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satisfying' 1 < p <2 < g £ o0, the series (6.6) converges normally in
L%(G) to T. Next, T is the limit in E of

. F
Sr - Zn=1 a)n TKn

as r — oo and, since it is plain that supp S, = Q for every r, (ii) is easily

derived. Finally, if T were a measure u, it would necessarily be the case
that supp u = Q and so, for every n € N, one would have by (6.1) and (6.4)

So (@) = | % T9,(0) | = | [ty S i |
| 1] (Q),

which is finite since Q is relatively compact. However, this plainly would
entail f* (T) < oo, in conflict with (6.8), so that 7" cannot be a measure and
(1i1) is verified. This completes the proof.

IA

6.4 REMARK. Theorem 6.3 was proved by Hérmander ([14], Theorem
1.9) for G = R" and any given pair (p, g) satisfying 1 <p <2 < g < o0,
this result being extended to a general noncompact LCA G by Gaudry [5).
The argument given by Hormander (loc. cit. Theorem 1.6 and the remark
immediately following) for the case G = R" can also be extended to a
general LCA G and shows that, if either ¢ < 2 or p = 2, then every

T e Li(G) is such that JA“ is a measure [and indeed a measure of the form
Wiy, where yelLl (I if ¢ <2 and YyeLl (I if p =2, and so
Y e L. (') in either case ]. Thus the hypotheses made in Theorem 6.3
about p and ¢ are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§ 7. Applications to divergence of Fourier series.
7.1 Throughout §§ 7-10, G will denote an infinite Hausdorff compact
Abelian group with character group I', and A; the Haar measure on G,

normalised so that 1;(G) =1. For any fe L*(G), f will denote the Fourier
transform of f; for any finite subset 4 of I,

S,f = Y faw (7.1)

yed

is the A-partial sum of the Fourier series of f; and sp (f) will stand for
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the spectrum of f; i.e., for the support supp f = {ye I : f(y) # 0} of f.
The term “trigonometric polynomial” will frequently be abbreviated to
“t.p.”. In addition, @ will denote the largest torsion subgroup of I
([7], (A.4)), and 7 the natural map of I" onto I'/d. If A denotes a subset
of I', [4] will stand for the subgroup of I" generated by A4.

By a (convergence) grouping we shall mean a sequence & = (4;);.y =
(4)) of finite subsets 4; of I" such that

4; € 4;44 (je N);

U 4;,=1T, is a subgroup of I, said to be
ji=1

covered by 9 ; L (7.2)

for each je N, 4; = Q;+A;, where 4; is a
nonvoid finite subset of @ and Q; is a finite
subset of I" such that = [ Q; is 1-1.

J

[The first two conditions are natural enough in the context described in 7.3,
but the third is less so and may well be pointless.] The grouping & is said
to be of infinite type if and only if = (I') 1s infinite.

7.2 ExampPLES. (i) Let I, be any countable subgroup of I' such that
Iy @ = {0}; for example, I'y = {ny, :ne Z}, where y, € I'\®. Then
a grouping & covering I', results whenever 4; = {0} and 4; = Q; for
every je N, where (;);.y 1s any increasing sequence of finite subsets of
I', with union equal to I'j. This grouping is of infinite type if and. only
if I' is infinite.

(i) If G is connected, and if I' is any countable subgroup of I', then
([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) I', is an ordered group iso-
morphic to a discrete subgroup of R. Assuming I', # {0}, I, has a
smallest positive element y, and I'y = {ny, :ne Z}. A natural grouping
9 covering I'y is that in which 4; = {0} and

4; = Q; = {ny, :neZ,ln‘ <j}
for every j e N; this grouping is of infinite type.

7.3 A grouping & = (4,);.y Will be thought of as specifying one of
- the many possible ways in which one may interpret the convergence of
Fourier series of functions f on G satisfying sp (f) = I'y, namely, as

convergence of the corresponding sequence of partial sums (SAj S )jen-




— 278 —

Indeed, the conditions (7.2) guarantee that lim S, f = f for all sufficiently
jow

regular such functions f. However, our concern rests with the possibility
of constructing continuous functions f on G satisfying

sp (f) € I, lim Re SAjf(O) = 0. (7.3)
Joroo
It will appear that the possibilities exhibit a fairly clear dichotomy,
depending largely upon whether G is or is not O-dimensional.
In the first place, it will emerge in 7.6 that the construction principle
of § 2, applied to the Banach space E = C (G) of continuous complex

