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REMARQUES SUR LA SIGNATURE D'UNE PERMUTATION

par P. Cartier (Strasbourg)

Introduction

La théorie des permutations est considérée par la plupart des débutants

comme un sujet difficile. On y rencontre en effet des raisonnements d'un

type assez différent de ceux auxquels ils ont été habitués dans leurs études

antérieures. Il semble pourtant inévitable de l'enseigner dans un cours de

première année d'Université, à cause des applications à la théorie des

déterminants et à celle des polynômes symétriques.
Cette note est consacrée à un examen des diverses méthodes par

lesquelles on peut introduire la signature d'une permutation. Nous avons
nous-même expérimenté la plupart de ces méthodes, et discuté à plusieurs
reprises de ces questions avec nos collègues J. L. Koszul et P. Gabriel. La
comparaison des avantages et inconvénients des diverses méthodes s'appuie

j donc sur une expérience pédagogique réelle. Du point de vue mathématique,

| la seule nouveauté est la définition de la signature d'une permutation
1 présentée au n° 4.

; 1. Permutations paires et impaires.

| Rappelons les faits connus. Notons n un entier strictement positif et
X l'ensemble des entiers 1,2, n. Une permutation (de rang n) est une

: bijection ^ de I sur X, c'est-à-dire une application de X dans X telle que
tout élément de X soit le transformé d'un élément et d'un seul. Si s et t
sont deux permutations, leur produit st est l'application qui à i fait
correspondre s(t(i)). La permutation identique s associe chaque élément de X à
lui-même. Enfin, si s est une permutation, la permutation inverse s~1 est
telle que l'on ait s 1(i) — j si et seulement si s(j) — z. Avec cette définition

; du produit, de l'unité et de l'inverse, les permutations forment un groupe Sn.

j Nous supposons connue la définition de la transposition stj échangeant
; i et y, et le fait que toute permutation est produit de transpositions; en fait,
| nous utiliserons plusieurs fois le fait que toute permutation est produit

y d'une suite finie de transpositions de la forme nl9 nn^1 avec nt st i+1.iiLi '
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Appelons permutation paire toute permutation qui est produit d'un nombre
pair de transpositions, et notons S* leur ensemble; définissons de manière

analogue l'ensemble S~ des permutations impaires. Ces définitions entraînent

immédiatement les propriétés suivantes:

a) On a S* u S~j autrement dit, toute permutation est paire ou

impaire.

b) Il existe des permutations paires, par exemple s, et des permutations
impaires, par exemple les transpositions.

c) « Règle des signes » : le produit de deux permutations de même

parité est pair, le produit de deux permutations de parité distincte
est impair. De plus, toute permutation a même parité que son inverse.

A priori, rien n'exclut qu'une permutation puisse être à la fois paire et

impaire. Examinons les deux possibilités:

A) Il n'existe aucune permutation à la fois paire et impaire. Alors les

ensembles non vides S * et S ~ forment une partition de Sn. On peut définir
la signature d'une permutation s comme le nombre sgn s égal à 1 si s est

paire et à — 1 si s est impaire. La règle des signes se traduit alors en formule:

(1) sgn st (sgn s) • (sgn t),

et par définition, on a

(2) sgn su - 1

B) Il existe une permutation qui est à la fois paire et impaire. Si a est

une telle permutation, la règle des signes montre que a-1 est impaire, donc

que s aa-1 est impaire. Une nouvelle application de la règle des signes

montre que pour toute permutation s paire (impaire), alors s ss est

impaire (paire). Autrement dit, toute permutation est paire et impaire, et

l'on a S„ S~ Sn.

De manière plus succincte, on peut dire ceci: le groupe Sn est engendré

par les transpositions, qui sont des éléments d'ordre 2; l'ensemble S* des

permutations paires est le sous-groupe de Sn engendré par les produits de

deux transpositions, et S~ est de la forme S*t; on a donc Sn — S+n u S*t,
et par suite, ou bien S„ est d'indice 2 dans Sn et S" est la classe modulo
S+n qui ne contient pas e, ou bien est d'indice 1 dans Sn, auquel cas on

a S„ S* Sn.



