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are then see‘n from (10.9), (10.10) and (10.11) to satisfy
ol =1, 7
sp (Q)) < [4)], : (10.13)
[y Dy 05 dia| = =379 D,

provided v is chosen = 9 || Dy, |7*. In view of (7.6), we may choose
the integer v = max; (36,9 || DA [1"). Then (10.13) shows that there
are unimodular complex numbers é such that the Q; = ¢; Q; ; satisfy (7.7).

APPENDIX

Rudin-Shapiro sequences

A.1 NOTATIONS AND DEFINITIONS. As hitherto, all topological groups G
are assumed to be Hausdorff; and, for any locally compact group G, Ag
will denote a selected left Haar measure, with respect to which the Lebesgue
spaces LP(G) are to be formed. C(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Hom (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke C(G),
T, will denote the convolution operator

fl=f*k

with domain C,(G) and range in C,(G); and || k ||,,,, will denote the (p, g)-
norm of this operator, i.e., the smallest real number m = 0 such that

lfxkll, =m|fll, (feCLG)).

It is well-known that, if G is Abelian, || k||,,, is equal to
H k ”oo - SupyeF l k (Y) |9

where I' is the character group of G and 2 is the Fourier transform of k.
(Something similar is true whenever G is compact, but we shall not use
this.)

U-RS-sequences on G are as defined in 5.4.




— 289 —

In A.2-A.4 we are concerned with conditions on G sufficient to ensure
the possibility of constructing U-RS-sequences on G for certain choices
of U. In A.5 we use Rudin-Shapiro sequences on infinite compact Abelian
groups to support statements made in 7.5.

A.2 THE ABELIAN CASE. If G is Abelian and nondiscrete, the methods
of § 2 of [5] show how to construct (reasonably explicitly) a U-RS-sequence
(h,) on G for any preassigned nonvoid open U = G; see also [7], (37.19.b).

In addition, we may assume that each /i\z,, is integrable on I, the character
group of G. [To see this, let ¥ be a compact neighbourhood of the origin
of G and let ¥ be a nonvoid subset of U such that V + W < U. Let {u;}
be an approximate identity on G comprised of functions in C,(G) with
supports.in ¥ and Fourier transforms in L'(I'). Finally, let (k,) be a
W-RS-sequence; then for each n € N we may select i, so that (k, *u; ) is a

U-RS-sequence with the further property that (k, * u,-n)A = l/g,, u ;. e LY(I),
as required.] We take this construction for granted (but see A.5 below)
and use it to show how to construct U-RS-sequences on certain non-
Abelian groups G. The basis of the extension is a simple technique of

passage from a quotient group to the original, the crucial step being
A.3.2 below.

A.3 THE NOT-NECESSARILY ABELIAN CASE.

A.3.1 Assume here that K is a compact normal subgroup of G. Let
Ag be normalised so that Ax(K) = 1; and let n : x |~ X denote the natural
mapping of G onto G/K.

If f'e C(G), the function f’ on G/K defined by

(%) = [gSf(xt) dig (1) (A.1)
belongs to C.(G/K); cf. [7], (15.21). If ge C(G/K), g o n e C(G) and
(gon) =g. (A.2)

If 7, denotes left-translation by amount a, it is verifiable that

(tof) =1z f’. From this it follows that the disposable factors in Ag and
Ak can be mutually adjusted so that

ijd’{G = jG/Kf, dAG/K (A.3)
for fe C(G). Using (A.3), a direct calculation confirms that
(fx(kom) =f"*k (A.4)

whenever f'e C(G) and k € C(G/K).
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Another consequence of (A.3) is that for 1 < p £

171l 2 11771l (A.5)
for every fe C.(G); and that for 0 < p < o
171l = 11771l (A.6)

for every fe C.(G;K), the set of fe C.(G) which are constant on cosets
modulo K.

A3.2 Let ke C(G/K). Then
leon|l,q = [kl (A7)

Proor. For fe C(G), f*(kon)e CG;K) and (A.6) gives

[/*Kom [y = || (f* &om) ||,
which by (A.4)

= fl*k”q
< 1A 111 & 1l5.a
< |11 11 5.0

the last step by (A.5). Whence (A.7).

A.3.3 If (h,) is a V-RS-sequence on G/K and U=n"*(¥), then (h,0n)
is a U-RS-sequence on G.

Proor. In view of A.3.2 it suffices to note that

supp (h,on) = =~ (supp h,)

cn (),
| Ao [ = [ Aa ||
| Bwom ]z = || A |2

the last two because of (A.6) and (A.2).

A.3.4 Suppose that K is a compact normal subgroup of G and that
one can construct V-RS-sequences on G/K for any given nonvoid open
V = G/K. Then one can construct U-RS-sequences on G for any given
open subset U of G which contains K.
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Proor. Apply A.3.3, taking a nonvoid open subset W of G such that
KW < U, and noting that ¥V = n(W) is then nonvoid and open in G/K
and that n~}(V) = KW < U.

