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§ 10. Concerning the polynomials Qj.

There is no difficulty in making fairly explicit the construction of
t.p.s Qj of the type employed in 7.6.

For p > 0, t ^ 0 define

1 if t ^ p9

if p ^ t ^ 2p,
±p J

[ 0 if t 2p.

if z 0,

hp ~ I 2 1-

For all complex z define

/,(*) —
z I

1
z hp (\ z\) if z ^ 0.

Write
(z) n

1
n exp {—n | z |2,

S.ftOO 7Z ~7j— (nIz 12)J

i=o 7!

(10.1)

(10.2)

(10.3)

Let ju denote Lebesgue measure on C (identified with R2 in the canonical
fashion).

It is then routine to verify that

lis."/J» ^ l|/P|U i,

lim En*/„=/„
(10.4)

uniformly on any compact set omitting 0. From this it follows that to

every p > 0 and every positive integer v correspond positive integers
h (p, v), k (p, v) such that

z\ z - fp*P^(z)
1 1

^ for ^ I z I ^ p,
v v

1

|/p*-P»,iï(z)| ^ 1 + ~ for |z| ^
(10.5)

Now

fp * Pn, k00?p,v (*> Z), (10.6)
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where

Hp,v) — n(p,v))J JL 2L" Z Z1p,v (X,Y) n 1n(p,v) £ -, - _
J 0 7! i 0 m 0

k(p,y)

£ Cp>v (/, m) X'7m.
l,m 0

It is easily verifiable that the Cp>v (/, m) are real-valued.

If 0 is a bounded measurable function on G and

öp,v ?p,v(0, 0),^ ^ || ||c

we have from (10.5)

M-15- e;,v
1

»

1

< - whenever | 6 | ^

I Ql v
I ^ 1 + - everywhere on G.

v

If 0 is a t.p., then v is a t.p. and

Sp (ôp.v) £ [sp (0)].

I 0 I whenever | 0 | >

2 H— j I 0 I everywhere,

(10.7)

(10.8)

(10.9)

(10.10)

From (10.9) we obtain

101 - 0 e;.v

whence it follows that, if 6 =£ o,

I Jo 0 Q°P,V dXG I > (I - v "') || |], — v~1 (2+ v-1)

^ (1—2v-*)||0||1

provided v ^ 9 || 0 ||72.
Taking 0 DA. and pj ^ || DA.||, the trigonometric polynomials

:w-K"

(10.11)

Ô, 1 + ÔPj,v 1 + - (DAf (10.12)



288

are then seen from (10.9), (10.10) and (10.11) to satisfy

\\Qj\\è.h
SP (Qj) S [Aj],

I Jv DAj Q'jdXGI£ (l-3v-*)|| A..U,

(10.13)

provided v is chosen ^ 9 || DAj [|7 » In view of (7.6), we may choose

the integer v ^ max^ (36, 9 || DAj fli"1)- Then (10.13) shows that there

are unimodular complex numbers ^ such that the Qj Q] satisfy (7.7).

Appendix

Rudin-Shapiro sequences

A.l Notations and definitions. As hitherto, all topological groups G

are assumed to be Hausdorff; and, for any locally compact group G, XG

will denote a selected left Haar measure, with respect to which the Lebesgue

spaces LP(G) are to be formed. Cc(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Horn (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke Cc(G),

Tk will denote the convolution operator

with domain Cc(G) and range in Cc(G); and || k ||M will denote the (p, q)-

norm of this operator, i.e., the smallest real number m ^ 0 such that

\\f*k\\q^m\\f\\p (feCc(G)).

It is well-known that, if G is Abelian, || k ||2,2 is equal to
A A

|| k ||oo supyer I k (y) |,

A
where T is the character group of G and k is the Fourier transform of k.

(Something similar is true whenever G is compact, but we shall not use

this.)
£/-RS-sequences on G are as defined in 5.4.
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