Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: NAIVELY CONSTRUCTIVE APPROACH TO BOUNDEDNESS
PRINCIPLES, WITH APPLICATIONS TO HARMONIC ANALYSIS

Autor: Edwards, R. E. / Price, J. F.

Kapitel: 8§ 7. Applications to divergence of Fourier series.

DOI: https://doi.org/10.5169/seals-43866

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43866
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 276 —

satisfying' 1 < p <2 < g £ o0, the series (6.6) converges normally in
L%(G) to T. Next, T is the limit in E of

. F
Sr - Zn=1 a)n TKn

as r — oo and, since it is plain that supp S, = Q for every r, (ii) is easily

derived. Finally, if T were a measure u, it would necessarily be the case
that supp u = Q and so, for every n € N, one would have by (6.1) and (6.4)

So (@) = | % T9,(0) | = | [ty S i |
| 1] (Q),

which is finite since Q is relatively compact. However, this plainly would
entail f* (T) < oo, in conflict with (6.8), so that 7" cannot be a measure and
(1i1) is verified. This completes the proof.

IA

6.4 REMARK. Theorem 6.3 was proved by Hérmander ([14], Theorem
1.9) for G = R" and any given pair (p, g) satisfying 1 <p <2 < g < o0,
this result being extended to a general noncompact LCA G by Gaudry [5).
The argument given by Hormander (loc. cit. Theorem 1.6 and the remark
immediately following) for the case G = R" can also be extended to a
general LCA G and shows that, if either ¢ < 2 or p = 2, then every

T e Li(G) is such that JA“ is a measure [and indeed a measure of the form
Wiy, where yelLl (I if ¢ <2 and YyeLl (I if p =2, and so
Y e L. (') in either case ]. Thus the hypotheses made in Theorem 6.3
about p and ¢ are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§ 7. Applications to divergence of Fourier series.
7.1 Throughout §§ 7-10, G will denote an infinite Hausdorff compact
Abelian group with character group I', and A; the Haar measure on G,

normalised so that 1;(G) =1. For any fe L*(G), f will denote the Fourier
transform of f; for any finite subset 4 of I,

S,f = Y faw (7.1)

yed

is the A-partial sum of the Fourier series of f; and sp (f) will stand for
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the spectrum of f; i.e., for the support supp f = {ye I : f(y) # 0} of f.
The term “trigonometric polynomial” will frequently be abbreviated to
“t.p.”. In addition, @ will denote the largest torsion subgroup of I
([7], (A.4)), and 7 the natural map of I" onto I'/d. If A denotes a subset
of I', [4] will stand for the subgroup of I" generated by A4.

By a (convergence) grouping we shall mean a sequence & = (4;);.y =
(4)) of finite subsets 4; of I" such that

4; € 4;44 (je N);

U 4;,=1T, is a subgroup of I, said to be
ji=1

covered by 9 ; L (7.2)

for each je N, 4; = Q;+A;, where 4; is a
nonvoid finite subset of @ and Q; is a finite
subset of I" such that = [ Q; is 1-1.

J

[The first two conditions are natural enough in the context described in 7.3,
but the third is less so and may well be pointless.] The grouping & is said
to be of infinite type if and only if = (I') 1s infinite.

7.2 ExampPLES. (i) Let I, be any countable subgroup of I' such that
Iy @ = {0}; for example, I'y = {ny, :ne Z}, where y, € I'\®. Then
a grouping & covering I', results whenever 4; = {0} and 4; = Q; for
every je N, where (;);.y 1s any increasing sequence of finite subsets of
I', with union equal to I'j. This grouping is of infinite type if and. only
if I' is infinite.

(i) If G is connected, and if I' is any countable subgroup of I', then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) I', is an ordered group iso-
morphic to a discrete subgroup of R. Assuming I', # {0}, I, has a
smallest positive element y, and I'y = {ny, :ne Z}. A natural grouping
9 covering I'y is that in which 4; = {0} and

4; = Q; = {ny, :neZ,ln‘ <j}
for every j e N; this grouping is of infinite type.

