodular complex numbers ^ such that the Qj Q] satisfy (7.7).

Appendix

Rudin-Shapiro sequences

A.l Notations and definitions. As hitherto, all topological groups G

are assumed to be Hausdorff; and, for any locally compact group G, XG

will denote a selected left Haar measure, with respect to which the Lebesgue

spaces LP(G) are to be formed. Cc(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Horn (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke Cc(G),

Tk will denote the convolution operator

with domain Cc(G) and range in Cc(G); and || k ||M will denote the (p, q)-

norm of this operator, i.e., the smallest real number m ^ 0 such that

\\f*k\\q^m\\f\\p (feCc(G)).

It is well-known that, if G is Abelian, || k ||2,2 is equal to
A A

|| k ||oo supyer I k (y) |,

A
where T is the character group of G and k is the Fourier transform of k.

(Something similar is true whenever G is compact, but we shall not use

this.)
£/-RS-sequences on G are as defined in 5.4.
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In A.2-A.4 we are concerned with conditions on G sufficient to ensure

the possibility of constructing t7-RS-sequences on G for certain choices

of U. In A.5 we use Rudin-Shapiro sequences on infinite compact Abelian

groups to support statements made in 7.5.

A.2 The Abelian case. If G is Abelian and nondiscrete, the methods

of § 2 of [5] show how to construct (reasonably explicitly) a £/-RS-sequence

(hn) on G for any preassigned nonvoid open U ç G; see also [7], (37.19.b).
A

In addition, we may assume that each hn is integrable on F, the character

group of G. [To see this, let F be a compact neighbourhood of the origin
of G and let W be a nonvoid subset of U such that V + W £ U. Let {u
be an approximate identity on G comprised of functions in Cc{G) with
supports in V and Fourier transforms in L1 (F). Finally, let (kn) be a

JF-RS-sequence ; then for each ne N we may select in so that (kn * uir) is a
A A A

t/-RS-sequence with the further property that (kn * uin) k„u in e L^F),
as required.] We take this construction for granted (but see A.5 below)
and use it to show how to construct t/-RS-sequences on certain non-
Abelian groups G. The basis of the extension is a simple technique of
passage from a quotient group to the original, the crucial step being
A.3.2 below.

A.3 The not-necessarily Abelian case.

A.3.1 Assume here that K is a compact normal subgroup of G. Let
XK be normalised so that Xk(K) 1 ; and let 7c : x |-> 3c denote the natural
mapping of G onto G/K.

Iff e Cc(G), the function/' on G/K defined by

/ (X) Jk/(XO dkK (0 (A.l)
belongs to Cc(G/K) ; cf. [7], (15.21). If g g Cc(G/K), gone Cc(G) and

(g o 71)' g. (A.2)
If xa denotes left-translation by amount a, it is verifiable that

Oa/X ^ From this it follows that the disposable factors in XG and
XGjK can be mutually adjusted so that

$crfdA(} Jg/X/' dXG/K (A.3)
for /g Cc(G). Using (A.3), a direct calculation confirms that

(f*(kon)y =f'*k (A.4)
whenever fe Cc{G) and k e Cc{G/K).
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Another consequence of (A.3) is that for 1 ^ ^ oo

11/11^ II/'II, (A.5)

for every /e Cc(G); and that for 0 < p ^ oo

11/11,-ll/'ll, (A-6>

for every /e Cc(G;K), the set of fe Cc(G) which are constant on cosets

modulo K.

A.3.2 Let k e Cc(G/K). Then

P°*IU ^ PIU (A-7)

Proof. For /e Cc(G), / (k o je) e Cc(G;/0 and (A.6) gives

||/* (& ° II« II (/* (& o re))' ||4,

which by (A.4)

Hl/'**ll*
— II/' II, II ^ Hp.«

^PllrPII
the last step by (A.5). Whence (A.7).

A.3.3 If (hn) is a F-RS-sequence on G/K and G =n~1(V), then (hnon)
is a G-RS-sequence on G.

Proof. In view of A.3.2 it suffices to note that

supp (hnon) 71
~1 (supp /zw)

— ft-1 (^0>

|| hnO 7111
oo II Ä„ ||œ,

||Ä„ok||2 II A„ ||2,

the last two because of (A.6) and (A.2).

A.3.4 Suppose that K is a compact normal subgroup of G and that
one can construct F-RS-sequences on G/K for any given nonvoid open
F c G/K. Then one can construct G-RS-sequences on G for any given

open subset G of G which contains K
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Proof. Apply A.3.3, taking a nonvoid open subset W of G such that

KW ç U, and noting that V n(W) is then nonvoid and open in G/K
and that 7i~1(V) KW^ U.

