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satisfy the conditions

sp (u,) < o, Y. || ua || < o0
n=1 (7.9)

S, u,(0) is real and > n.
J

n

At this point the construction in § 2 will yield integers 0 < n, < n, < ...
and specifiable sequences (y,) ,.y of positive numbers such that each function
of the form

o0
f=2 v,u,
p=1 P
is continuous and satisfies

sp(f) e I'y, limRe SAj f(0) = oo. (7.10)

N
p—= p

A fortiori, f satisfies (7.3).
We add here that, if the 4; are symmetric, the D, are real-valued,
J

and we may work throughout with real-valued functions, replacing
Re S, f by S, f everywhere.
J J

§ 8. Discussion of case (i) : G not O-dimensional

8.1 In this case @ # I', and we begin by considering a finite subset
of I' of the form

A=0Q1+ A (8.1)

where Q and A are finite subsets of I" such that = | Qisl-land g # A < &.
We aim to show that (for a suitable absolute constant £ > 0)

AR k(m) , 6.2

provided N = l Q , (the cardinal number of Q) is sufficiently large.

8.2 ProOOF OF (8.2). Introduce H as the annihilator in G of @ and
identify in the usual way the dual of A with I'/®. Likewise identify the
dual of K = G/H with @ ([7], (24.11)).
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We then have
| Dalli = Jol 3 71 de
ye

= [on Po@® [r] ¥ Y 0G+y) o x+y) | din(y),

e ¢peAd

the inner integral being viewed as a function of X = x4-H  Thus, writing
' 0 for = (§) and noting that ¢ (y) = 1 for p € 4 = @ and y € H, we obtain

| Dl = Jo/u 9Aen® [ | ez{:) o (0, )0 () | din(»), (8.3)

where

a (0, x) =0(x) Y ¢ (x).

¢eA

Now, since the dual of H (namely I'/®) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we
have

_ log N \* .
Jul T «(0,200)|d10) 2 k(@%%v) min | (6, ) |
B log N \* _
= k(m) | ¢§1 ¢ (%) ], (8.4)

since | 6 (x) | = 1 and ¢ (x) depends only X. By (8.3) and (8.4),

log N % N N
H D, H1 o k(w) }j’G/Hl ¢§1 ¢ (%) | dflc/n(x)- | (85)

Since A4 # @, the remaining integral is not less than the maximum modulus

of the Fourier transform of the function X |- ) ¢ (X), i.e., is not less
ded

than unity. Thus, (8.2) follows from (8.5).

8.3 Proor or 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If & = (4,);,y is a grouping of infinite type
covering I'y, | m (4;) | > co and so, since 4; = @, | n(Q;)| > 0. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 SUPPLEMENTARY REMARKS. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups I’y of I' and suitable groupings
9 = (4;);y covering I'y can be derived without appeal to Theorem A



— 282 —

of [8]. To do this, it suffices to take y, e I'\ @ (k = 1, 2, ..., m) such that
the family (y,); <x<n is independent (see [7], (A.10)), define

Fo == {Z’Z=1 nkyk InkEZ fOI' k = 1, 2, ceey m},
and make use of the formula

jG F@i ), oo P (X)dys(x)
= 2n) ™ (o*... ¢ F (e, ..., *m)dt, ... dt,, (8.6)

valid for every Fe C (T™), where T denotes the circle group. (Recall that
Y %=1 ni v denotes the character x |— y,(x)"1 ... 7,,(x)"m of G.) It then
appears that (7.6) holds when one takes

A]: {Zn}z=1 nk’yk:]nk’ é I’j’k fOI‘ k — 1,2, ...,177},

where the r; , are positive integers satisfying r; , < r; 4 and lim;, , r;
= 0. Moreover, when m = 1, the Cohen-Davenport result (essentially
Theorem A of [8] for the case G == T) shows that (7.6) holds for every
grouping & covering I',.