valued functions on G [with norm || - || equal to the maximum modulus]
and to sequences of gauges of the type
f1- Re S, f(0) = Re [g Dy fdl, (7.4)
where D, stands for the “Dirichlet function”
Dy= 3.7 (7.5)
yed

shows that the problem hinges on the existence of groupings £ for which

p}: ”DAJ”1 :_[GIDAJ|d/1G"’OO- (7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is O-dimensional
if and only if I" coincides with @, it emerges that the dichotomy referred to
may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not O-dimensional (i.e., @ # I'). Then (see Example 7.2 (1))
there exist groupings & = (4)) of infinite type; and, for any such grouping,
one can construct (fairly explicitly, as described in 7.6) continuous functions
f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if I’y is any
countably infinite subgroup of I' satisfying I'c n @ = {0}, and if (4));y
is any increasing sequence of finite subsets of I', with union I',, we can
construct a continuous f on G satisfying (7.3).

(i) G is O-dimensionat (i.e., @ = I'). Then there exists no grouping
of infinite type. However, given any countable subgroup I', of I, there
are groupings & = (4;) covering I'y, in which Q; = {0} and 4; = 4; is
a finite subgroup of I',, and for which

J— o
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uniformly on G for every continuous f satisfying sp (f) & I'o.
Case (i) will be dealt with in § 8, case (ii)in§ 9. The groupings described
in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 REMARK. Perhaps it should be stressed here that, if I'y is any
infinite subgroup of I', there is no obstacle to constructing continuous
functions f such that sp (f) = I'y and finite subsets 4; = 4;,; of I'g

for which
lim SAjf(()) = 0.
J

[One has in fact only to construct a continuous f such that sp (f) = I'y

and ) | RG] ! = 00 it is then trivial that there exist finite subsets 4 of I',
vell

for which | S, £(0) | is arbitrarily large, so that we can choose a sequence
(4;) for which 4; = 4;.; and ] SAjf(O)l — oo with j.] However, the

sets 4; obtained this way will not [and, in view of 7.4 (ii), cannot] in general

be such that U 4; = I'y. For more details, see A.5.1 and A.5.2 of the
j=1
Appendix.

7.6 Suppose one is given a grouping & = (4,);.y covering I'y and
satisfying (7.6). As is described in § 10, one may construct polynomials
p..» in two indeterminates over the real field (v being a suitable fixed
integer not less than 36 and p; any positive number not less than || D, ||.,)

J

such that, for suitable unimodular complex numbers &;, the t.p.s

1A _
Q.i = éf <1_{—v> qu,v (DAjs DAj)
satisfy
| 01| £ 1, sp(0) =4 = I, 1 -
SAJ. 0;(0) = | DAj Q;dig isteal and = % p;. } :

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence
(Jwnen of positive integers so that

Sa, Q;,(0) is real and > n, 1

' (7.8)

N

jn <jn+la Sp (an) = FO-

Accordingly, the t.p.s



satisfy the conditions

sp (u,) < o, Y. || ua || < o0
n=1 (7.9)

S, u,(0) is real and > n.
J

n

At this point the construction in § 2 will yield integers 0 < n, < n, < ...
and specifiable sequences (y,) ,.y of positive numbers such that each function
of the form

o0
f=2 v,u,
p=1 P
is continuous and satisfies

sp(f) e I'y, limRe SAj f(0) = oo. (7.10)

N
p—= p

A fortiori, f satisfies (7.3).
We add here that, if the 4; are symmetric, the D, are real-valued,
J

and we may work throughout with real-valued functions, replacing
Re S, f by S, f everywhere.
J J

§ 8. Discussion of case (i) : G not O-dimensional

8.1 In this case @ # I', and we begin by considering a finite subset
of I' of the form

A=0Q1+ A (8.1)

where Q and A are finite subsets of I" such that = | Qisl-land g # A < &.
We aim to show that (for a suitable absolute constant £ > 0)

AR k(m) , 6.2

provided N = l Q , (the cardinal number of Q) is sufficiently large.