A.3.5 Let ô(G) be the closure in G of the derived commutator)
subgroup of G, and suppose that 5(G) is compact and nonopen in G.

Then one can construct £/-RS-sequences on G for any given open subset U

of G containing 5(G). (Note that, since 5(G) is a closed subgroup of G,

it is nonopen in G if and only if it has empty interior, or if and only if it
is locally null for XG.)

Proof. This follows from A.2 and A.3.4 because:

5(G) is in any case a normal subgroup of G such that G/5(G) is LCA [see

[7], (5.22), (5.26), (23.8)]; and 5(G) is nonopen in G if and only if G/5(G)
is nondiscrete ([7], (5.21)).

A.3.6 The hypotheses of A.3.5 are satisfied in any one of the following
cases (all groups being assumed Hausdorff and locally compact):

(i) G G iXG2, where 5(G^) and 5(G2) are compact and 5(G^) is

nonopen in G1 (hence in particular if G A x B, where A is nondiscrete
Abelian and ô(B) is compact);

(ii) 5(G) is compact and there exists an open connected subset W of G

such that e e W $ 5(G) (hence in particular if G is compact and connected
and 5(G) ^ G);

(iii) 5(G) is compact and, for some Abelian A, some cp e Horn (G, A)
and some connected open subset W of G, we have ee W and cp | W non-
constant (hence in particular if G is compact and connected and Horn (G, A)
is nontrivial) ;

(iv) G cp(H), where cp e Horn (G, H) is such that Ker cp is locally
countable (that is, such that Ker (p intersects each compact set in a countable
set), and where ô(H) is compact and nonopen in H.

Proof, (i) It is evident that 5(G) ç Ô(GX) x 5(G2), which shows
that 5(G) is compact and nonopen in G [if it were open,
à(&i) prG^ (5(GX) X 5(G2)) would have interior points].

(ii) Were 5(G) to be open in G, W would be a disjoint union of
WnS(G) and W n (G\5(G)), each relatively open in W. Since



— 292 —

e e W n (5(G), connectedness of W would imply that W n (G\ô(G)) 0,
i.e., W ç <5(G), a contradiction.

(iii) Ker cp is a closed subgroup of G containing <5(G) ; since W $ Ker cp,

it follows that W $ <5(G). Now use (ii).

(iv) Clearly,

(5(G) <= Vïm cp (0(H))

is compact. Suppose <5(G) were open in G. Then cp(ô(H)) has interior
points, and the same would be true of

(P'1 (<P (S(H)))~SS(H),

where S Ker cp. So there would exist a compact neighbourhood V of
the identity in H such that

V ç SÖ(H)
and so

V V n (SÔ(H)).

But, if yeVn (Sô(H)), y sz for some s e S and z e ö(H), hence

s yz~1 e VSCH)'1, and so s e (VS(H)~1) n S, which is countable by
hypothesis, say {sn : ne TV}. But thenyeUs„ö(H).

neN

Thus
V V n (SS(H)) ç U (5(^)

neN

and so, since XH(6(H)) 0,

0 <*h(V)ZX (<5(//)) 0,
neN

a contradiction.

A.3.7 Remarks, (i) A.3.6 (iii) suffices to show that any finite-dimensional

unitary group U(n) satisfies the hypotheses of A.3.5. [For U(n) is

compact and connected (see [7], (7.15)); and we may apply A.3.6 (iii) with
A T, the circle group, and cp det.]

On the other hand, it is easy to see (cf. A.3.6 (i) and its proof) that if
G Y[ where the Gt are compact and at least one of them satisfies

iel
the hypothesis of A.3.5, then G satisfies the said hypotheses.

So every product of unitary groups satisfies the hypotheses of A.3.5.
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(ii) The hypotheses of A.3.5 are also satisfied if G Gi © G2, the

semidirect product of G1 and G2 (see [7], (2.6) and (6.20)), provided Gt is

compact and Ô(G2) is compact and nonopen in G2 (hence in particular if
Q a © B, where A is compact and B is nondiscrete and Abelian). In
fact, 8 (G) ç Gx X ô(G2) and the proof proceeds as for A.3.6 (i).

A.4 The operators f \-+ k *f.
in A.3, it turns out that (cf. (A.4))

Retaining the notations introduced

((Icon) */)' k *fs (A.8)

for every/e Cc{G) and k e Cc(G/K), where, for any function g with domain

a group X, g denotes the function x 1-» g(x~*) with domain X. As a

consequence, the results of A.3 have direct analogues for the operatorf \-* k*/,
provided G/K is unimodular, which is so if and only if G is unimodular.

A.5 Concerning 7.5.

