Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 16 (1970)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: REMARQUES SUR LA SIGNATURE D'UNE PERMUTATION
Autor: Cartier, P.

DOl: https://doi.org/10.5169/seals-43848

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43848
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

R e S IS

REMARQUES SUR LA SIGNATURE D’UNE PERMUTATION

par P. CARTIER (Strasbourg)

INTRODUCTION

La théorie des permutations est considérée par la plupart des débutants
. comme un sujet difficile. On y rencontre en effet des raisonnements d’un
type assez différent de ceux auxquels ils ont été habitués dans leurs études
antérieures. Il semble pourtant inévitable de I’enseigner dans un cours de
premiére année d’Université, a cause des applications a la théorie des
. déterminants et & celle des polyndémes symétriques.
: Cette note est consacrée a un examen des diverses méthodes par les-
quelles on peut introduire la signature d’une permutation. Nous avons
. nous-méme expérimenté la plupart de ces méthodes, et discuté a plusieurs
. reprises de ces questions avec nos collégues J. L. Koszul et P. Gabriel. La
. comparaison des avantages et inconvénients des diverses méthodes s’appuie
'~ donc sur une expérience pédagogique réelle. Du point de vue mathématique,
la seule nouveauté est la définition de la signature d’une permutation
| présentée au n° 4.

1. Permutations paires et impaires.

Rappelons les faits connus. Notons »n un entier strictement positif et
X Pensemble des entiers 1,2, ..., n. Une permutation (de rang n) est une
~ bijection s de X sur X, c’est-a-dire une application de X dans X telle que
tout €lément de X soit le transformé d’un élément et d’un seul. Si s et ¢
- sont deux permutations, leur produit st est ’application qui 2 i fait corres-
~ pondre s(#(i)). La permutation identique ¢ associe chaque élément de X a
- lui-méme. Enfin, si s est une permutation, la permutation inverse s~ ! est
- telle que I'on ait s7'(i) = j si et seulement si s(j) = i. Avec cette définition
- du produit, de 'unité et de I'inverse, les permutations forment un groupe S, .
Nous supposons connue la définition de la transposition s;, ; €changeant
ietj, et le fait que toute permutation est produit de transp031t1ons en fait,
~nous utiliserons plusieurs fois le fait que toute permutation est produit

; d une suite finie de transpositions de la forme =, ..., 7,_, avec ©; = Siit1-
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Appelons permutation paire toute permutation qui est produit d’'un nombre
pair de transpositions, et notons S leur ensemble; définissons de maniére
analogue I’ensemble S, des permutations impaires. Ces définitions entrai-
nent immédiatement les propriétés suivantes:

a) Ona S,= S| uUS,;autrement dit, toute permutation est paire ou
impaire.

b) Il existe des permutations paires, par exemple &, et des permutations
impaires, par exemple les transpositions.

c) « Régle des signes »: le produit de deux permutations de méme
parité est pair, le produit de deux permutations de parité distincte
est impair. De plus, toute permutation a méme parité que son inverse.

A priori, rien n’exclut qu’une permutation puisse étre a la fois paire et
impaire. Examinons les deux possibilités:

A) 1l n’existe aucune permutation a la fois paire et impaire. Alors les
ensembles non vides S, et S, forment une partition de S,. On peut définir
la signature d’une permutation s comme le nombre sgn s égal a 1 si s est
paire et a — 1 si s est impaire. La régle des signes se traduit alors en formule:

(1) sgh st = (sgns)-(sgnt),
et par définition, on a

(2) sgns; = — 1.

B) II existe une permutation qui est a la fois paire et impaire. Si a est
une telle permutation, la régle des signes montre que a™* est impaire, donc
que ¢ = aa” ' est impaire. Une nouvelle application de la régle des signes
montre que pour toute permutation s paire (impaire), alors s = es est
impaire (paire). Autrement dit, toute permutation est paire et impaire, et
lona S, =8,=3S8,

De maniére plus succincte, on peut dire ceci: le groupe S, est engendré
par les transpositions, qui sont des éléments d’ordre 2; I’ensemble S des
permutations paires est le sous-groupe de S, engendré par les produits de
deux transpositions, et S, est de la forme S, #; on a donc S, = St U S}y,
et par suite, ou bien S est d’indice 2 dans S, et S est la classe modulo
ST qui ne contient pas ¢, ou bien S, est d’indice 1 dans S, auquel cas on
asS, =S =9,.
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2. Relations entre transpositions.