— 9 —

2. Relations entre transpositions.

Un résultat fondamental de la théorie des permutations est que le cas B)

ne peut se présenter. Nous allons d'abord esquisser une démonstration

directe, mais laborieuse. Nous avons déjà rappelé que le groupe Sn est

engendré par 7t1?...» nn-i*depi us, on établit facilement les relations

suivantes entre ces transpositions

(3a) 7i; e pour 1 g — 1

(3b) (¥i+i)3 s pour

(3C) (itiUj)2 s lorsque | - |^ 2.

Compte tenu de n2 s, on peut écrire (3fc) et (3C) sous la forme suivante

qui est plus avantageuse

(3b) 77(71;+ iTîi 7i;+17r;7ii+1 pour 1 ^ ^ 2

(3^) 7ijTtf Ttjni lorsque | j> 2

L'existence de ces relations permet la transformation des produits de

transpositions %t. Dans un produit de telles transpositions, on peut, sans

en changer la valeur, effectuer les opérations suivantes:

a) supprimer deux termes égaux qui se suivent, ou au contraire insérer

deux nouveaux termes consécutifs égaux;

b) remplacer un produit partiel du type nini+1ni par 7ii+1ni7ii+l sans

toucher aux autres termes (les trois termes modifiés doivent être

consécutifs) ;

c) déplacer un terme nt vers la gauche ou la droite, pourvu qu'il n'ait
pas à sauter par-dessus ni_l ou ni+1.

Un théorème classique, dû à Moore (1897), affirme que les relations (3J>

(3b) et (3^) suffisent à engendrer toutes les relations entre nl9 nn_1 dans

Sn (cf. Burnside, [3], note C). Cela signifie que si les produits de deux
suites de 7i£ représentent la même permutation, on passe de l'un à l'autre
par une suite de transformations des types a), b) et c).

Illustrons ceci par un exemple. Nous considérons les deux produits

B 71 ßTljTC^7127t4.71 §71 ±712^3^4

dans le groupe S8. L'évaluation de ces produits est faite dans les deux
tableaux suivants et obéit aux règles usuelles: le produit est effectué de la
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droite vers la gauche, une opération nt fait passer d'une ligne à la suivante

en échangeant les nombres i et i+1 (mais non pas les termes de rang i et

/+1).

717

7T4

7l5

*6

7Z1

*3

*3
7l1

*2

Calcul de A

12345678
12345687
12354687
12364587
12374586
12473586
12573486
12574386
12564387
21564387
21563487
31562487
31572486
41572386
42571386
43571286

Calcul de B

7T4 12345678
*3 12354678
*2 12453678
7li 13452678
715 23451678
7I4 23461578
^3 23561478
7I2 24561378
^3 34561278
71? 43561278
^6 43561287

43571286

On voit donc que A et B sont tous deux égaux à la permutation (i 3 5 7 i 2 8 ö)-

Nous indiquons maintenant par un tableau une suite de transformations
faisant passer de A à B; nous avons omis d'inscrire les n dans les produits,
en ne gardant que les indices.

Règle

A 2 1 3 6 2 3 1 774 3 6 5 4 7

2 1 3 6 2 3776 4 3 6 5 4 7

2 1 3 6 2771 6 4 3 6 5 4 7
1 1 a

2136216436547
2136216463547
2136217743547

a



21362143547
277 3 2 1 4 3 5 4 7

76132143547

62132143547
62132143774

62132143754
6 2 1 3 2 177 3 5 4

6 2 1 3 277 4 3 5 4

62137714354

6 2 I772 14354
6277 3 2 1 4 3 5 4

621 1 3 2 1 4 3 5 4

6 7 277 2 1 4 3 5 4

67231214354
6 7 2 3 2 1 2 4 3 5 4

6 7 3 2 3 i743 54

67323142354
6 7 3 2 3 4 1 277 4

6 7 3 2 3 4 l773 4

67323415234
B 67323451234

Migration de 6 vers la gauche

c !• Migration de 7 vers la gauche

Migration de 5 vers la gauche

Montrons comment le théorème de Moore entraîne le résultat cherché

sur la parité. Tout d'abord, la relation su ntsi+ l Jni (pour i^j—2) entraîne

par récurrence la formule

(4) Sij — nini+1 ••• nj~2nj-lnni+lni (pour î
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Par suite, toute transposition est produit d'un nombre impair de générateurs