A.3.5 Let 6(G) be the closure in G of the derived (= commutator)
subgroup of G, and suppose that §(G) is compact and nonopen in G.
Then one can construct U-RS-sequences on G for any given open subset U
of G containing §(G). (Note that, since 6(G) is a closed subgroup of G,
it is nonopen in G if and only if it has empty interior, or if and only if it
is locally null for 4;.)

Proor. This follows from A.2 and A.3.4 because:
0(G) is in any case a normal subgroup of G such that G/6(G) is LCA [see
[7], (5.22), (5.26), (23.8)]; and 6(G) is nonopen in G if and only if G/o(G)
is nondiscrete ([7], (5.21)).

A.3.6 The hypotheses of A.3.5 are satisfied in any one of the following
cases (all groups being assumed Hausdorff and locally compact):

(1) G = G{XG,, where 6(G;) and 4(G,) are compact and 6(G,) is
nonopen in G, (hence in particular if G = A4 X B, where A is nondiscrete
Abelian and 6(B) is compact);

(11) 6(G) is compact and there exists an open connected subset W of G
such that ee W & 6(G) (hence in particular if G is compact and connected
and 6(G) # G);

(ii1) 6(G) 1s compact and, for some Abelian 4, some ¢ € Hom (G, A)
and some connected open subset W of G, we have ee W and ¢ | W non-
constant (hence in particular if G is compact and connected and Hom (G, A)
1s nontrivial);

(iv) G = @(H), where ¢ € Hom (G, H) is such that Ker ¢ is locally
countable (that is, such that Ker ¢ intersects each compact set in a countable
set), and where 6(H) is compact and nonopen in H.

Proor. (i) It is evident that &(G) < 6(G,) x 6(G,), which shows
that 6(G) is compact and nonopen in G [if it were open,
o(G,) = Pre, (6(G;) X 6(G,)) would have interior points].

(i) Were 6(G) to be open in G, W would be a disjoint union of
Wné(G) and W n(G\(G)), each relatively open in W. Since
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eec Wn 5(G) connectedness of W would 1mp1y that W n (GYo(G)) =
1e., W < 6(G), a contradiction.

(ii1) Ker ¢ is a closed subgroup of G containing 6(G); since W & Ker o,
it follows that W & 6(G). Now use (ii).

(v) Clearly,
o(G) = ¢ (6(H)) = ¢ (6(H))

is compact. Suppose 5(G) were open in G. Then @(5(H)) has interior
points, and the same would be true of

¢~ (¢ (5(H))) = S 6(H),

where S = Ker ¢. So there would exist a compact neighbourhood V of
the identity in H such that
V < S6(H)
and so
V="V n (S6(H)).

But, if yeV n (S6(H)), y=sz for some seS and zed(H), hence
s=yz YeVS(H)™ !, and so se (Vo(H) ') n S, which is countable by
hypothesis, say {s, :ne N}. But then

ye U s, 6(H).

neN

Thus
V="Vn(SH) < U s, 5(H)
neN

and so, since Ah(0(H)) =0,
0 <Ay (V) = ) Ag(8(H)) =0,

neN

a contradiction.

A.3.7 REMARKS. (i) A.3.6 (iii) suffices to show that any finite-dimen-
sional unitary group U(n) satisfies the hypotheses of A.3.5. [For U(n) is
compact and connected (see [7], (7.15)); and we may apply A.3.6 (iii) with
A = T, the circle group, and ¢ = det.]

On the other hand, it is easy to see (cf. A.3.6 (i) and its proof) that if

G = [] G;, where the G; are compact and at least one of them satisfies
iel
the hypothesis of A.3.5, then G satisfies the said hypotheses.
So every product of unitary groups satisfies the hypotheses of A.3.5.
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(ii) The hypotheses of A.3.5 are also satisfied if G = G; ® G,, the
semidirect product of G, and G, (see [7], (2.6) and (6.20)), provided G is
compact and §(G,) is compact and nonopen in G, (hence in particular if
G = A ® B, where A is compact and B is nondiscrete and Abelian). In
fact, 6 (G) < G, X 8(G,) and the proof proceeds as for A.3.6 (i).

A.4 THE OPERATORS f |- k * f. Retaining the notations introduced
in A.3, it turns out that (cf. (A.4))

((kom)*f) =k=*f"" (A.8)

for every fe C(G) and k € C(G/K), where, for any function g with domain
a group X, g denotes the function x |- g(x~ ') with domain X. Asa con-
sequence, the results of A.3 have direct analogues for the operator f |- k * f,
provided G/K is unimodular, which is so if and only if G is unimodular.