Un résultat fondamental de la théorie des permutations est que le cas B)
ne peut se présenter. Nous allons d’abord esquisser une démonstration
directe, mais laborieuse. Nous avons déja rappelé que le groupe S, est
engendré par 7y, ..., T,_;; de plus, on établit facilement les relations
suivantes entre ces transpositions

(3,) n; = ¢ pour ]l £i<n-—1
(3p) (m;741)° = & pour 1 £is=n-—2
(3.) (mim;)? = ¢ lorsque |i —j| = 2.

Compte tenu de 77 = ¢, on peut écrire (3,) et (3.) sous la forme suivante
qui est plus avantageuse

(3y) T4 1Ty = T4 1Tl 1 pour 1 =isn—2
(32) ;= T, lorsque |i —j| = 2.

L’existence de ces relations permet la transformation des produits de
transpositions 7;. Dans un produit de telles transpositions, on peut, sans
en changer la valeur, effectuer les opérations suivantes:

a) supprimer deux termes égaux qui se suivent, ou au contraire insérer
deux nouveaux termes consécutifs égaux;

b) remplacer un produit partiel du type n;m;, 7; par m;(7;7;+1 sans
toucher aux autres termes (les trois termes modifiés doivent étre
consécutifs);

c) déplacer un terme 7; vers la gauche ou la droite, pourvu qu’il n’ait
pas a sauter par-dessus 7;_; OU 7, 1.

Un théoréme classique, dt a Moore (1897), affirme que les relations (3,)
(3,) et (3,) suffisent & engendrer toutes les relations entre 74, ..., 7,_, dans
S, (cf. Burnside, [3], note C). Cela signifie que si les produits de deux
suites de m; représentent la méme permutation, on passe de 'un a I'autre
par une suite de transformations des types a), b) et c).

Illustrons ceci par un exemple. Nous considérons les deux produits

A — 7-527-517[37[67-[277:37[17[67'[37[47[3756755754_7[7
B == 7[67577137'62%3%47[57[17[27537[4

dans le groupe Sy. L’évaluation de ces produits est faite dans les deux
tableaux suivants et obéit aux régles usuelles: le produit est effectué de la
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droite vers la gauche, une opération =, fait passer d’une ligne a la suivante
en échangeant les nombres i et i+ 1 (mais non pas les termes de rang i et

i+1).

Calcul de A Calcul de B
12345678 n, 12345678
; 12345687 n, 12354678
n4 12354687 n, 12453678
; 12364587 n, 13452678
; 12374586 ne 23451678
; 12473586 n, 23461578
; 12573486 n, 23561478
; 12574386 m, 24561378
; 12564387 n, 34561278
; 21564387 n, 43561278
; 21563487 me 43561287
; 31562487 43571286
; 31572486
; 41572386
''42571386
"2 43571286

On voit donc que A et B sont tous deux égaux a la permutation (; 3325354 2).

Nous indiquons maintenant par un tableau une suite de transformations
faisant passer de A a B; nous avons omis d’inscrire les 7 dans les produits,
en ne gardant que les indices.

Reégle

| —

A=213623163436547
——
213623136436547
—
213623316436547

1 a
2136216436547

— c
2136216463547

c

2136216643547
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—
21362143547

| — C
rz_i RN ¢ ¢ Migration de 6 vers la gauche
j 26132143547 I
* — c

| 62132143547
—
62132143574
i .
62132143754
=
62132147354

62132174354 Migration de 7 vers la gauche

— C
62132714354
— C
62137214354
 — C
62173214354
C

[ —
62713214354

67213214354

|
67231214354
1 C
67232124354
— C

67323124354
— c
67323142354

I c

67323412354

— c
67323412534 )
| — c
67323415234 | Migration de 5 vers la gauche

B=67323451234

Montrons comment le théoréme de Moore entraine le résultat cherché
- sur la parité. Tout d’abord, la relation s;; = n;5;, ;7; (pour i< j—2) entrai-
. ne par récurrence la formule