711, et l'on peut définir les permutations paires (impaires) comme les

produits d'un nombre pair (impair) de générateurs Or, une transformation

de type a) appliquée à un produit de iti augmente ou diminue de deux
le nombre des facteurs, alors que ce nombre de facteurs est inchangé par
les transformations de type b) ou c). Une application des transformations
de type a), b) ou c) ne peut donc modifier la parité du nombre des facteurs ;

le théorème de Moore montre alors qu'un produit d'un nombre pair de nt
ne peut être égal à un produit d'un nombre impair de tels facteurs, donc

qu'une permutation ne peut être à la fois paire et impaire.

3. Nombre d'inversions d'une permutation.

La démonstration du théorème de Moore est un peu délicate pour
avoir sa place dans un cours élémentaire. L'intérêt de ce théorème est

ailleurs; il n'est en effet que le prototype de résultats s'appliquant à une
vaste classe de groupes, les groupes de Coxeter, dont on rencontre de

nombreuses applications géométriques. On peut consulter à ce sujet les

monographies de Coxeter et Moser [5] et de Bourbaki [2].

Les méthodes que nous allons maintenant examiner ont toutes un point
commun. Par un procédé ou un autre, on associe à toute permutation s un
nombre a(s) égal à 1 ou — 1 de telle sorte que l'on ait la relation

(5) a (st) a (5) a (/)

pour deux permutations s et t. Il suffit alors de prouver que a(s) est égal
à — 1 pour une transposition 5, ou même simplement de prouver la formule
a(7cf) — 1 pour 1 ^ i < n; on en déduit en effet que a(^) est égal à 1 pour
les permutations paires et à — 1 pour les permutations impaires. On a ainsi

distingué entre les deux espèces de permutations et indiqué un procédé de

construction de la signature.
Un premier groupe de méthodes tourne autour de l'idée d'inversion

d'une permutation. Rappelons quelques définitions: si xl9 xn est une

suite de n nombres réels distincts, une inversion de la suite est un couple
extrait de la suite en question qui se trouve dérangé de l'ordre usuel;

autrement dit, c'est un couple xpcj avec i < / et xt > Xj. Ainsi, dans la

suite 6 3 1 2 4 5, les inversions sont les couples

63,61,62,64,65,31,32.
Si s est une permutation, on note N(s) le nombre d'inversions de la suite

s(l), s(n); dans ce n°, on pose a(s) (—l)N(s).
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A) La méthode la plus classique consiste à comparer N(s) et N(t) pour
t 87iLa suite /(l), t(ri) ne diffère de la suite s(l), s(n) que par
l'échange des termes de rang i et z+1. Les couples que l'on peut extraire

de la suite £(1), t(n) sont donc les mêmes que ceux que l'on peut extraire

de la suite j(l), s(ri)9 à l'exception de s(i),s(i+1) est remplacé par

s(i+l\s(i). En passant de s à t, le nombre d'inversions est augmenté ou

diminué d'une unité selon que l'on a s(i) < .y(H-l) ou s(i) > ^(z+l). En

tout cas, on a aO^) — -a(». Comme le nombre d'inversions de la permutation

identique s est nul, on en déduit par récurrence sur k la formule
a(V) (— l)fc si s est produit de k générateurs Par suite, oc(s) vaut 1

pour les permutations paires et — 1 pour les permutations impaires (1).

