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In particular, taking 4; = {ne Z :2/ <n <2’*'} it can be arranged
that

A
y + f (n)
nez (log 2+ |n[)*
diverges for any preassigned distribution of signs + and any preassigned
a0 < .

Of course, much stronger results are derivable by using random (and

unspecifiable!) changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii) : G O-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups W. For each such W the
annihilator 4 = W° in I" of W is a finite subgroup of I'. Define

ky = Ag(W) ™! X characteristic function of W. (9.1)

Then ky, is continuous, ky = 0, g ky dAg = 1. The transform ky, of ky
is plainly equal to unity on 4. On the other hand, since W is a subgroup,
we have for ae W and ye I’

kw ) = [6 Ky ()7 () dg () = [6 ey (x-+a) 7 (%) dlg ()
= {6 kyw )y 0 —a) dig ()

— 7 (@ ky ),

which shows that gw(y) =0 if yeI'\A. Thus ky is the characteristic
function of 4, and so

kW S DW°' (92)

By (9.1) and (9.2), a routine argument shows that, if 1 < p < oo and
feL?(G), then

. f=1im Sy.f 9.3)

W

in LP(G); and that (9.3) holds uniformly for any continuous f.

9.2 Proor oF 7.4 (i)). If I', is any countably infinite subgroup of I
we can choose a sequence W; of compact open subgroups of G such that
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W,i1 € W;and I'y < ~U1 W, where W is a finite subgroup of I' and
j=

W< W;yy. The 4; =W, n T, satisfy (7.2) and, from (9.3),
f=1lms, f 9.4)

J
uniformly for any continuous f with sp(f) < I',. This verifies the
statements made in 7.4 (i1).

9.3 By using the results in [3], more can be said in case (i1) of 7.4;
cf. [3], Theorem (2.9) and Example (4.8).

Let fe LY(G) and let I', be any countable subgroup of I' containing
sp (f). Choose the W; as in 9.2. Then, apart from the fact that (W}) is
not in general a base at 0 in G (they can be chosen to be so if and only if
G 1s first countable), (W;) is an open-compact D”’-sequence ([3], p. 188).
The proof of Theorem (2.5) of [3] is easily modified to show that

f@) = lim Sy f () ©.5)

Jj— oo

holds for almost all xe G. Moreover, Theorem (2.7) of [3] applies to
show that the majorant function

S*f () = sup | Swsf ()| (9.6)
satisfies the estimates
1
S fll, =2 (@=-D"Y"||7]l, (1<p<owo) L (9.7)
S*flly £ 2+ 2§6|f]log* | f] de (9.8)
S*fll, £20-p)" || f]|, ©O<p<1). (9.9)

In particular, the convergence in (9.5) is dominated whenever

| f]log™ | f] e L* (G).

A more immediate consequence of (9.1) and (9.2) is a strong version
of localisability of the convergence of Fourier series: if f'e L*(G) vanishes
a.e. on some neighbourhood of x, e G, we can choose the W; so that
S4;f (%) = 0O for every sufficiently large j. [A suitable choice of W; may
be made once for all, independent of £, if G is first countable.] Nothing
similar is true for general G; see, for example, [11], Vol. IT, pp. 304-305.
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