8.2 ProOOF OF (8.2). Introduce H as the annihilator in G of @ and
identify in the usual way the dual of A with I'/®. Likewise identify the
dual of K = G/H with @ ([7], (24.11)).
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We then have
| Dalli = Jol 3 71 de
ye

= [on Po@® [r] ¥ Y 0G+y) o x+y) | din(y),

e ¢peAd

the inner integral being viewed as a function of X = x4-H  Thus, writing
' 0 for = (§) and noting that ¢ (y) = 1 for p € 4 = @ and y € H, we obtain

| Dl = Jo/u 9Aen® [ | ez{:) o (0, )0 () | din(»), (8.3)

where

a (0, x) =0(x) Y ¢ (x).

¢eA

Now, since the dual of H (namely I'/®) is torsion-free ([7], (A.4)),
Theorem A of [8] shows that (for a suitable absolute constant k > 0) we
have

_ log N \* .
Jul T «(0,200)|d10) 2 k(@%%v) min | (6, ) |
B log N \* _
= k(m) | ¢§1 ¢ (%) ], (8.4)

since | 6 (x) | = 1 and ¢ (x) depends only X. By (8.3) and (8.4),

log N % N N
H D, H1 o k(w) }j’G/Hl ¢§1 ¢ (%) | dflc/n(x)- | (85)

Since A4 # @, the remaining integral is not less than the maximum modulus

of the Fourier transform of the function X |- ) ¢ (X), i.e., is not less
ded

than unity. Thus, (8.2) follows from (8.5).

8.3 Proor or 7.4 (i). The conclusions stated in case (i) of 7.4 are
now almost immediate. If & = (4,);,y is a grouping of infinite type
covering I'y, | m (4;) | > co and so, since 4; = @, | n(Q;)| > 0. Then
(8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 SUPPLEMENTARY REMARKS. The fact that, when G is not 0-dimen-
sional, (7.6) holds for suitable subgroups I’y of I' and suitable groupings
9 = (4;);y covering I'y can be derived without appeal to Theorem A
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of [8]. To do this, it suffices to take y, e I'\ @ (k = 1, 2, ..., m) such that
the family (y,); <x<n is independent (see [7], (A.10)), define

Fo == {Z’Z=1 nkyk InkEZ fOI' k = 1, 2, ceey m},
and make use of the formula

jG F@i ), oo P (X)dys(x)
= 2n) ™ (o*... ¢ F (e, ..., *m)dt, ... dt,, (8.6)

valid for every Fe C (T™), where T denotes the circle group. (Recall that
Y %=1 ni v denotes the character x |— y,(x)"1 ... 7,,(x)"m of G.) It then
appears that (7.6) holds when one takes

A]: {Zn}z=1 nk’yk:]nk’ é I’j’k fOI‘ k — 1,2, ...,177},

where the r; , are positive integers satisfying r; , < r; 4 and lim;, , r;
= 0. Moreover, when m = 1, the Cohen-Davenport result (essentially
Theorem A of [8] for the case G == T) shows that (7.6) holds for every
grouping & covering I',.

The verification of (8.6) is simple. First note that, if G and G’ are
compact groups, and if ¢ is a continuous homomorphism of G into G/,
then

[ (Fo ¢)dig = | Fdhye, (8.7)

for every FeC(G'). (This is a consequence of the fact that
F |- ¢ (Fo ¢)dAg is invariant under translation by elements of ¢ (G),
combined with the uniqueness of the normalised Haar measure on a
compact group.) Taking G'=T" and ¢ :x|— (y{ (%), ..., V., (x)), the
stated conditions on the vy, are just adequate to ensure that the annihilator
in Z™ (identified in the canonical fashion with the dual of 7™) of ¢ (G) is
{0, ..., 0)} and so ([7], (24.10)) that ¢ (G) = T™. Accordingly, (8.6) appears
as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited
in other ways. For example, suppose more generally that x is an arbitrary
nonvoid set and that (y,),.,. 18 a finite or infinite independent family of
elements of I'\®. Denote by I, the subgroup of I' generated by
{ye :kex). Taking G'=1T" and ¢ : x |- (7(X))rer» ONE may use (8.7)
in a similar fashion to show that there is an isometric isomorphism
F <« Fo ¢ = fbetween LP(T*) (or C(T™)) and the subspace of LP(G) (or
C (G)) formed of those fe LP(G) or C (G)) such that sp(f) < I'y. More-
over, if one identifies in the canonical fashion the dual of 7" with the weak

i i ekl
-]
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* . . A A ,
direct product Z* , the said isomorphism is such that F = f o ¢, where

¢’ is the i1somorphism of Z<" onto I'y defined by (7,) = D kex i Vi

One consequence of this may be expressed roughly as follows: If the
compact Abelian group G is such that I'\ @ contains an independent family
of (finite or infinite) cardinality m, then Fourier series on G behave, in
respect of convergence or summability, no better than do Fourier series
on 7™,

Another consequence is that, if A4 is a subset of I',, then 4 is a Sidon
(or A(p)) subset of I' if and only if ¢’ ~!(4) is a Sidon (or A(p)) subset

%
of Z* .