B) On peut aussi considérer des fonctions de n variables/(x1? ...,xn);
la nature de ces variables est indifférente, il peut s'agir de nombres entiers,
réels ou complexes, et l'on peut aussi considérer des polynômes formels à

n indéterminées. Une permutation s de rang n transforme /en une nouvelle
fonction sf par la règle

(6) (sf)(xu ...,xn)=/(x1(l)î.„)xsW).

La suite du raisonnement repose sur la formule

(7) (st)f= s(tf)
où s et t sont deux permutations de rang n et /une fonction de n variables.

On introduit ensuite une fonction particulière D définie par

(8) D(:=II (xk-x,)
k<l 1

Pour passer de D à 7i{D, il faut échanger xt et xi+l donc, remplacer

xi~xi+i Par Xt+1 ~xi, échanger les facteurs de la forme xk-xt et xk-xi+1
pour l^k<i, et échanger les facteurs de la forme xt — Xi et xi+1—xt pour
ï+ 1 < /; au total, on a ntD — D. Si s est le produit de k générateurs nu la
formule (7) montre alors que l'on a sD (-1 )kD; autrement dit, on a
sD D si s est paire et sD - D si s est impaire. Comme la fonction
D n'est pas identiquement nulle, une même permutation ne peut être à

la fois paire et impaire.
Le raisonnement précédent a été présenté sans faire jouer de rôle

explicite aux inversions. En fait, par un argument du même type, mais un

b Une variante consiste à comparer N (s) et N {sstj) pour une transposition sît
quelconque. Le principe est analogue, mais l'énumération des inversions de sst est un peu
plus compliquée.
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peu plus délicat, on montre que dans le passage de D à sD, il y a permutation

des facteurs et N(s) changements de signe, d'où sD (—l)N(s)D.

C) Dans la méthode précédente, tant les variables xu xn que les

fonctions / jouent un rôle assez fictif. On peut en présenter une variante
plus « économique » de la manière suivante. A chaque permutation s de

rang n, on associe l'entier II(s) II (s(j)-s(i)). On remarque ensuite que,
i<j

la permutation s étant fixée, toute partie à deux éléments de l'ensemble
X =m {1,2se représente de manière unique sous la forme [s(i),s(j)}
avec i < /; de plus, \k — l\ ne dépend évidemment que de la partie {,kj}.
Par suite \U(s)\ II [^(f)—^0)| est égal à il \k — l\ il (/—k) D. De

i<j {k,l} k<l
plus, dans le produit définissant II(s), les facteurs négatifs correspondent
exactement aux inversions de la suite ^(1), s(ri). On en conclut

(9) U(s) a(s) - D

On considère ensuite deux permutations s et t. Dans le produit

n (Sp
_ s(t(j)) - s (t (0)

Il(') i<j'(./')- MO

chaque facteur est invariant par l'échange de i et j, et ne dépend donc que

de la partie {t(i),t(j)}. On a donc

IL (si) _ s(l)-s(k) s(l) - s(k) IL (s)
H 11 a (s),

n(0 m l-k k<l l-k D

c'est-à-dire

(10) n (st) a (5) n (t).

De (9) et (10), on déduit a(st).D — II(st) oc(s).II(t) a(s)oc(t).Dy d'où
a(st) tst oc(s)a(t) puisque D est non nul. On prouve ensuite que le nombre
d'inversions de 7zt est égal à 1, d'où a(7rf) —1. Comme on l'a déjà

remarqué, cela suffit à montrer qu'une permutation ne peut être à la fois

paire et impaire.

4. Permutations et graphes.

Comme J. L. Koszul me l'a fait plusieurs fois remarquer, l'inconvénient
de la définition de la signature au moyen du nombre d'inversions est de

dépendre étroitement de la relation d'ordre entre entiers; de même, les

transpositions nt de deux entiers consécutifs jouent un rôle privilégié dans les
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démonstrations précédentes. Or, on a souvent besoin d'utiliser les permutations

d'un ensemble fini X non numéroté à l'avance. Pour pouvoir définir
le nombre d'inversions d'une permutation s de X', il faut choisir une énumé-

ration de X, ou ce qui revient au même une relation d'ordre total sur X.