7.3 A grouping & = (4,);.y Will be thought of as specifying one of
- the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (f) = I'y, namely, as

convergence of the corresponding sequence of partial sums (SAj S )jen-
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Indeed, the conditions (7.2) guarantee that lim S, f = f for all sufficiently
jow

regular such functions f. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (f) € I, lim Re SAjf(O) = 0. (7.3)
Joroo
It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.
In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E = C (G) of continuous complex

valued functions on G [with norm || - || equal to the maximum modulus]
and to sequences of gauges of the type
f1- Re S, f(0) = Re [g Dy fdl, (7.4)
where D, stands for the “Dirichlet function”
Dy= 3.7 (7.5)
yed

shows that the problem hinges on the existence of groupings £ for which

p}: ”DAJ”1 :_[GIDAJ|d/1G"’OO- (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional
if and only if I" coincides with @, it emerges that the dichotomy referred to
may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., @ # I'). Then (see Example 7.2 (1))
there exist groupings & = (4)) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions
f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if I’y is any
countably infinite subgroup of I' satisfying I'c n @ = {0}, and if (4));y
is any increasing sequence of finite subsets of I', with union I',, we can
construct a continuous f on G satisfying (7.3).

(i) G is O-dimensionat (i.e., @ = I'). Then there exists no grouping
of infinite type. However, given any countable subgroup I', of I, there
are groupings & = (4;) covering I'y, in which Q; = {0} and 4; = 4; is
a finite subgroup of I',, and for which

J— o
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uniformly on G for every continuous f satisfying sp (f) & I'o.
Case (i) will be dealt with in § 8, case (ii)in§ 9. The groupings described
in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 REMARK. Perhaps it should be stressed here that, if I'y is any
infinite subgroup of I', there is no obstacle to constructing continuous
functions f such that sp (f) = I'y and finite subsets 4; = 4;,; of I'g

for which
lim SAjf(()) = 0.
J

[One has in fact only to construct a continuous f such that sp (f) = I'y

and ) | RG] ! = 00 it is then trivial that there exist finite subsets 4 of I',
vell

for which | S, £(0) | is arbitrarily large, so that we can choose a sequence
(4;) for which 4; = 4;.; and ] SAjf(O)l — oo with j.] However, the

sets 4; obtained this way will not [and, in view of 7.4 (ii), cannot] in general

be such that U 4; = I'y. For more details, see A.5.1 and A.5.2 of the
j=1
Appendix.

7.6 Suppose one is given a grouping & = (4,);.y covering I'y and
satisfying (7.6). As is described in § 10, one may construct polynomials
p..» in two indeterminates over the real field (v being a suitable fixed
integer not less than 36 and p; any positive number not less than || D, ||.,)

J

such that, for suitable unimodular complex numbers &;, the t.p.s

1A _
Q.i = éf <1_{—v> qu,v (DAjs DAj)
satisfy
| 01| £ 1, sp(0) =4 = I, 1 -
SAJ. 0;(0) = | DAj Q;dig isteal and = % p;. } :

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
(Jwnen of positive integers so that

Sa, Q;,(0) is real and > n, 1

' (7.8)

N

jn <jn+la Sp (an) = FO-

Accordingly, the t.p.s



satisfy the conditions

sp (u,) < o, Y. || ua || < o0
n=1 (7.9)

S, u,(0) is real and > n.
J

n

At this point the construction in § 2 will yield integers 0 < n, < n, < ...
and specifiable sequences (y,) ,.y of positive numbers such that each function
of the form

o0
f=2 v,u,
p=1 P
is continuous and satisfies

sp(f) e I'y, limRe SAj f(0) = oo. (7.10)

N
p—= p

A fortiori, f satisfies (7.3).
We add here that, if the 4; are symmetric, the D, are real-valued,
J

and we may work throughout with real-valued functions, replacing
Re S, f by S, f everywhere.
J J

§ 8. Discussion of case (i) : G not O-dimensional

8.1 In this case @ # I', and we begin by considering a finite subset
of I' of the form

A=0Q1+ A (8.1)

where Q and A are finite subsets of I" such that = | Qisl-land g # A < &.
We aim to show that (for a suitable absolute constant £ > 0)

AR k(m) , 6.2

provided N = l Q , (the cardinal number of Q) is sufficiently large.

8.2 ProOOF OF (8.2). Introduce H as the annihilator in G of @ and
identify in the usual way the dual of A with I'/®. Likewise identify the
dual of K = G/H with @ ([7], (24.11)).
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