NG Sij = Tilligq oo Tj—pTj—qTj—2 coe Ty 4T (pour i <j).

|
|
B
A




— 12 —

Par suite, toute transposition est produit d’un nombre impair de généra-
teurs 7;, et I'on peut définir les permutations paires (impaires) comme les
produits d’'un nombre pair (impair) de générateurs n;. Or, une transforma-
tion de type a) appliquée a un produit de n; augmente ou diminue de deux
le nombre des facteurs, alors que ce nombre de facteurs est inchangé par
les transformations de type b) ou c¢). Une application des transformations
de type a), b) ou c) ne peut donc modifier la parité du nombre des facteurs;
le théoréme de Moore montre alors qu'un produit d’un nombre pair de 7,
ne peut €tre égal a un produit d’'un nombre impair de tels facteurs, donc
qu’une permutation ne peut €tre a la fois paire et impaire.

3. Nombre d’inversions d 'une permutation.

La démonstration du théoréme de Moore est un peu délicate pour
avoir sa place dans un cours élémentaire. L’intérét de ce théoréme est
ailleurs; il n’est en effet que le prototype de résultats s’appliquant a une
vaste classe de groupes, les groupes de Coxeter, dont on rencontre de
nombreuses applications géométriques. On peut consulter a ce sujet les
monographies de Coxeter et Moser [5] et de Bourbaki [2].

Les méthodes que nous allons maintenant examiner ont toutes un point
commun. Par un procédé ou un autre, on associe a toute permutation s un
nombre a(s) égal a 1 ou —1 de telle sorte que ’on ait la relation

(5) a(st) = a(s)al(t)

pour deux permutations s et ¢. Il suffit alors de prouver que a(s) est égal
a — 1 pour une transposition s, ou méme simplement de prouver la formule
a(n;) = —1 pour 1 £ i < n; on en déduit en effet que a(s)est égal a 1 pour
les permutations paires et & —1 pour les permutations impaires. On a ainsi
distingué entre les deux espéces de permutations et indiqué un procédé de
construction de la signature.

Un premier groupe de méthodes tourne autour de I'idée d’inversion
d’une permutation. Rappelons quelques définitions: si xy, ..., X, est une
suite de n nombres réels distincts, une inversion de la suite est un couple
extrait de la suite en question qui se trouve dérangé de l'ordre usuel;
autrement dit, c’est un_couple x;x; avec [ < j et x; > x;. Ainsi, dans la
suite 6 3124 5, les inversions sont les couples

63,61,62,64,65,31,32.

Si s est une permutation, on note N(s) le nombre d’inversions de la suite
s(1), ..., s(n); dans ce n°, on pose a(s) = (— V.
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A) La méthode la plus classique consiste & comparer N(s) et N(¢) pour
t = sn,. La suite #(1), ..., #(n) ne différe de la suite s(1), ..., s(n) que par
I’échange des termes de rang i et i-+1. Les couples que I'on peut extraire
de la suite #(1), ..., #(n) sont donc les mémes que ceux que I’on peut extraire
de la suite s(1), ..., s(n), & Pexception de s(i),s(i+1) qui est remplacé par
s(i-+1),s(i). En passant de s a ¢, le nombre d’inversions est augmenté ou
diminué d’une unité selon que I’on a s(i) < s(i+1) ou s(@@) > s(i+1). En
tout cas, on a a(sn;) = —a(s). Comme le nombre d’inversions de la permu-
tation identique & est nul, on en déduit par récurrence sur k la formule
a(s) = (—1)* si s est produit de k générateurs n;. Par suite, a(s) vaut 1
pour les permutations paires et —1 pour les permutations impaires ().