Le nombre d'inversions N(s) dépend de ce choix, mais comme on le constate

a posteriori, la parité de N(s) a un caractère intrinsèque.
Pour répondre à cette objection, on peut présenter l'élaboration

suivante de la méthode des inversions; l'idée en est qu'il suffit d'orienter
les parties à deux éléments pour définir les inversions. Nous adoptons un
mode d'exposition fondé sur la notion de graphe. Soit donc X un ensemble

fini à n éléments, que nous représentons par des points d'un plan appelés

sommets. Deux sommets distincts sont joints par un arc, comme dans les

deux figures suivantes, qui correspondent aux cas n 4 et n 5.

La figure ainsi obtenue s'appelle d'ordinaire le graphe complet à n sommets.
Orienter un tel graphe consiste à choisir sur chaque arc un sens de parcours,
représenté par une flèche dans l'exemple suivant:

Les arcs du graphe correspondent aux parties
à deux éléments de X et orienter le graphe
consiste à choisir dans chaque partie à deux
éléments un premier et un deuxième élément.
Il revient au même de dire qu'une orientation est

un ensemble o de couples ordonnés (z, j) formés
d'éléments distincts de X, tel que l'on ait, soit (zj) e o, soit (y, z) g o pour deux
éléments distincts i etj de X. Une permutation s de Xtransforme l'orientation
o en une nouvelle orientation so qui se compose des couples (s(i)9s(J)) avec
(zj) dans o. De manière intuitive, s définit un réarrangement des sommets du
graphe qui entraîne un réarrangement des arcs, et l'on transporte avec
chaque arc son orientation.

Soient o et o' deux orientations; soit m le nombre des arcs qui ont des
orientations distinctes par rapport à o et o', c'est-à-dire le nombre des
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couples qui appartiennent ko', mais non à o; on pose d(o, o') (— l)m. Le
formulaire suivant s'établit par des raisonnements élémentaires (2)

On peut alors prouver que d (o, so) est indépendant de l'orientation o

choisie; en effet, si o et o' sont deux orientations, on a

A toute permutation s de X, on fait correspondre alors le nombre a(s)

qui est égal à d (o, so) pour toute orientation o. Si s et t sont deux permutations,

on a

oc (si) d(o,sto) d (o, to) d (to, s (to)) oc (t) oc (s).

Pour calculer oc(sab), nous choisissons une orientation o convenable; on
oriente l'arc ab de a vers b, chaque arc ax de a vers x, chaque arc bx de b

vers x et les autres arcs de manière arbitraire. Le seul effet de la transposition
sab est de changer l'orientation de l'arc ab, d'où oc(sab) — 1.

On peut donc définir la signature de s comme le nombre a (s). Supposons

en particulier que X soit l'ensemble des entiers 1, 2, n et prenons pour o

l'ensemble des couples (7, j) avec i < j; alors so se compose des couples de

la forme (s(i), s(j)) avec i < j; les éléments de so qui n'appartiennent pas à o

sont donc les couples (s(i), s(j)) avec i < j et s(i) > s(j) et leur nombre est

égal à N(s). On retrouve donc la définition de la signature comme égale à

5. Autres méthodes.

On peut aussi utiliser les cycles d'une permutation pour définir sa

signature ([6], chap. 8). Soit c(s) le nombre de cycles de la permutations de

rang n ; les définitions usuelles de la signature permettent de prouver qu'elle

(H)

(12)

(13)

(14)

d (o, o') d (o', o)

d (o, o') d (o', o") d (o, o")

d (so, so') d (o, o').

d (o, o) 1

d (o', so') d (o', o) d (o, so) d (so, so')

d (o, o') d (o, so) d (o, o')

d (o, so)

d'après (13)

d'après (12) et (14)

car d(o, o')2 1.