A.5 CONCERNING 7.5.

A.5.1 Throughout A.5 we suppose G to be infinite compact Abelian.
Let I', be any infinite subsemigroup of the character group I' of G; 0 e I',,.
The construction described in § 2 of [5] may be employed to produce t.p.s
f, (me N) on G which, together with their spectra S,, satisfy the conditions:

So={0}, S, = Iy |S,|=2" |

B2? < ||, ||s £ 422 (1 £s=00),

[fillz2={[flle = 1,
J/”:,zqo on S,, 0 on I'\S,,

where 4 and B are positive absolute constants and ¢ is a function on I’
with Ran ¢ < {—1,0,1} and | @ (y) | = 1 if and only if y€ S,. (When
G = T, these f, are virtually the original Rudin-Shapiro t.p.s. In the
terminology adopted in 5.4 above the h, = 27"2f constitute a G-RS-
sequence on G.)

If we now choose «, € I" inductively so that, on writing F, = «, + S,,
we have

(A.9)

41 €Lg \ [(Fou ... 0 F) — 8,44,
then

| Eu| =15,

:Zn,anro,

_ (A.10)
F,0F, = if m # n,
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and the t.f).s
w, =2""20q,f (A.11)
satisfy the relations

H W “00 é A’ ﬁ’n - 2"?1/2 Dns
(A.12)
Ran ¢, = {—1,0,1}, | ¢, () | =1 ifandonlyif yekF,

From (A.10) and (A.12) it follows that at least one of the sets
A4, = ¢, (1)), B,=¢,*({—1}) has not fewer than 2"~! elements.
Define ¢, =1, C,=4, if |4,|=22""" and ¢ = -1, C,=B, if
| 4,] <2*7'. Then

Ew) () =27"2 if yeC, 1
| (A.13)

C,cF, l C,,| > 2" L
A.5.2 In terms of the construction given in A.5.1, it is possible to write

down any number of continuous functions f on G and sequences (4;) of
finite subsets of I'y such that

Aj = Aj’*- 1> }
sp (f) & Lo,
SAjf(O) is real and lim SAjf(O) = {0, (A.14)

Jj=®

|70 = oo;

vell

cf. the statements made in 7.5.

Indeed, if (c,),2, is a sequence of real numbers satisfying

¢, =0,) ¢, <00,y 2" ¢, = o0, (A.15)
n=0 n=0
and if )
4; = Cou ..U Cj, (A.16)
if suffices to take
= cyey W (A.17)
n=0

(A.14) being then a simple consequence of (A.12) and (A.13).
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However, it is a consequence of the choice of the y, and o, and of (A.12)
[on evaluating the Fourier series of w,at 0] that | |4, ]| — | B, || < 2%,
which implies that C, contains only about one half the elements of F,, so

that U 4; falls far short of exhausting I'y. In particular, (4;) is not a
j=1
convergence grouping of the sort described in § 7.

A.5.3 Two further consequences of the construction in A.5.1 are
perhaps worth mentioning in passing.

(i) For any complex-valued sequence (c,)}, =, such that

°,§’=1[c,,[ < 00, (A.18)
the formula
g :Zfz‘l Cn wn (AIQ)

yields a continuous function g € C(G). It is easy to specify choices of (c,)
in accord with (A.18), and of nonnegative functions # on I' such that

lim, ., 7 () = O, (A.20)
for which

Yoer | 8 ) |2 721 = oo (A.21)

2

One might, for example, take c,=n"? and #n(y) = 6n"'logn for

yeF,(n=1,2,..)and n(y) = 0 for ye I'\F, where F= U F,.

n=1
This is an analogue of a well-known result of Banach for the case
G = T; it provides numerous reasonably constructive counter-examples

to conjectural improvements of the Hausdorff-Young theorem.

(i) Take (¢,), n and g as in (i) immediately above. Let  be any
nonnegative function on I' which is bounded away from zero on F. Let
further 0 be any complex-valued function on I' such that

O =vM|gW[' ™Y .sgng(y) for yeF.  (A22)
Then (A.21), (A.22) and Bochner’s theorem combine to show that @ is

not a Fourier-Stieltjes transform. Yet, if Y is bounded, and if we define
0(y) = 0 for ye I'\' F, (A.20) and the fact that g € C(G) ensure that

0eN,., (I (A.23)
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We thus obtain explicit examples of functions 6 satisfying (A.23) which
are not Fourier-Stieltjes transforms.

Note that, if every ¢, is real and nonzero, an (unbounded) i can be
chosen so as to make Ran § = {—1, 1}; this yields explicit examples of
+ 1-valued functions 8 which are not Fourier-Stieltjes transforms. (These

are, of course, also obtainable by starting with functions sgn lAz, where
he C(G), h is real-valued and h ¢/ (I).)
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