B) On peut aussi considérer des fonctions de n variables f (x4, ..., X,);
la nature de ces variables est indifférente, il peut s’agir de nombres entiers,
- réels ou complexes, et ’on peut aussi considérer des polyndmes formels a
n indéterminées. Une permutation s de rang n transforme f'en une nouvelle
fonction sf par la régle

(6) (Sf)(xl, ...,xn) =f(xs(1), ceey xs(n)).
La suite du raisonnement repose sur la formule

(7) (st)f = s(tf)

ou s et ¢ sont deux permutations de rang n et f une fonction de n variables.
On introduit ensuite une fonction particuliere D définie par
(8) D(x1>-°-9xn) = II (xk—xl)
k<l
Pour passer de D a =n;D, il faut échanger x; et x;,, donc, remplacer

X;—X;41 Par x;,;—Xx; €changer les facteurs de la forme x, —x; et x, —x;, ,
pour 1 £k <, et échanger les facteurs de la forme x;—x, et x;,  —x, pour

i+1</; au total, on a n;D = — D. Si s est le produit de k générateurs =;, la
formule (7) montre alors que 'on a sD = (—1)*D; autrement dit, on a
sD = D si s est paire et sD = — D si s est impaire. Comme la fonction

D n’est pas identiquement nulle, une méme permutation ne peut étre a
la fois paire et impaire.

Le raisonnement précédent a été présenté sans faire jouer de role
explicite aux inversions. En fait, par un argument du méme type, mais un

) Une variante consiste & comparer N (s) et N {ss; j) pour une transposition s; r
quelconque. Le principe est analogue, mais I’énumération des inversions de s5;j est un peu

plus compliquée.
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peu plus délicat, on montre que dans le passage de D 4 sD, il y a permuta-
tion des facteurs et N(s) changements de signe, d’out sD = (—1)®D.

C) Dans la méthode précédente, tant les variables x, ..., x, que les
fonctions f jouent un rdle assez fictif. On peut en présenter une variante
plus « économique » de la maniére suivante. A chaque permutation s de
rang n, on associe U'entier I1(s) = IT (s(j)—s(i)). On remarque ensuite que,

1<<J
la permutation s étant fixée, toute partie & deux éléments de ’ensemble
X={1,2, ..., n} se représente de maniére unique sous la forme {s(i),s( N}
avec I < j; de plus, |k—I| ne dépend évidemment que de la partie {k,I}.
Par suite |I1(s)| = I |s(i)—s(j)| est égal & IT |k—I| = I (I—k) = D. De
{

i<j k,1} k<l

plus, dans le produit définissant II(s), les facteurs négatifs correspondent
exactement aux inversions de la suite s(1), ..., s(n). On en conclut

(9) II(s) = a(s)-D.
On considere ensuite deux permutations s et z. Dans le produit
I1 (st) _ 5 s(t(j) — s(t (D)
I <y t(G)—t@®
chaque facteur est invariant par ’échange de i et j, et ne dépend donc que

de la partie {t(i),#(j)}. On a donc

MGy sO=s) _ s =35 1) _
H(Z) B {k,1} I — k B k<l I -k B D B

o (s),

c’est-a-dire
(10) Il (st) = a(s) I (7).

De (9) et (10), on déduit a(st).D = II(st) = oa(s).1I(t) = a(s)x(t).D, d’ou
a(st) = a(s)a(t) puisque D est non nul. On prouve ensuite que le nombre
d’inversions de =; est égal 4 1, d’ou a(n;) = —1. Comme on I’a déja
remarqué, cela suffit & montrer qu'une permutation ne peut étre a la fois
paire et impaire.

4. Permutations et graphes.

Comme J. L. Koszul me I’a fait plusieurs fois remarquer, I'inconvénient
de la définition de la signature au moyen du nombre d’inversions est de
dépendre étroitement de la relation d’ordre entre entiers; de méme, les
transpositions 7; de deux entiers consécutifs jouent un role privilégié dans les




démonstrations précédentes. Or, on a souvent besoin d’utiliser les permuta-
tions d’un ensemble fini X non numéroté a I’avance. Pour pouvoir définir
le nombre d’inversions d’une permutation s de X, il faut choisir une énumé-
ration de X, ou ce qui revient au méme une relation d’ordre total sur X.
Le nombre d’inversions N(s) dépend de ce choix, mais comme on le constate
a posteriori, la parité de N(s) a un caractére intrinseque.