The verification of (8.6) is simple. First note that, if G and G’ are
compact groups, and if ¢ is a continuous homomorphism of G into G/,
then

[ (Fo ¢)dig = | Fdhye, (8.7)

for every FeC(G'). (This is a consequence of the fact that
F |- ¢ (Fo ¢)dAg is invariant under translation by elements of ¢ (G),
combined with the uniqueness of the normalised Haar measure on a
compact group.) Taking G'=T" and ¢ :x|— (y{ (%), ..., V., (x)), the
stated conditions on the vy, are just adequate to ensure that the annihilator
in Z™ (identified in the canonical fashion with the dual of 7™) of ¢ (G) is
{0, ..., 0)} and so ([7], (24.10)) that ¢ (G) = T™. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that x is an arbitrary
nonvoid set and that (y,),.,. 18 a finite or infinite independent family of
elements of I'\®. Denote by I, the subgroup of I' generated by
{ye :kex). Taking G'=1T" and ¢ : x |- (7(X))rer» ONE may use (8.7)
in a similar fashion to show that there is an isometric isomorphism
F <« Fo ¢ = fbetween LP(T*) (or C(T™)) and the subspace of LP(G) (or
C (G)) formed of those fe LP(G) or C (G)) such that sp(f) < I'y. More-
over, if one identifies in the canonical fashion the dual of 7" with the weak

i i ekl
-]
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* . . A A ,
direct product Z* , the said isomorphism is such that F = f o ¢, where

¢’ is the i1somorphism of Z<" onto I'y defined by (7,) = D kex i Vi

One consequence of this may be expressed roughly as follows: If the
compact Abelian group G is such that I'\ @ contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series
on 7™,

Another consequence is that, if A4 is a subset of I',, then 4 is a Sidon
(or A(p)) subset of I' if and only if ¢’ ~!(4) is a Sidon (or A(p)) subset

%
of Z* .

8.5 FURTHER RESULTS. Theorem A of [8] implies something stronger
than (8.2), namely: if w is any complex-valued function on I' such that

o+ =w@l) (Gel,ped), (8.8)
so that w can be regarded as a function on I'/®, and if we write
Dy = T omnsif= 3 om0, (8.9)
then, for 4 = Q 4 A as in (8.1), we have
| D2 1] gk(_l_"gN T min | o () | (8.10)
loglog N/ .0

provided N = | Q| is sufficiently large.

So, if we can arrange for Q = Q; to vary in such a way that the right-
hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous f satisfying sp (/) = I', and

lim Re S5./(0) = co. (8.11)
J—o
Taking the most familiar case, in which G =7, I' = Z and & = {0},

and supposing 4 = Q to range over a sequence (4 ;) of finite subsets of Z
such that, if N; = | 4,/

_ log N; \*
lim (1——!%—’—> min | o (n) | = oo,
i \loglog N;

neAj

the construction will lead to a continuous f on 7 such that

lim Re S5 £ (0) = co.
J
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In particular, taking 4; = {ne Z :2/ <n <2’*'} it can be arranged
that

A
y + f (n)
nez (log 2+ |n[)*
diverges for any preassigned distribution of signs + and any preassigned
a0 < .

Of course, much stronger results are derivable by using random (and

unspecifiable!) changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii) : G O-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups W. For each such W the
annihilator 4 = W° in I" of W is a finite subgroup of I'. Define

ky = Ag(W) ™! X characteristic function of W. (9.1)

Then ky, is continuous, ky = 0, g ky dAg = 1. The transform ky, of ky
is plainly equal to unity on 4. On the other hand, since W is a subgroup,
we have for ae W and ye I’

kw ) = [6 Ky ()7 () dg () = [6 ey (x-+a) 7 (%) dlg ()
= {6 kyw )y 0 —a) dig ()

— 7 (@ ky ),

which shows that gw(y) =0 if yeI'\A. Thus ky is the characteristic
function of 4, and so

kW S DW°' (92)

By (9.1) and (9.2), a routine argument shows that, if 1 < p < oo and
feL?(G), then

. f=1im Sy.f 9.3)

W

in LP(G); and that (9.3) holds uniformly for any continuous f.

9.2 Proor oF 7.4 (i)). If I', is any countably infinite subgroup of I
we can choose a sequence W; of compact open subgroups of G such that
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