2) On pourra consulter la note [4] pour des considérations plus générales.
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est égale à z(s) (-l)" + c(s). Si l'on veut définir la signature de ^ par

le nombre z(s), il faut établir a priori la relation

En effet, cette relation entraîne z(ssah) -z(s)\ mais on a c(s) #?, d'où

2(e) 1 et il est alors immédiat que z(s) est égal à 1 ou à — 1 selon que s

est paire ou impaire.
Pour établir la formule (15), il faut distinguer deux cas. Si a et b

appartiennent à deux cycles distincts de s, ces deux cycles se regroupent

en un seul cycle de ssab. Si au contraire, a et b appartiennent au même

cycle de s, ce cycle se scinde en deux cycles de ssab. En tout état de cause,

les cycles de s qui ne contiennent ni a ni b sont des cycles pour ssah. Les

deux figures suivantes nous dispenseront de faire un raisonnement plus

explicite (3).

Une dernière manière de procéder consiste à éviter le problème. Dans

un cours élémentaire, la principale utilité de la signature d'une permutation
est de permettre la définition du déterminant d'une matrice. Or, on peut
définir directement les déterminants par récurrence sur leur ordre, en

procédant par exemple par développement selon les éléments de la première
colonne. Il n'est pas trop difficile de développer toute la théorie des déterminants

à partir de cette définition, sans utiliser une seule fois les permutations.
Une fois ceci fait, on définit la signature d'une permutation comme le

déterminant de la matrice de permutation correspondante. La règle de

; 3) On peut aussi montrer que la signature d'une permutation s est égale à (— ÎK'OI
1 où é (s) est le nombre des cycles de longueur paire de 5. Si l'on prend ceci comme défini-

; tion de la signature, il faut montrer que c'(ssab) a une parité différente de celle de c'(s).
|Les raisonnements sont analogues, mais il faut y ajouter quelques considérations de parité
i qui les rendent moins immédiatement évidents.

I L'Enseignement mathém,. t. XVI, fasc. 1. 2
fi

(15) c(SSab) C(s) ± 1.
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multiplication pour les déterminants redonne alors la règle de multiplication
des signatures pour les permutations. Cette méthode nous a été signalée par
P. Gabriel, qui l'a utilisée plusieurs fois dans ses cours.

6. Considérations pédagogiques.

Les méthodes fondées sur le nombre d'inversions (ou la variante
proposée au n° 4) reposent sur la distinction entre un ensemble à deux éléments
et un couple; cette distinction est capitale, mais assez délicate à saisir pour
des débutants. Ces méthodes utilisent aussi la notion de réarrangement des

termes d'un produit sous une forme assez subtile. Elles comportent enfin un
aspect combinatoire important dans l'énumération des inversions. On
connaît bien les difficultés d'exposition des théories combinatoires ; si l'on
peut se faire une idée assez nette des mécanismes en jeu sur un exemple
bien explicité, il est difficile de formuler des raisonnements généraux et

en particulier de s'assurer du caractère exhaustif de l'énumération des cas.

Il y faut une imagination assez particulière qui ne se développe qu'à l'usage.
Ces raisons expliquent la peine qu'éprouvent les débutants à suivre de tels

raisonnements.
On peut aussi juger les méthodes précédentes sur leur économie de

moyens. De ce point de vue, la méthode C) du n° 3 introduit le minimum
de notions étrangères, mais sa sobriété la rend assez difficile à suivre.

Bourbaki l'expose de manière concise dans [1], page 99; il emploie la

notation trop suggestive n(V„) pour II(7c), ce qui a induit en erreur certains
de ceux qui l'ont recopié [7, page 153]. Parmi les notions étrangères que
nous avons introduites, celle de permutation des variables dans une fonction
se retrouvera inévitablement dans l'étude des polynômes symétriques; celle

de graphe me semble devoir être présentée le plus tôt possible aux étudiants,
mais l'expérience m'a montré que la démonstration du n° 4 nécessitait beaucoup

d'explications pour être comprise. Enfin, la notion de cycle d'une

permutation me semble avoir sa place, même dans un cours introductif.
Toutes ces raisons nous font préférer la méthode de permutation des

variables (cf. n° 3, B)) et celle des cycles à toutes les autres.
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