Pour répondre a cette objection, on peut présenter [’élaboration
suivante de la méthode des inversions; 'idée en est qu’il suffit d’orienter
les parties a deux éléments pour définir les inversions. Nous adoptons un
mode d’exposition fondé sur la notion de graphe. Soit donc X un ensemble
fini & n éléments, que nous représentons par des points d’un plan appelés
sommets. Deux sommets distincts sont joints par un arc, comme dans les

deux figures suivantes, qui correspondent aux cas n = 4 et n = 5.

v VvV

La figure ainsi obtenue s’appelle d’ordinaire le graphe complet a n sommets.
Orienter un tel graphe consiste & choisir sur chaque arc un sens de parcours,
représenté par une fleche dans I’exemple suivant:

. Les arcs du graphe correspondent aux parties
a deux éléments de X et orienter le graphe
consiste & choisir dans chaque partie & deux
¢léments un premier et un deuxiéme élément.

¢ *® Jlrevient au méme de dire qu’une orientation est

un ensemble o de couples ordonnés (i, j) formés
d’¢léments distincts de X, tel quel’on ait, soit (i, /) € o, soit (j, i) € 0 pour deux
¢léments distincts 7 et j de X. Une permutation s de X transforme I’orientation

o en une nouvelle orientation so qui se compose des couples (s(7),s(j)) avec

(4,j) dans o. De maniére intuitive, s définit un réarrangement des sommets du

graphe qui entralne un réarrangement des arcs, et 1’on transporte avec

chaque arc son orientation.
Soient o et o’ deux orientations; soit m le nombre des arcs qui ont des
orientations distinctes par rapport a4 o et o', c’est-d-dire le nombre des
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couples qui appartiennent & o', mais non a o; on pose d(o, 0’) = (—1)". Le
formulaire suivant s’établit par des raisonnements élémentaires (*)

(11) d(o,0) =1
(12) d(o,0") = d(o’,0)
(13) d(o,0")d(0o’,0") = d(o,0")
(14) d (so, so’) = d(o,0").

On peut alors prouver que d(o, so) est indépendant de l’orientation o
choisie; en effet, si o et 0o’ sont deux orientations, on a

d(o’,so") = d(o',0)d(o,so0)d(so,so’) d’aprés (13)
= d(0,0")d (0, so)d (o, 0’) d’apreés (12) et (14)
= d (o, 50) car d(o, 0')* = 1.

A toute permutation s de X, on fait correspondre alors le nombre o(s) |
qui est égal a d (o, so) pour toute orientation o. Si s et ¢ sont deux permuta-
tions, on a

a(st) = d(o, sto) = d(o,to)d(to,s(to)) = a(t)a(s).

Pour calculer a(s,), nous choisissons une orientation o convenable; on
oriente I’arc ab de a vers b, chaque arc ax de a vers x, chaque arc bx de b
vers x et les autres arcs de maniére arbitraire. Le seul effet de la transposition
s, est de changer I’orientation de I’arc ab, d’ou a(s,,) = —1.

On peut donc définir la signature de s comme le nombre « (s). Supposons
en particulier que X soit I’ensemble des entiers 1, 2, ..., n et prenons pour o
I’ensemble des couples (i, j) avec i < j; alors so se compose des couples de
la forme (s(7), s(j)) avec i < j; les éléments de so qui n’appartiennent pas a o
sont donc les couples (s(i), s(j))aveci < j et s(i) > s(j) et leur nombre est
égal & N(s). On retrouve donc la définition de la signature comme égale a
(-1 )N(s).

5. Autres méthodes.

On peut aussi utiliser les cycles d’une permutation pour définir sa
signature ([6], chap. 8). Soit ¢(s)le nombre de cycles de la permutation s de
rang n; les définitions usuelles de la signature permettent de prouver qu’elle

2) On pourra consulter la note [4] pour des considérations plus générales.
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est égale & z(s) = (—1)""¢). Si Pon veut définir la signature de s par
le nombre z(s), il faut établir a priori la relation

(15) c(ssy) = c(s) £ 1.

En effet, cette relation entraine z(ss,,) = —z(s); mais on a c(¢) = n, d’ou
z(e) = 1 et il est alors immédiat que z(s) est égal a 1 oua —1 selon que s
est paire ou impaire.