8.5 FURTHER RESULTS. Theorem A of [8] implies something stronger
than (8.2), namely: if w is any complex-valued function on I' such that

o+ =w@l) (Gel,ped), (8.8)
so that w can be regarded as a function on I'/®, and if we write
Dy = T omnsif= 3 om0, (8.9)
then, for 4 = Q 4 A as in (8.1), we have
| D2 1] gk(_l_"gN T min | o () | (8.10)
loglog N/ .0

provided N = | Q| is sufficiently large.

So, if we can arrange for Q = Q; to vary in such a way that the right-
hand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to
a continuous f satisfying sp (/) = I', and

lim Re S5./(0) = co. (8.11)
J—o
Taking the most familiar case, in which G =7, I' = Z and & = {0},

and supposing 4 = Q to range over a sequence (4 ;) of finite subsets of Z
such that, if N; = | 4,/

_ log N; \*
lim (1——!%—’—> min | o (n) | = oo,
i \loglog N;

neAj

the construction will lead to a continuous f on 7 such that

lim Re S5 £ (0) = co.
J
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In particular, taking 4; = {ne Z :2/ <n <2’*'} it can be arranged
that

A
y + f (n)
nez (log 2+ |n[)*
diverges for any preassigned distribution of signs + and any preassigned
a0 < .

Of course, much stronger results are derivable by using random (and

unspecifiable!) changes of sign, but there seems little hope of making this
even remotely constructive.

§ 9. Discussion of case (ii) : G O-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero
in G formed of compact open subgroups W. For each such W the
annihilator 4 = W° in I" of W is a finite subgroup of I'. Define

ky = Ag(W) ™! X characteristic function of W. (9.1)

Then ky, is continuous, ky = 0, g ky dAg = 1. The transform ky, of ky
is plainly equal to unity on 4. On the other hand, since W is a subgroup,
we have for ae W and ye I’

kw ) = [6 Ky ()7 () dg () = [6 ey (x-+a) 7 (%) dlg ()
= {6 kyw )y 0 —a) dig ()

— 7 (@ ky ),

which shows that gw(y) =0 if yeI'\A. Thus ky is the characteristic
function of 4, and so

kW S DW°' (92)

By (9.1) and (9.2), a routine argument shows that, if 1 < p < oo and
feL?(G), then

. f=1im Sy.f 9.3)

W

in LP(G); and that (9.3) holds uniformly for any continuous f.

9.2 Proor oF 7.4 (i)). If I', is any countably infinite subgroup of I
we can choose a sequence W; of compact open subgroups of G such that
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W,i1 € W;and I'y < ~U1 W, where W is a finite subgroup of I' and
j=

W< W;yy. The 4; =W, n T, satisfy (7.2) and, from (9.3),
f=1lms, f 9.4)

J
uniformly for any continuous f with sp(f) < I',. This verifies the
statements made in 7.4 (i1).

9.3 By using the results in [3], more can be said in case (i1) of 7.4;
cf. [3], Theorem (2.9) and Example (4.8).

Let fe LY(G) and let I', be any countable subgroup of I' containing
sp (f). Choose the W; as in 9.2. Then, apart from the fact that (W}) is
not in general a base at 0 in G (they can be chosen to be so if and only if
G 1s first countable), (W;) is an open-compact D”’-sequence ([3], p. 188).
The proof of Theorem (2.5) of [3] is easily modified to show that

f@) = lim Sy f () ©.5)

Jj— oo

holds for almost all xe G. Moreover, Theorem (2.7) of [3] applies to
show that the majorant function

S*f () = sup | Swsf ()| (9.6)
satisfies the estimates
1
S fll, =2 (@=-D"Y"||7]l, (1<p<owo) L (9.7)
S*flly £ 2+ 2§6|f]log* | f] de (9.8)
S*fll, £20-p)" || f]|, ©O<p<1). (9.9)

In particular, the convergence in (9.5) is dominated whenever

| f]log™ | f] e L* (G).