A.5.1 Throughout A.5 we suppose G to be infinite compact Abelian.
Let r0 be any infinite subsemigroup of the character group T of G; 0 e r0.
The construction described in § 2 of [5] may be employed to produce t.p.s
fn (n e N) on G which, together with their spectra Sn, satisfy the conditions :

s0{0}, sa s rII 2»

B2">2 ^\\fn\\s^A2"l2 (l^oo),
JI fn11 2,2 — 11 ||oo 'j

(A.9)

/„ (p on Sn9 0 on r\Sn,
where A and B are positive absolute constants and cp is a function on r
with Ran cp ç { — 1, 0, 1} and | cp (y) | 1 if and only if y e Sn. (When
G T, these fn are virtually the original Rudin-Shapiro t.p.s. In the
terminology adopted in 5.4 above the hn 2~~nJ2fn constitute a G-RS-

sequence on G.)

If we now choose a„ef inductively so that, on writing Fn an + Sn9

we have

a„+1 e r0 \ [(F0 u u Fn) - Sn+1],
then

Fn I I Sn I 2", Fn ç r0,

Fn n Fm 0 if m ^ n,
(A. 10)
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and the t.p.s

satisfy the relations
wt„ 2~"/2 anfn

II vf„!)„ g A, wn2 n'2(pn,

Ran cpns{-1, 0, 1}, [ q>„ (y) \ 1 if and only if ye F„.

(A. 11)

(A. 12)

From (A.10) and (A.12) it follows that at least one of the sets

A„ (p'1 ({1}), B„ (p~1{{—1}) has not fewer than 2""1 elements.

Define s„ 1, Cn A„ if \A„\ ^ 2" "1 and s„=-l, B„ if
\ An \ < l"'1.Then

(en w„)A (y) 2 "/2 if ye C„.

C„ s FmIC„ I ^ 2"-1.
(A. 13)

A.5.2 In terms of the construction given in A.5.1, it is possible to write
down any number of continuous functions f on G and sequences (Aj) of
finite subsets of F 0 such that

dj — Aj +1,

sp (/) ç r0,

f (0) is real and lim SA./(0) oo,

Z I f(y) I 00 ;
yer

(A. 14)

cf. the statements made in 7.5.

Indeed, if (cn)n=0 is a sequence of real numbers satisfying

and if

if suffices to take

C„^ o, Z c„ <CO, Z 2"/2 00,
it 0 n 0

d; C0 U U Cj,

/= Z C«8« Vf».

(A. 15)

(A. 16)

(A. 17)

(A.14) being then a simple consequence of (A.12) and (A.13).
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However, it is a consequence of the choice of the yn and ccn and of (A. 12)

[on evaluating the Fourier series of wn at 0] that | | An | — | Bn | j ^ 2"/2,

which implies that Cn contains only about one half the elements of Fn, so
00

that U Aj falls far short of exhausting T0. In particular, (AJ) is not a
j=%

convergence grouping of the sort described in § 7.

A.5.3 Two further consequences of the construction in A.5.1 are

perhaps worth mentioning in passing.

(i) For any complex-valued sequence (cn) m t such that

X« =1 I C«I< 00 » (A-18)
the formula

£ Z» 1 (A-19)

yields a continuous function g e C(G). It is easy to specify choices of (cn)

in accord with (A. 18), and of nonnegative functions 77 on F such that

limy^œ rj (•y) *= 0, (A.20)

for which

X7Sr|g(?)|2"2"(y) 00. (A.21)

One might, for example, take cn — n~2 and t](y) 6n~1 logn for
CO

y e Fn (n 1, 2,...) and rj(y) 0 for y e r\F, where F U Fn.
n 1

This is an analogue of a well-known result of Banach for the case
G T; it provides numerous reasonably constructive counter-examples
to conjectural improvements of the Hausdorff-Young theorem.

(ii) Take (c„), rj and g as in (i) immediately above. Let \j/ be any
nonnegative function on F which is bounded away from zero on F. Let
further 9 be any complex-valued function on F such that

9 (y) ^ (y) j g (7) 11 ~ 2n(y) sgn g (7) for y e F. (A.22)

Then (A.21), (A.22) and Bochner's theorem combine to show that 9 is

not a Fourier-Stieltjes transform. Yet, if \jj is bounded, and if we define
0(y) 0 for y e F\ F, (A.20) and the fact that g e C(G) ensure that

Oenr>2lr (F). (A.23)
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We thus obtain explicit examples of functions 0 satisfying (A.23) which
are not Fourier-Stieltjes transforms.

Note that, if every cn is real and nonzero, an (unbounded) xj/ can be

chosen so as to make Ran 6 — { — 1, 1}; this yields explicit examples of
+ 1-valued functions 6 which are not Fourier-Stieltjes transforms. (These

a
are, of course, also obtainable by starting with functions sgn h, where

h e C(G), h is real-valued and h $ I1 (F).)
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