Pour établir la formule (15), il faut distinguer deux cas. Si a et b
appartiennent a deux cycles distincts de s, ces deux cycles se regroupent
- en un seul cycle de ss,. Si au contraire, a et b appartiennent au méme
.| cycle de s, ce cycle se scinde en deux cycles de ss,,. En tout €tat de cause,
' les cycles de s qui ne contiennent ni a ni b sont des cycles pour ss,,. Les
deux figures suivantes nous dispenseront de faire un raisonnement plus
- explicite @,

) a
— e
s @ w A ¢ | \
// '&\ /v 9 \ / ’
X // \ & \
1 \\’ : 4 f | |
ll //‘ o I i ll
' ag’ b S e l | '
S v / k | l
DN SN / -:/
\ .*———.‘///b

~ Une derniére maniére de procéder consiste & éviter le probléme. Dans
. un cours élémentaire, la principale utilité de la signature d’une permutation
est de permettre la définition du déterminant d’une matrice. Or, on peut
- définir directement les déterminants par récurrence sur leur ordre, en
procédant par exemple par développement selon les éléments de la premiére
' colonne. Il n’est pas trop difficile de développer toute la théorie des détermi-
nants a partir de cette définition, sans utiliser une seule fois les permutations.
" Une fois ceci fait, on définit la signature d’une permutation comme le
déterminant de la matrice de permutation correspondante. La régle de

i

3) On peut aussi montrer que la signature d’une permutation s est egale a (- 1)e'(s)
4 Lo ¢/ (s) est le nombre des cycles de longueur paire de s. Si I’on prend ceci comme défini-
‘tion de la signature, il faut montrer que ¢ ’(ss,p) @ une parité différente de celle de ¢’(s).
' Les raisonnements sont analogues, mais il faut y ajouter quelques considérations de parité
qm les rendent moins immédiatement évidents.

" L’Enseignement mathém,. t. XVI, fasc. 1.
R

o
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multiplication pour les déterminants redonne alors la régle de multiplication
des signatures pour les permutations. Cette méthode nous a été signalée par
P. Gabriel, qui I’a utilisée plusieurs fois dans ses cours.

6. Considérations pédagogiques.

Les méthodes fondées sur le nombre d’inversions (ou la variante pro-
posée au n° 4) reposent sur la distinction entre un ensemble 3 deux éléments
et un couple; cette distinction est capitale, mais assez délicate a saisir pour
des débutants. Ces méthodes utilisent aussi la notion de réarrangement des
termes d’un produit sous une forme assez subtile. Elles comportent enfin un
aspect combinatoire important dans I’énumération des inversions. On
connait bien les difficultés d’exposition des théories combinatoires; si 1’on
peut se faire une idée assez nette des mécanismes en jeu sur un exemple
bien explicité, il est difficile de formuler des raisonnements généraux et
en particulier de s’assurer du caractére exhaustif de I’énumération des cas.
Il y faut une imagination assez particuliére qui ne se développe qu’a I’usage.
Ces raisons expliquent la peine qu’éprouvent les débutants & suivre de tels
raisonnements.

On peut aussi juger les méthodes précédentes sur leur économie de
moyens. De ce point de vue, la méthode C) du n° 3 introduit le minimum
de notions étrangéres, mais sa sobriété la rend assez difficile a suivre.
Bourbaki I’expose de maniére concise dans [1], page 99; il emploie la
notation trop suggestive n(V,) pour II(n), ce qui a induit en erreur certains
de ceux qui ’ont recopié [7, page 153]. Parmi les notions étrangeres que
nous avons introduites, celle de permutation des variables dans une fonction
se retrouvera inévitablement dans I’étude des polyndmes symétriques; celle
de graphe me semble devoir €tre présentée le plus tot possible aux étudiants,
mais I’expérience m’a montré que la démonstration du n° 4 nécessitait beau-
coup d’explications pour étre comprise. Enfin, la notion de cycle d’une
permutation me semble avoir sa place, méme dans un cours introductif.

Toutes ces raisons nous font préférer la méthode de permutation des
variables (cf. n° 3, B)) et celle des cycles a toutes les autres.
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