A more immediate consequence of (9.1) and (9.2) is a strong version
of localisability of the convergence of Fourier series: if f'e L*(G) vanishes
a.e. on some neighbourhood of x, e G, we can choose the W; so that
S4;f (%) = 0O for every sufficiently large j. [A suitable choice of W; may
be made once for all, independent of £, if G is first countable.] Nothing
similar is true for general G; see, for example, [11], Vol. IT, pp. 304-305.
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§ 10. Concerning the polynomials Q;.

There is no difficulty in making fairly explicit the construction of
t.p.s Q; of the type employed in 7.6.
For p > 0, t = 0O define

1 if ¢t < p,
!
hp(t)=<'2(1——§~> ifp £t £ 2p, (10.1)
P
0 if t = 2p
For all complex z define
jO if z =0,
o (@ = L _ (10.2)
“zl zhp([zl) if z # 0.
Write
E,(z) =n"'nexp(—n [ z Iz,
s 1)1 (10.3)

Pan@=n"tn L sz Y

Let p denote Lebesgue measure on C (identified with R? in the canonical
fashion).
It is then routine to verify that

1B follo < /]l =1,
lim E, * f, = f,

n— o0

(10.4)

uniformly on any compact set omitting 0. From this it follows that to
every p > 0 and every positive integer v correspond positive integers
i (p,v), k (p,v) such that

IA
=

1 1
IZI Z— *P;;(Z) —fOI’—_S_lZI
: v v
, (10.5)
|fo*Prz@| =14 - forl2|<p

Now

o *Prz(2) = q,,, (2, 2), (10.6)
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where

ke (—a(p, v)Y

dp,v (X, Y)=mn" n(p, V) Z 7 Z Z (lj) ('{1) xty™

=0 m=0

(=D == £, (0 du (O

k(p,v)
=y C,,(,mX" Y™
I,m=0

It is easily verifiable that the C, , (/, m) are real-valued.
If 0 is a bounded measurable function on G and

Qpy = 4py 6,0), 0 2| 0|
we have from (10.5)

'dl’—"

1
< - whenever | 6| =
v

\wrlé—g;,v

o 1
| 0,.,| £ 1+ - everywhere on G.
v

If 0 is a t.p., then Q,, is a t.p. and

sp (Q,,) < [sp (O]
From (10.9) we obtain

v™ 1| 6| whenever |0 | >1,
)

lIHI—OQ;,v < |

(2—!— ) | 6| everywhere,

whence it follows that, if 6 # 0,

1§60 @, dAG| = (1—v™Y) || 0]ls —v Q@+ vY)
> (1-2v"H]|6]|,

provided v = 91| 6 |1 2.

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

Taking 0 = Dy, and p; 2 || Dy, ||, the trigonometric polynomials

, AR 1\ _

(10.12)
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are then see‘n from (10.9), (10.10) and (10.11) to satisfy
ol =1, 7
sp (Q)) < [4)], : (10.13)
[y Dy 05 dia| = =379 D,

provided v is chosen = 9 || Dy, |7*. In view of (7.6), we may choose
the integer v = max; (36,9 || DA [1"). Then (10.13) shows that there
are unimodular complex numbers é such that the Q; = ¢; Q; ; satisfy (7.7).

APPENDIX

Rudin-Shapiro sequences

A.1 NOTATIONS AND DEFINITIONS. As hitherto, all topological groups G
are assumed to be Hausdorff; and, for any locally compact group G, Ag
will denote a selected left Haar measure, with respect to which the Lebesgue
spaces LP(G) are to be formed. C(G) denotes the set of complex-valued
continuous functions on G having compact supports.

If X and Y are topological groups, Hom (X, Y) denotes the set of
continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if ke C(G),
T, will denote the convolution operator

fl=f*k

with domain C,(G) and range in C,(G); and || k ||,,,, will denote the (p, g)-
norm of this operator, i.e., the smallest real number m = 0 such that

lfxkll, =m|fll, (feCLG)).

It is well-known that, if G is Abelian, || k||,,, is equal to
H k ”oo - SupyeF l k (Y) |9

where I' is the character group of G and 2 is the Fourier transform of k.
(Something similar is true whenever G is compact, but we shall not use
this.)

U-RS-sequences on G are as defined in 5.4.
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